

High resolution modeling of a small urban catchment

I Skouri-Plakali, A. Ichiba, Pierre-Antoine Versini, Auguste Gires, I. Tchiguirinskaia, D. Schertzer

▶ To cite this version:

I Skouri-Plakali, A. Ichiba, Pierre-Antoine Versini, Auguste Gires, I. Tchiguirinskaia, et al.. High resolution modeling of a small urban catchment. European Geosciences Union, Apr 2016, Vienne, Austria. hal-02102485

HAL Id: hal-02102485 https://hal.science/hal-02102485

Submitted on 17 Apr 2019 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction: Flooding is the result of meteorological extremes which are aggravated by the hydrologists have to deal with. The complexity of the urban catchments lies in their extreme heterogeneity, the interference between human activities and natural hydrological processes at their specific temporal and spatial scales, high-resolution data and computational capacities are needed. In our case study, high spatio-temporal resolution modeling, using Multi-Hydro, developed at Ecole des Ponts Paris region, Le Perreux-sur-Marne. The aim of this work, in the framework of the ANR Trafipollu project, was to launch and validate Multi-Hydro in that area. The main objective of the Trafipollu project is the development of modeling tools for the location and transport of pollutant generated by traffic at different spatio-temporal resolutions.

Multi-Hydro

cycle and to compute the hydrological response of the catchment for every studied case. It is:

- •Modular
- •Fully distributed
- •Physical-based
- •Event based

It uses GIS data and the interface MH-AssimTool

Multi-Hydro provides detailed description about the surface runoff,

the subsurface flow and the sewer discharge. ^{[1],[2]}

Le Perreux-sur-Marne

its complexity.

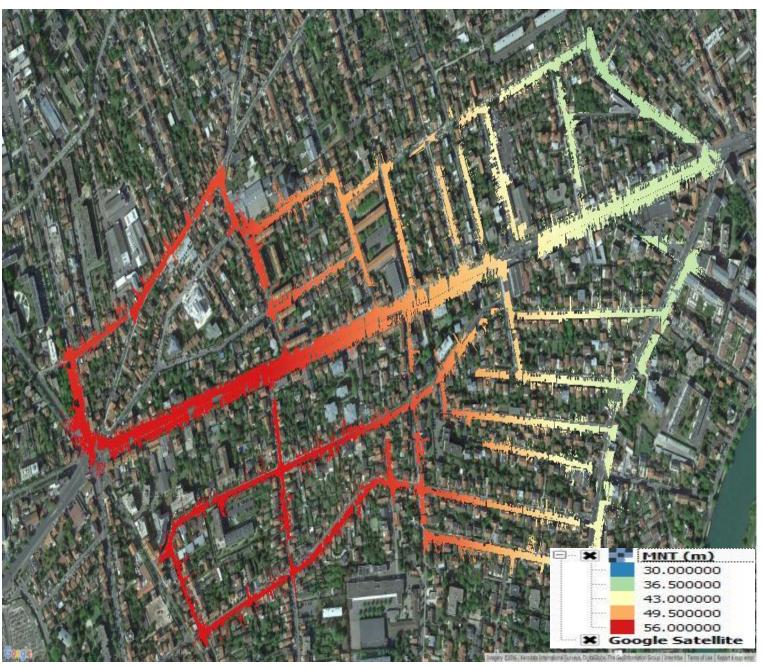
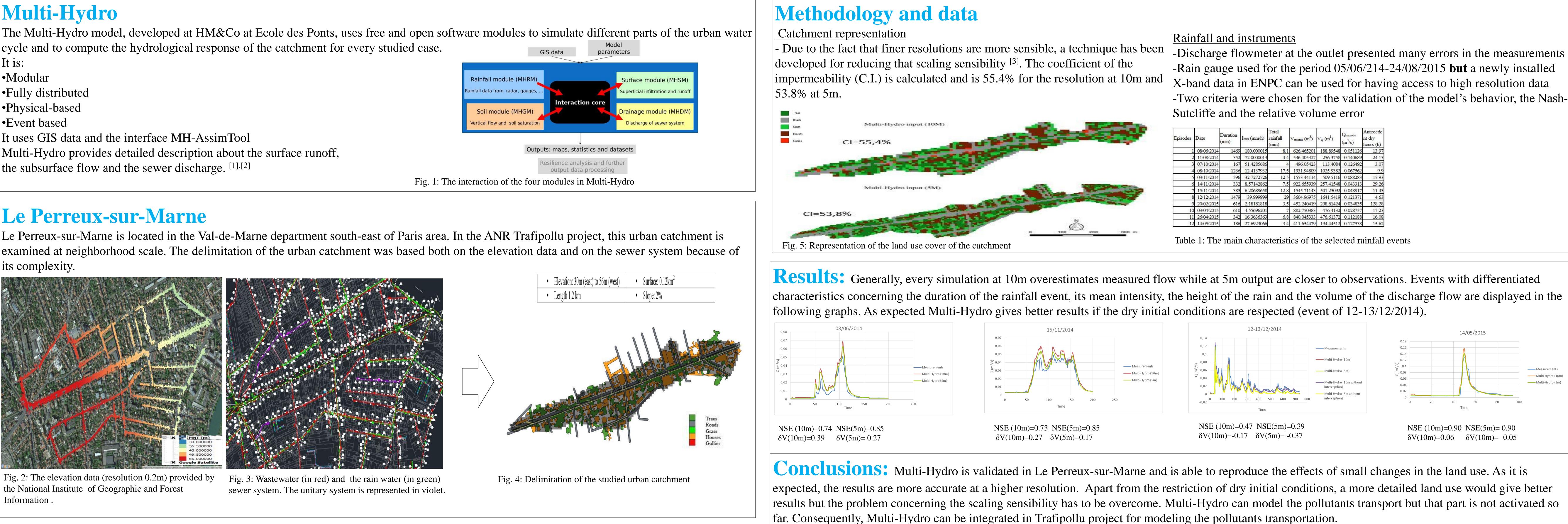



Fig. 2: The elevation data (resolution 0.2m) provided by the National Institute of Geographic and Forest Information.

References: [1] <u>https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php</u>

High resolution modeling of a small urban catchment

I. Skouri-Plakali⁽¹⁾, A. Ichiba⁽¹⁾, P.A. Versini⁽¹⁾, A. Gires⁽¹⁾, I. Tchiguirinskaia⁽¹⁾, D. Schertzer⁽¹⁾ ⁽¹⁾HM&Co, Ecole des Ponts, 6-8 avenue Blaise-Pascal Cité Descartes, Champs-sur-Marne, Marne-la-Vallée cedex 2, France (<u>ilektraskouri@gmail.com</u>, +33 663396693)

[2]Giangola - Murzyn, A. (2013). Modélisation et paramétrisation hydrologique de la ville, résilience aux inondations. Earth Sciences. Université Paris-Est, 2013. French. <NNT : 2013PEST1189>. cpastel-01060497> [3] Ichiba, A., Gires, A., Tchiguirinskaia, I., Bompard, P., Schertzer, D. (2015). High resolution modeling approaches and their sensitivity to high rainfall variability. EGU General Assembly. 17, pp. 14103-1. Vienna: Geophysical Research Abstracts.

sodes	Date	Duration (min)	I _{max} (mm/h)	Total rainfall (mm)	V _{rainfall} (m ³)	V _Q (m ³)	Q _{maxobs} (m ³ /s)	Antecede nt dry hours (h)
1	08/06/2014	1469	180.000015	8.1	626.465201	188.89548	0.051126	13.97
2	11/08/2014	352	72.0000013	4.4	536.405327	256.3758	0.140689	24.13
3	07/10/2014	167	51.4285686	4	496.05423	113.4084	0.126492	3.07
4	08/10/2014	1236	12.4137932	17.5	1931.94809	1025.9382	0.067562	9.9
5	03/11/2014	596	32.7272726	12.5	1553.44114	509.5116	0.088283	15.93
6	14/11/2014	332	8.57142862	7.5	922.655939	257.41548	0.043313	29.26
7	15/11/2014	385	6.20689658	12.8	1545.71143	501.25092	0.048917	11.43
8	12/12/2014	1479	39.999999	29	3604.96975	1641.5419	0.121371	4.63
9	20/02/2015	616	2.18181818	3.5	452.240419	298.61424	0.034835	128.28
10	03/04/2015	610	4.55696201	7	882.750383	476.4132	0.028757	17.23
11	26/04/2015	342	16.3636363	6.8	840.045333	476.61372	0.112188	16.08
12	14/05/2015	186	27.6923066	3.4	411.654479	194.44512	0.127538	15.62