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DENSITY VARIATIONS EFFECTS IN TURBULENT
DIFFUSION FLAMES: MODELING OF UNRESOLVED
FLUXES

Sylvain Serra, Vincent Robin, Arnaud Mura,
and Michel Champion
Institut Pprime, UPR3346 CNRS, ISAE-ENSMA, Université de Poitiers, Futuroscope Chasseneuil, 
France

Unresolved fluxes in turbulent diffusion flames are investigated by introducing the specific volume to analyze 
the effects of density variations. Unresolved fluxes are found to be related to scalar correlations involving this 
specific quantity. The algebraic models proposed for the turbulent scalar and momentum fluxes allow to 
recover and generalize well-known previ-ously established relations and highlight the possible occurrence of 
non-gradient diffusion. These correlations are evaluated from the consideration of strained laminar diffusion 
flames and chemical equilibrium conditions. Finally, the calculations performed confirm that such non-
premixed flames may exhibit a strong production of turbulence near stoichiometric conditions.

Keywords: Counter-gradient diffusion; Diffusion flame; Flame-generated turbulence; Non-premixed combustion; 
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INTRODUCTION

Most of industrial or natural gaseous flows do involve density heterogeneities that 
are responsible for specific physical mechanisms, such as local accelerations, instabilities, 
and segregation processes. The characteristic scales of these mechanisms are often so 
small in comparison with those of the considered practical flow geometries that they 
cannot be directly solved on a given computational grid. In the case of turbulent flows, the 
computa-tional mesh itself allows to introduce statistical filters applied to the governing 
equations leading to new terms that represent the unresolved quantities. Accordingly, 
relevant sub-grid scale models for these unresolved quantities must be included to take 
into account the associated small scale physical mechanisms in the numerical simulations. 
In turbulent flows, different strategies can be proposed to include the effects of density 
variations in the unresolved convection terms appearing in the averaged or filtered 
equations. However, before proposing closure models, a detailed physical analysis of the 
small-scale behavior must be performed to get a deeper understanding of the mechanisms 
involved.
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The first possible and widely used modeling strategy consists in extending conven-
tional first-order closures to be valid in the context of such variable density flows. This strat-
egy is based on the eddy viscosity concept where the unresolved effects of turbulence are
considered similar to molecular diffusion processes. In this case, the unresolved convection
of any scalar quantity ξ by the velocity field u is modeled by analogy with the Fick law:

ũξ − ũξ̃ = − (vT/σ )∇ξ̃ (1)

where vT and σ denote, respectively, the turbulent (or sub-grid scale) viscosity and turbu-
lent (or sub-grid scale) Schmidt number. The Favre averaging must be considered here due
to density variations. In Eq. (1), the specific effects of both density variations and laminar
premixed flame propagation can be taken into account in the expression of the turbulent
diffusion coefficient (Borghi et al., 1996). It is well known that, for large density varia-
tions, such as those encountered in premixed flames, this coefficient may reach a negative
value in some part of the flow so as to mimic experimental observation reported by Moss
(1980) or Borghi and Escudié (1984) and to follow theoretical analyses (Bray et al., 1981;
Libby and Bray, 1981). Accordingly, this well known effect has been referred to as “counter
gradient turbulent diffusion.” In practice, similar behaviors have also been documented in
non-premixed flames (see, for instance, Caldeira-Pires and Heitor, 2001; Luo, 1999; Luo
and Bray, 1998). However, in contrast with premixed flames, non-gradient diffusion effects
in non-premixed situations and its modeling have been rarely addressed. The occurrence of
such countergradient transport effects exceeds the scope of turbulent reactive flows and has
concentrated important research efforts in various fields, such as those concerned with geo-
physical and atmospheric flows (see, for instance, Deardoff, 1972; Dop and Verver, 2001).

It is currently well accepted that the unresolved part of the transports induced by
turbulent convection is similar to molecular diffusion processes in the context of constant
density flows. Nevertheless, when specific mechanisms like thermal expansion occur, unre-
solved transports have nothing in common with diffusion processes. The eddy viscosity
concept is no longer relevant (Spalding, 1985) and thus second order approaches seem more
appropriate to model such flows. In these approaches, additional transport equations for the
unresolved convection terms of velocity and scalar are derived (see, for instance, Bray et al.,
2000, Libby and Bray, 1981). Special care must be paid to the modeling of the pressure
terms that involve the pressure gradient ∇p and Favre fluctuations, both affected by density
variations. Within the Reynolds-averaged Navier–Stokes (RANS) context and considering
the unresolved fluxes of velocity u and scalar ξ , these terms are written, respectively, as:

u′′∇p = u′′∇p̄ + u′′∇p′ (2)

ξ ′′∇p = ξ ′′∇p̄ + ξ ′′∇p′ (3)

Similar expressions may be derived within the large eddy simulation (LES) context
by following the filtering procedure introduced by Germano (1992).

Many different closure models for these terms have been proposed in the context of
variable density flows (see, e.g., Domingo and Bray, 2000; Jones, 1994; Robin et al., 2008).
Nevertheless, the closure models proposed for these second-order equations are rather com-
plicated to establish in the framework of variable density flows and their computational
costs make these strategies difficult to apply within the LES context.
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To deal with such complex flows, instead of considering different phases as proposed
in conditional or two-fluid methods (Lipatnikov, 2008, 2012; Spalding, 1985), we choose
here to treat separately the different physical phenomena that affect the unresolved convec-
tion terms, in particular turbulent motions and density variations. A similar approach has
been recently applied to the case of fully premixed flames, where the direct and indirect
effects of expansion have been studied and modeled (Dong et al., 2013; see Robin et al.,
2011, 2012). In this latter case, such a strategy allows to analyze precisely the effects of
density variations at small scales but leads also to simple algebraic closures for the unre-
solved flux of scalar and momentum (Robin et al., 2012). The theoretical basis of this
strategy is as follows: some of the physical processes involved in variable density flows
are the direct consequence of the mass conservation law that imposes a direct correlation
between the density and the velocity fields. Besides, in low Mach number flows, the den-
sity field is directly related to scalar quantities, such as temperature and/or species mass
fractions via the equation of state. Accordingly, such a velocity/scalar coupling leads to
direct relationships between unresolved scalar and momentum convection terms in turbu-
lent flows. Therefore, the objective of the present strategy is to introduce a simple formalism
using these relationships that leads to closures for unresolved convection terms taking large
density variations’ effects into account.

The present study focuses on the application of this strategy to diffusion flames where
large density variations associated to both non-reactive mixing and reactive processes occur.
Such density variations may be the source of non-gradient diffusion and turbulence produc-
tion. In contrast with turbulent premixed flames, the temperature does not appear here as
a suited scalar to follow the influence of density variations since, as mentioned above, it
may result not only from (i) the heat release by chemical reactions but also from (ii) non-
reactive mixing between two inlet streams of different densities. One of the objectives of
this work is to understand the underlying physical mechanisms occurring at the unresolved
scales in such diffusion flames. Therefore, relevant quantities and their fluctuation statis-
tics must be introduced and analyzed. Then, in the first three sections of this article: (i) a
characteristic scalar quantity in a variable density flow is introduced, and (ii) its evolution
through a laminar flame is investigated, as well as (iii) its statistical behavior in turbulent
diffusion flames. The last three sections of the article are relative to (iv) the splitting pro-
cedure used to treat separately effects of turbulent motions and effects of flames, (v) the
resulting simple algebraic closures obtained for unresolved convection terms, and, finally,
the last section (vi) discusses their expected behavior in turbulent diffusion flame.

THE NORMALIZED SPECIFIC VOLUME AS A RELEVANT SCALAR VARIABLE
TO DESCRIBE TURBULENT TRANSPORTS

As our objective is to deal with the effects of density variations, we choose to intro-
duce a scalar variable that is well suited to such flows: the specific volume V = 1/ρ.
The maximum (Vmax) and minimum (Vmin) values of the specific volume in the flow are
introduced to obtain the following normalized scalar:

f = (V − Vmin) / (Vmax − Vmin) (4)

This scalar variable may be relevant to describe any type of variable density flows. For
instance, in the case of fully premixed flames, this normalized specific volume is noth-
ing else but the conventional progress variable: f = c defined from the equation of state:
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V = Vmin (1 + τc), where the expansion factor is τ = (Vmax − Vmin)
/
Vmin (see Chomiak

and Nisbet, 1995). In the case of non-reactive scalar mixing between two streams featur-
ing different densities, the normalized specific volume is the conventional mixture fraction
variable: f = ξ defined to be, respectively, unity and zero in each of the two streams con-
sidered. Now, in the case of diffusion flames the variable f is neither the mixture fraction
ξ , nor the progress variable c, but just a scalar variable that follows exactly the evolution of
the density.

Another advantage of the normalized specific volume is that it allows to rewrite easily
the terms u′′, ξ ′′, and f ′′, which drive the influence of the mean pressure terms (see Eq. 2),
in the second-order transport equations and we have:

u′′ = (ρu′′V) = βρ̄ũ′′f ′′ (5)

ξ ′′ = (ρξ ′′V) = βρ̄ξ̃ ′′f ′′ (6)

f ′′ = (ρf ′′V) = βρ̄ f̃ ′′2 (7)

where β = (Vmax − Vmin). Equations (5), (6), and (7) clearly show that u′′, ξ ′′, and f ′′

are nothing else than the unresolved scalar flux of the normalized specific volume f , the
unresolved co-variance between f and ξ , and the unresolved variance of f . These relations
can be written for any scalar X by using the following general form:

X′′ = βρ̄X̃′′f ′′ (8)

Equations (5), (6), and (7) could be written as well in the context of LES; for example,
equation (5) leads to:

ū − ũ = βρ̄quf (9)

where quf =
[
ũf − ũf̃

]
is the sub-grid scale flux of f , while for a scalar X, Eq. (8) leads to:

X̄ − X̃ = βρ̄qXf (10)

where qXf =
[
X̃f − X̃f̃

]
is the sub-grid scale cross correlation between X and f .

In the case of non-reactive mixing, f = ξ , Eq. (5) and (6) allow to recover the rela-
tionship found by Jones (1994): u′′ = ξ ′′ũ′′ξ ′′

/
ξ̃ ′′2, see also Janicka (1986). Equation (8)

is fully consistent with well-known expressions obtained for fully premixed combustion
(f = c) : u′′ = τ ρ̄Vmin ũ′′c′′ and c′′ = τ ρ̄Vmin c̃′′2. Eventually, in the case of diffusion
flames, or in other case of variable density flow at low Mach number, Eq. (5), (6), and
(7) lead to exact relations that represent a generalized form of the classical Jones (1994)
expression:

u′′ = ξ ′′ũ′′f ′′/ξ̃ ′′f ′′ and u′′ = f ′′ũ′′f ′′
/

f̃ ′′2 (11)

In the context of LES, these expressions can be written as:
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ū − ũ =
(
ξ̄ − ξ̃

)
quf

/
qξ f and ū − ũ =

(
f̄ − f̃

)
quf

/
qf 2 (12)

To conclude on the relevance of the scalar variable used, it must be pointed out that
the normalized specific volume is appropriate to study any type of variable density flows
and so it is for diffusion flames. Thus, the following section is devoted to the analysis of its
evolution through a laminar diffusion flame.

LAMINAR DIFFUSION FLAMES

The most relevant quantities in laminar diffusion flames, i.e., temperature, density,
and composition, can be first studied by using a chemical software (see, for example,
Cantera, 2013). The resulting inner structures obtained depend on the flow configuration
(strain rate), the transport properties of chemical species (molecular diffusion coefficient),
and the chemical kinetic scheme considered.

Chemical Equilibrium

In a first step, in order to simplify the following analysis, we assume that chemical
processes are infinitely fast compared to transport mechanisms. Thus, the chemical equilib-
rium is reached whatever the flow configuration and the mechanism of chemical kinetics.
Moreover, assuming unity Lewis numbers for all species as well as a mixture resulting from
only two separated inlet streams (fuel and oxidizer), a single mixture fraction ξ , defined to
be zero in the oxidizer stream and unity in the fuel stream, is sufficient to describe the whole
diffusion flames structure:

ξ = 1
&+ 1

[
&

YF

Y∞
F

− YO

Y∞
O

+ 1
]

(13)

where & is the equivalence ratio, YF and YO denote, respectively, the mass fractions
of the fuel and oxidizer. The superscript ∞ refers to the values associated to each
of the two inlets (ξ = 0 and ξ = 1). Figure 1 shows the normalized temperature θ =
(T − Tmin)

/
(Tmax − Tmin) and the normalized specific volume f through several laminar

diffusion flames where the equilibrium is reached. Four different fuels (hydrogen, methane,
propane, and octane) and two different oxidizers (air and pure oxygen) are considered.
The temperature of the fresh reactants is 300 K. The corresponding chemical equilib-
rium profiles (see Figure 1), are plotted along a rescaled mixture fraction, i.e., ξ̂ =
ξ

(
log (0.5)

/
log (ξst)

)
in order to obtain stoichiometric conditions at ξ̂ = 0.5 whatever the

couple of reactants under consideration.
As expected, the temperature reaches a maximum value around stoichiometric con-

ditions whatever the reactants considered (see Figure 1). However, the profiles of the
normalized specific volume display a similar evolution only for hydrocarbon fuels burning
with air. For hydrogen/air flames and any fuel burning with pure oxygen, the normalized
temperature evolution may indeed differ significantly from the specific volume evolution.
In the latter situation, the maximum value of the specific volume does not correspond to
stoichiometric conditions, as it is shifted towards the rich side. In the former case, this
maximum corresponds to pure hydrogen condition, and the specific volume V displays a
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Figure 1 Chemical equilibrium profiles of normalized temperature θ (left) and normalized specific volume f
(right) for fuel/air (top) and fuel/O2 (bottom) plotted versus ξ̂ = ξ (log(0.5)/ log(ξst)). The stoichiometric conditions
are located at 0.5 whatever the reactants under consideration.

monotonic increase from ξ = 0 to ξ = 1. These differences between the normalized tem-
perature and specific volume evolution are the consequence of the variable chemical species
composition. In practice, the corresponding variations of the mean molecular weight are far
from being negligible. They are due to chemical reactions but also to the non-reactive mix-
ing between the fuel and oxidizer streams. Accordingly, both processes, i.e., non-reactive
mixing and chemical reactions, may impact the density value with the same order of
magnitude.

Strained Flamelets

In order to account for non-equilibrium chemical states, laminar diffusion flame
structures can be also calculated in specific flow configurations. Here, counterflow dif-
fusion flames featuring different values of the strain rate defined by χ = (U + V) /L are
considered. U and V denote, respectively, the norm of the velocity in the two feeding
streams and L is the distance between the two injector nozzles. In this case, chemical
kinetic schemes and transport properties of species must be specified (Kee et al., 1989;
Lutz et al., 1997). Specific effects associated with non-unity Lewis numbers are then taken
into account. A unique mixture fraction can still be defined to be zero in the oxidizer stream
and unity in the fuel stream.

Figures 2 and 3 display the normalized temperature θ and the normalized specific
volume f through the laminar diffusion flame structure. Different values of the strain rates
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Figure 2 Profiles of normalized temperature θ (left) and normalized specific volume f (right) for H2/air (top)
and H2/O2 (bottom) plotted versus ξ̂ , for distinct values of the strained rates χ (s−1) through counter flow laminar
diffusion flames.

have been considered for two different fuels, i.e., hydrogen and methane, and two different
oxidizers, i.e., air and pure oxygen. The temperature of all reactants is again set to 300 K.
The chemical kinetic schemes used are the Kee et al. (1996) mechanism for hydrogen and
the GRI 3.0 mechanism for methane (Bowman et al., 1997). The structures of these flames
are plotted along the modified mixture fraction ξ̂ defined above.

The global evolution of these lines is similar to those obtained from the consideration
of the chemical equilibrium. Nevertheless, non-equilibrium effects are more important on
the rich side of the flames and lead to a different position of the maximum value of the
specific volume when pure oxygen is the oxidizer.

Pure Mixing Lines

The values of the normalized specific volume at both sides of the laminar diffusion
flames, i.e., pure fuel and pure oxidizer, can be very different, as observed for H2-air and
H2-O2 flames. Therefore, it is interesting to analyze how the normalized specific volume
and normalized temperature evolve in the absence of any chemical reaction. To do so, the
gas composition and temperature are calculated by considering the pure mixing between
the two reactant streams, i.e, for each value of the mixture fraction ξ . The gaseous state is
described by the pure mixing lines fmix (ξ) depicted in Figure 4. These results are obtained
by considering unity Lewis numbers in order to compare the pure mixing lines to the chem-
ical equilibrium lines without any specific influence of the retained flow configuration
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Figure 3 Profiles of normalized temperature θ (left) and normalized specific volume f (right) for CH4/air (top)
and CH4/O2 (bottom) plotted versus ξ̂ , for distinct values of the strained rates χ (s−1) through counter flow laminar
diffusion flames.

and associated transport properties of chemical species. However, the same pure mixing
lines could have been plotted against those resulting from the counter flow diffusion flame
calculations and lead to similar conclusions.

The pure mixing temperature lines are flat and zero only when both feeding streams
have the same temperature. However, the pure mixing lines associated with the specific
volume are not flat because the fuel and oxidizer densities are not exactly the same.
Nevertheless, the pure mixing lines associated with the specific volume tend to be zero
in the case of hydrocarbon flames when both feeding streams have the same temperature:
the non reactive mixing effects on density are negligible in these flames. When the values
of temperature in both streams differ, the pure mixing lines are no longer straight lines
because of heat capacity variations. It could be also noticed that considering the transport
properties of chemical species may not lead to straight lines because of non-unity Lewis
number effects for counter flow diffusion flames even when the temperatures in the two
inlet streams are the same. Finally, considering these lines appears to be more general than
considering straight mixing lines. We see in the next sections how these mixing lines can
be used to split density effects into non-reactive and reactive contributions.

Conclusions from the Laminar Case

The first conclusion drawn from this laminar diffusion flames study is that the nor-
malized specific volume is a more appropriate quantity than the normalized temperature
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Figure 4 Chemical equilibrium and pure mixing lines of normalized temperature θ (left) and normalized specific
volume f (right) for fuel (300 K)/air (300 K) (top) and fuel (300 K)/air (1300 K) (bottom) plotted versus the
mixture fraction ξ .

to study the effects of density variations. The normalized temperature may be a relevant
quantity to study these effects only in the specific case of hydrocarbon/air diffusion flames
where the effects of molecular weight variations remain negligible. In the general case, den-
sity variations may indeed result from mixture composition variations even in the absence
of any temperature variations. The values of the specific volume in oxidizer and fuel streams
are generally different and the consideration of both pure mixing and equilibrium lines is
needed to discriminate the effects of chemical reactions on the specific volume.

Figure 4 also shows that stoichiometric conditions are obtained for very small values
of the mixture fraction: ξst = 2.85 10−2 for hydrogen, and ξst = 5.52 10−2 for methane.
This behavior is enhanced when air is the oxidizer. Thus, density variation effects are
expected to be stronger in this region of the flame. The non-linear evolution of the specific
volume in this region of the flame precludes the use of classical transport models for such
non-premixed flames. For example, the Jones expression (Jones, 1994), which involves a
linear relationship between the specific volume and the mixture fraction is no longer valid.

Reynolds stresses and fluxes are known to be driven by the pressure terms expressed
in Eq. (2). It is clear from these expressions that the statistics of the specific volume and
correlations with the classical mixture fraction are key quantities, as shown by Eq. (6)
and (7), to study the effects of density variations on unresolved fluxes. These correla-
tions do not include only temperature variation effects but also composition variation
effects and, as shown later on, the corresponding variable, i.e., the specific volume, may
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allow to discriminate the specific contribution associated to combustion, thus alleviating
the difficulties that may result from the consideration of either hydrogen-air flames or
oxy-combustion.

CHEMICAL LIBRARIES FOR TURBULENT COMBUSTION

The most classical closures to handle non-premixed combustion are based on the
early analysis of Bilger (1976), which relates the local composition Yi to the mixture frac-
tion ξ and its scalar dissipation rate (SDR) Nξ = D∇ξ · ∇ξ , where D denotes the molecular
diffusivity (Williams, 1985a, 1985b). This has led to the development of flamelet closures
(Peters, 1986, 2000). In the flamelet approach (Peters, 2000), all scalar quantities, including
temperature, density, and species mass fractions, may be tabulated from strained flamelet
structures as functions of two parameters only, the mixture fraction ξ and the strain rate
χ , as recalled in the previous section. This strategy implies the use of a direct relation-
ship between the SDR and the strain rate that can be expressed by considering the case of
counterflow diffusion flames (see, for instance, Peters, 2000).

In this context, the turbulent flame is supposed to be composed of one-dimensional
thin laminar diffusion flames and curvature effects are often neglected. Thus, preliminary
laminar flamelet calculations can be performed and results can be used afterwards in the
numerical simulations of turbulent flames. However, the concept of diffusion flamelet itself
may become questionable when the reactants begin to be well mixed at unresolved scales.
Other non-pre-mixed flame models exist that do not invoke the flamelets assumption. For
example, the Modèle Intermittent Lagrangian (MIL) model (Borghi and Gonzalez, 1986;
Mura and Demoulin, 2007) as well as its recent extension to self-ignition conditions (Gomet
et al., 2012; Mouangue et al., 2014) considers finite rate chemistry effects through a direct
comparison performed between flow time scales and chemical time scales so as to delin-
eate a flammable domain in the composition space. In this case, the knowledge of all scalar
quantities depends also on different parameters including the mixture fraction and charac-
teristic time scales. In this study, we consider the flamelets approach in its simplest form,
which requires the consideration of the sole chemical equilibrium.

Whatever the closure retained to express the mean chemical rate, i.e., flamelets, equi-
librium, and MIL, the filtering process used in numerical simulations leads to unresolved
fluctuations of mixture fraction. Then, the knowledge of the unresolved mixture fraction
probability density function (PDF) is required to use the preliminary laminar calculations.
This PDF here is supposed to be a beta function, which depends on the first two moments:
the mean value ξ̃ and the unresolved variance level qξ 2 of the mixture fraction. Therefore,
their knowledge allows the calculation of any averaged quantity depending upon the mix-
ture fraction only, such as the mean density. All of these statistical quantities can be stored
in a so-called chemical library that depends only on the normalized first two moments
of the mixture fraction, i.e., ξ̃ and qξ 2

/
qmax
ξ 2 and eventually on other parameters that are

required by the mean chemical rate closure retained, for instance the strain rate in the
flamelet approach. In the previous expression, qmax

ξ 2 = ξ̃ (1 − ξ̃ ) is the maximum possible
level for the unresolved variance.

In this study, we focus on the unresolved statistics of density variations. Then, cor-
relations involving the normalized specific volume f are also stored in the library: (i) the
cross correlation qξ f (or ξ̃ ′′f ′′ in RANS context) and (ii) the variance qf 2 (or f̃ ′′2 in RANS
context). Profiles across the air/fuel diffusion flame brushes, from ξ̃ = 0 to ξ̃ = 1, of
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these quantities for different values of the segregation rate S = qξ 2

/
qmax
ξ 2 are displayed in

Figures 5 and 6. The closures presently retained for the mean chemical rate are taken to be
the chemical equilibrium in Figure 5 and the flamelets model in Figure 6 where different
strain rate values have been considered. As expected, for small levels of segregation, these
mean quantities reach a maximum close to the pure air side of the flame brush. This pecu-
liar behavior can be associated with the strong variations of density around stoichiometric
conditions, i.e., for low values of the mixture fraction (see Figure 4).

Figure 5 Specific volume variance qf 2 (top) and cross correlation qξ f (bottom) through flame brush for three
distinct values of the segregation rate: 0.1, 0.5, and 0.9 from left to right.

Figure 6 Specific volume variance qf 2 (top) and cross correlation qξ f (bottom) through flame brush for three
distinct values of the segregation rate: 0.1, 0.5, and 0.9 from left to right and for different strained rates χ (s−1).
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As shown in Figures 5 and 6, for large values of the segregation rate, the gaseous
mixture is mainly composed of pure air and pure fuel pockets and the profiles exhibit a
parabolic shape with a maximum located close to ξ̃ = 0.5 characteristic of a bimodal dis-
tribution. Moreover, the larger values of the correlations are obtained in the case featuring
the larger difference in the density of reactants, namely, the case of hydrogen/air turbu-
lent diffusion flames. On the contrary, when the density difference in reactants remains
significantly small, i.e., for CH4-air flames, the correlations vanish for large values of the
segregation rate.

Figures 5 and 6 show an important characteristic in the behavior of these correlations:
the changing sign for the unresolved correlation qξ f across the flame brush. This result is
the signature of the non-monotonic evolution of f (ξ ) profiles: a maximum is observed at
the vicinity of stoichiometric conditions (see Figure 4). As a consequence, the monotonic
evolution of f (ξ ) for hydrogen/air diffusion flames leads to a positive value for qξ f across
the whole flame brush. For high levels of segregation, the sign of the correlation qξ f does
not change across the flame brush for the heaviest fuels (propane and octane): it is negative
because these fuels are heavier than the oxidizer.

It must be emphasized that these observations still hold for strained flamelets (see
Figure 6). For sufficiently large values of the segregation rate, the chemical equilibrium
and strained flamelets representations lead to exactly the same results whatever the values
of the strain rate. Actually, for such levels of the segregation rate, the influence of the
inner flamelet structure is very small in comparison with the effects of pure fuel and pure
oxidizer pockets so that the values of the specific volume correlation are rather fixed by the
non-reactive mixing processes taking place between these pockets than by flame structures.
On the contrary, for sufficiently small values of the segregation rate, the level of the specific
volume correlations are rather controlled by the flame structure so that the strain rate effects
are no longer negligible as shown in Figure 6.

The above analysis highlights the correlation that exists between mixture fraction
and specific volume, which are expected to influence the unresolved convection terms in
diffusion flames through pressure terms (see, for instance, Eqs. (3) and (6)). The present
set of results confirms that their effects may change through the flame brush. Besides, they
depend not only on the level of the unresolved segregation but also on the specificities of the
fuel and oxidizer considered, a feature that is generally not accounted for in the modeling
of turbulent transports in non-premixed flames.

SPLITTING DENSITY EFFECTS IN REACTIVE FLOWS

As discussed in the previous section, density variations in diffusion flames are not
only induced by reactive processes but also by non-reactive mixing between the two
feeding streams. Both of these effects may have the same order of magnitude (H2-air
flames) but their consequences on the unresolved convection terms may be very different.
Actually, reactive processes, which are associated with chemical source terms in the trans-
port equations, are characterized by a strong expansion leading to local accelerations, while
non-reactive density variations’ effects display more similarities with the conventional
turbulent diffusion mechanisms. Therefore, before proposing closure models for the unre-
solved fluxes, these different effects must be identified and treated separately. Accordingly,
a splitting procedure is now applied to the scalar and velocity fields.
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Scalar Field

As already discussed above, in laminar diffusion flames the evolution of the normal-
ized specific volume induced by non-reactive mixing only, as described by the pure mixing
lines of Figure 4, is written as fmix (ξ). The evolution of the specific volume that is only
induced by chemical reactions is now denoted by freac (ξ) . Then we write:

f (ξ) = freac (ξ) + fmix (ξ) (14)

Where f (ξ) is the normalized specific volume through the laminar flame structures dis-
cussed in previous sections, which includes both reactive and non-reactive effects. The
quantity f (ξ) is normalized so that 0 ≤ f (ξ) ≤ 1, whatever the value of the mixture frac-
tion ξ , and it must be noted that the maximum values of fmix (ξ) and freac (ξ) can therefore
be smaller than unity in order to be fully consistent with Eq. (14). The behavior of this split-
ting of the scalar field is depicted in Figure 7 where a diffusion flame established between
a jet of hydrogen surrounded by a co-flow of air at the same temperature is considered. The
corresponding fields have been obtained as follows: a transport equation has been solved
for the mixture fraction ξ with boundary conditions set to zero (ξ = 0), except at the exit
of the central jet where ξ = 1. The scalar fields f (ξ) and fmix (ξ) are evaluated afterwards
from the single knowledge of the mixture fraction ξ by using the chemical equilibrium
and pure mixing lines, while freac (ξ) is deduced from Eq. (14): freac (ξ) = f (ξ) − fmix (ξ).
From Figure 7, it is clear that the quantities f (ξ) and fmix (ξ) are both zero and unity in
the oxidizer and fuel streams, respectively, whereas the pure reactive line freac (ξ) goes to
zero on both sides of the diffusion flame, i.e., freac (ξ = 0) = freac (ξ = 1) = 0; the values
of freac (ξ) reflects the reactive processes only. The same behaviors also hold for the mean
values because relation (14) leads to f̃ = f̃reac + f̃mix.

From the simple expression (14), new statistical quantities that characterize unre-
solved fluctuations of density can be introduced: (i) those induced by pure mixing

processes, the cross correlation qξ fmix and the variance qf 2
mix

(also denoted ξ̃ ′′f ′′
mix and f̃ ′′

mix
2

in RANS context), and those induced by chemical reactions qξ freac and qf 2
reac

(also denoted

ξ̃ ′′f ′′
reac and ˜f ′′

reac
2 in RANS context). It is worth noting that, for the sake of simplicity, we do

not discuss here the influence of the cross correlation existing between the two fields freac

and fmix. Figures 8 and 9 show these quantities plotted across H2/air and CH4/air diffusion
flame brushes for different values of the segregation rate. As expected, the level of unre-
solved density fluctuations induced by pure mixing processes in H2/air, qξ fmix and qf 2

mix
, is

very high for such large values of the segregation rate and vanishes for small values of the
segregation rate when the chemical species are well mixed. The same behavior is observed
for CH4/air flames but the level of fluctuations remains very small whatever the segrega-
tion rate because the density difference between pure CH4 and pure air is very small in
comparison with the flame-induced density drop. The level of unresolved density fluctua-
tions induced by the reactive processes, qf 2

reac
, are larger and located close to stoichiometric

conditions for small values of the segregation rate. These fluctuation levels still remain
relatively large for intermediate segregation levels and then decrease for large values of
the segregation rate. The corresponding cross correlations, qξ freac , display a changing sign
through the flame brush even for H2/air flames. In these H2/air flames, f (ξ) is monotonic
(see Figure 4), then qξ f is always positive (see Figures 5 and 6), whereas the line freac (ξ)
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Figure 7 Splitting of the scalar field.

displays a maximum around stoichiometric conditions (see Figure 7), then qξ freac displays
a changing sign through the flame brush (see Figures 8 and 9). Moreover, this change of
the sign occurs near stoichiometric conditions for small values of the segregation rate, but
the peculiar value of ξ̃ where this change occurs increases with the value of the segregation
rate.

It must also be noticed that the unresolved levels of density fluctuations, qξ f and qf 2 ,
display different behaviors for H2/air and CH4/air flames (see Figures 5 and 6) that are
mainly due to the density difference in pure fuel and pure oxidizer streams, i.e., the non-
reactive mixing processes. However, once the splitting is applied, the non-reactive and reac-
tive contributions follow a very similar behavior (see Figures 8 and 9). These results also
confirm that the effects of the non-reactive contributions of density fluctuations increase
with increasing segregation levels whereas the effects of the reactive contributions decrease
with increasing segregation levels. In the above description, the cross correlation between
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for three distinct values of the segregation rate S = 0.1, 0.5, 0.9 for CH4/air flame.

the two fields freac and fmix has not been discussed just for the sake of simplicity, but its influ-
ence may be incorporated into the modeling proposal by following the strategy proposed by
Robin et al. (2011). However, this would make the closure much more cumbersome and our
own experience is that the potential gain is not so important (Robin et al., 2011). Finally,
the evolution of this cross correlation across the flame brush may be easily deduced from
qξ freac (see Figures 8 and 9), since fmix and ξ are linearly related in the present case.
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Velocity Field

The objective of the present statistical analysis is to propose closure models in the
context of flow with large density variations for the unresolved convection terms, i.e., the
fluxes quu =

[
ũu − ũũ

]
, quξ =

[
ũξ − ˜̃uξ

]
, or for any other scalar X: quX =

[
ũX − ũX̃

]
.

Moreover, we focus here on the reactive contributions of the density variations (source
terms), i.e., the thermal expansion for which the physical mechanisms involved signifi-
cantly differ from those associated to conventional turbulent diffusion processes. Thus, the
splitting procedure, which has been retained above for the scalar field in order to treat
separately non-reactive and reactive contributions, is now applied to the velocity field:

u = v + w (15)

The v-velocity field is associated with the constant density motions, whereas the w-velocity
field represents the modifications of the flow that are induced by chemical reactions, i.e.,
the flame-induced convection phenomena. Therefore, the w-velocity field can be associated
with the local accelerations induced by density drop through the flame structure. The norm
of the w-velocity is then defined as proportional to the reactive part of the normalized
specific volume freac as follows:

‖w‖ = sβfreac (16)

where s denotes the chemical consumption rate per unit flame area (kg.m−2.s−1). The quan-
tity s is related to the scalar dissipation rate (SDR) and can be obtained analytically in
simplified cases (see, e.g., Liñán and Crespo, 1976; Marble and Broadwell, 1977; Peters,
2000). It can be evaluated from detailed chemistry calculations as well, for example, by
considering strained flamelets structures such as those considered in the previous section.
It must be pointed out that in the case of a strained diffusion flame at the limit of extinction,
the value of s can be approximated as s = ρrSL (Linán, 1974), where SL is the value of
the laminar propagation velocity at stoichiometry, so that Eq. (16) becomes fully consistent
with the previous analysis conducted for premixed situations by Robin et al. (2011). It must
be emphasized here that, with the expression retained above for s, the sole objective is to
represent the influence of a time scale that characterizes the chemical rate. Moreover, the
choice of such a simple expression for the chemical consumption rate per unit flame area s
facilitates the subsequent parametric investigation of its influence.

The main objective when using the velocity splitting procedure, as defined by Eq. (15)
and (16), is to characterize the variation of density induced by chemical reactions, which
instantaneously leads to an acceleration. This acceleration is supported by the w-velocity
field. This is consistent with the flamelets approach retained in the fully premixed cases.
Nevertheless, these density variations also lead to modification of the streamlines that are
taken into account via the v-velocity field. Accordingly, this splitting point of view has led
to the identification of the direct and indirect effects of density variations (see Robin et al.,
2011). The direct effect, represented by the w-velocity field, corresponds to the modification
of velocity associated with the local source of density variation. The indirect effect corre-
sponds to the modification of the velocity field induced everywhere in the low Mach number
flow, i.e., even far from the source of the density variation. For example, in premixed flames,
the density variations lead to the modification of the streamlines that accelerate the flow
even in constant density regions (see, for instance, Creta et al., 2011). A similar effect
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exists in diffusion flames. Moreover, the flow configuration itself may lead to changes in
streamlines direction and then reorient the acceleration induced by the reactive processes.

CLOSURE MODELS FOR UNRESOLVED CONVECTION TERMS

The splitting procedure, i.e., Eq. (15), is then applied to the unresolved scalar flux of
the mixture fraction:

quξ = quξ + qwξ (17)

where each contribution of the unresolved scalar flux qvf and qwf are modeled following the
recent proposal of Robin et al. (2011, 2012). Thus, three contributions appear: (i) the non-
reactive contribution associated with the turbulent mixing in variable density flow; (ii) the
direct effects of thermal expansion, expressed from Eq. (16); and (iii) the indirect effects,
modeled by invoking an analogy with the direct effects via the introduction of the model
parameter ψ . Following the strategy proposed for premixed flames by Robin et al. (2012),
the final expression of the unresolved convection term is written as:

quξ = qP
vξ + qR

uξ = − (vT/χ)∇ξ̃ + sβλ (1 + ψ) qξ freac M (18)

The first term of the right-hand side of Eq. (18), qP
vξ , is the non-reactive contribution and

is simply represented by a gradient law. The second term, qR
uξ , is the reactive contribution

(direct and indirect effects) related to the unresolved reactive contribution of the density
correlation qξ freac . The corresponding modeled expression involves a unit vector M that
characterizes the mean orientation of the reactive contribution of the flux and a parameter
λ measuring the associated local fluctuations of orientation (see Robin et al. (2012) for
further details).

Consideration of such a splitting procedure (Robin et al., 2012) allows the isotropic
contribution of the unresolved momentum fluxes to be modeled as:

qu2 = qp
v2 + (sβ)2 (

1 + ψ2)
[
qf 2

reac
+ f̃reac

(
1 − λ2)

]
(19)

where qp
v2 represents the isotropic non-reactive contribution of the unresolved momentum

fluxes. Conventional turbulent mixing processes can be considered to model this contribu-
tion so that it can be evaluated by using the same closures as these retained for non-reactive
flows, as the k-eps model for RANS simulations or the Smagorinsky model for LES. The
second term of the right-hand side of Eq. (19) represents the direct and indirect effects of
thermal expansion. It is associated to the reactive contribution of local density variations
and is related to the unresolved reactive contribution of the variance of the normalized
specific volume qf 2

reac
.

The splitting procedure introduced in the previous section has led to algebraic expres-
sions to model unresolved convection terms of a non-reactive scalar ξ and momentum u.
The same strategy can be applied to any other scalar quantity, which may be reactive or
not. In the proposed closures, the effects of thermal expansion are taken into account via
the dependence on the chemical consumption rate s and the reactive part of the specific
volume correlations, which can be stored in libraries. Finally, one of the remarkable con-
clusions is that the only unclosed term of the equation for the filtered mixture fraction,
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which is a non-reactive scalar, is found to depend on reactive processes. In the following
section, we study and quantify the possible impact of these closures on the unresolved
fluxes in turbulent diffusion flames.

BEHAVIOR OF THE MODEL IN THE CASE OF TURBULENT DIFFUSION
FLAMES

The model parameters λ and ψ involved in Eq. (18) and (19) must be estimated to
anticipate behaviors of the fluxes. The quantity λ represents the unresolved fluctuations
of the w-velocity orientation (direct effect) and ψ the unresolved acceleration induced by
unresolved flow curvatures (indirect effect). The lower λ is, the higher are the orientation
fluctuations: λ= 0 if w-velocity is isotropically distributed and λ =1 if the w-direction
is constant. Moreover, we consider that the fluctuations of w-velocity orientation form
a source for the modification of curvatures of the streamlines and then enhance indirect
effects. Accordingly, ψ decreases when λ increases. Therefore, in a first approximation,
the product of the two quantities may be considered as constant. Thus, we approximate the
norm of the reactive part of the scalar flux, see Eq. (18), as follows:

∥∥qR
uξ

∥∥ = sβqξ freac (20)

Now, in order to minimize the reactive part of unresolved momentum flux obtained by the
model provided by Eq. (19), we set λ equal to unity so that ψ is zero:

qR
u2 = (sβ)2 qf 2

reac
(21)

This means that the indirect effect has been neglected. It is also worth noticing that the
above closure does not address cold flame situations, i.e., flames without thermal expansion,
since f reac vanishes if chemical reactions do not affect the density field.

We now proceed to a parametric investigation, via the introduction of the parameter
γ to study the effects of the chemical consumption rate: s = γρrSL. Therefore, the value
γ = 1 corresponds to the maximum possible consumption rate. Figures 10 and 11 show
the reactive parts of the unresolved fluxes for different values of the parameter γ . These
curves can be easily obtained from Figures 8 and 9 since Eqs. (20) and (21) involve a direct
proportionality to the correlations qξ freac and qf 2

reac
. The considered reactants are, respectively,

H2-air in Figure 10 so that the constant values are set to ρrSL = 1.45 kg.m−2.s−1, β =11,
4 m3.kg−1 and CH4-air in Figure 11 so that the constant are set to ρrSL = 0.45 kg.m−2.s−1,
and β = 5, 8 m3.kg−1.

These results show that the unresolved momentum flux associated to thermal expan-
sion qR

u2 is not negligible for methane flames and may become very important for hydrogen
flames. The peak of unresolved momentum flux is located at the vicinity of stoichiometric
conditions. Thus, in turbulent diffusion flames, the flame effects may drive the unresolved
momentum fluxes. Moreover, the indirect effects on unresolved momentum fluxes has been
neglected here but it may also increase the values of qR

u2 . However, the values obtained
for γ = 1, which correspond to the maximum possible level of consumption rate probably
overestimate these effects.

As expected, the sign of the reactive part of the unresolved scalar flux
∥∥qR

uξ

∥∥ through
the flame brush changes. Nevertheless, to compare its behavior with a conventional gradient
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Figure 10 Reactive contributions qR
v2 (top) and qR

vξ (bottom) for three distinct values of the segregation rate: 0.1,
0.5, and 0.9 from left to right and for differents values of the parameter γ for H2/air flame.

Figure 11 Reactive contributions qR
v2 (top) and qR

vξ (bottom) for three distinct values of the segregation rate: 0.1,
0.5, and 0.9 from left to right and for differents values of the parameter γ for CH4/air flame.

law, the mean direction M must be known. In the context of second-order closures, as
already discussed in the introduction and first section, the effects of thermal expansion
are taken into account through the modeling of pressure terms (see Eq. (2)). The mean
direction of these effects, M, is therefore considered to be given by the mean pressure
gradient. Consequently, thermal expansion effects lead to an increase or a decrease of the
unresolved scalar flux depending on the direction of the mean pressure gradient relative to
the direction provided by the mean scalar gradient, as in the gradient law.

It should be emphasized that the pressure terms (see Eqs. (5) and (6)), exhibit
the same density correlations as those involved in the closure model proposed here (see
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Eqs. (20) and (21)). These closure models are then fully consistent with second order
approaches and provide algebraic closures for the unresolved convection terms that are
simpler to use than solving additional transport equations.

CONCLUSIONS

It has been shown that the normalized specific volume is a relevant scalar variable
to describe the density variation effects in low Mach number flows. This variable is fully
consistent with either the classical progress variable used in fully premixed flames or the
one used in non-reactive binary mixing. More generally, this variable can be used in any
other types of variable density flows. As an example, it allows to recover and generalize
the Jones expression, which is a key relation to model the pressure terms in second-order
closures. In the specific case of turbulent diffusion flames, the use of this variable also
highlights specific behaviors of H2 flames or oxy-combustion that are due to both tem-
perature and molecular weight variations. Eventually, correlations involving this variable
are the key quantities to relate unresolved velocity fluctuations to unresolved scalar fluc-
tuations. These correlations have been used in a closure strategy based on a reactive and
non-reactive splitting procedure, which leads to new algebraic models for unresolved scalar
and momentum fluxes. As expected, the non-reactive contributions drive the evolution of
statistics for large values of the segregation rate and become negligible when gases are well
mixed. The reactive contributions behave in the opposite way: they drive the evolution of
statistics for small values of the segregation rate and become negligible when the gases are
mainly composed of pockets of pure fuel and pure oxidizer. Once the splitting procedure
has been applied, the reactive and non-reactive contributions show a similar trend what-
ever the reactions under consideration. Only the magnitude of these contributions differs.
Therefore, this strategy can be applied to many different types of flames. Moreover, the
splitting procedure is required to treat separately effects of the non-reactive and reactive
contributions, which are respectively modeled by a conventional turbulent diffusion mech-
anisms (non-reactive) and a flame-induced expansion mechanisms (reactive). Eventually,
algebraic closures consistent with second-order approaches have been proposed and their
use shows inter alia that the behavior of unresolved momentum and scalar fluxes can be
controlled by chemical reactions. This conclusion supports the previous investigation con-
ducted by Luo (2000), which revealed the possible occurrence of local counter-gradient
diffusion (CGD) around stoichiometric conditions.

Additional work is now needed to apply these closures to the numerical simulations
of practical turbulent diffusion flames. This strategy will also be extended to the general
case of partially premixed combustion.
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