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Abstract
In cluster detection of disease, the use of local cluster detection tests (CDTs) is current.

These methods aim both at locating likely clusters and testing for their statistical signifi-

cance. New or improved CDTs are regularly proposed to epidemiologists and must be sub-

jected to performance assessment. Because location accuracy has to be considered,

performance assessment goes beyond the raw estimation of type I or II errors. As no con-

sensus exists for performance evaluations, heterogeneous methods are used, and there-

fore studies are rarely comparable. A global indicator of performance, which assesses both

spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and

help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure

of similarity that can assess location accuracy but only for one detected cluster. In a simula-

tion study, performance is measured for many tests. From the TC, we here propose two sta-

tistics, the averaged TC and the cumulated TC, as indicators able to provide a global

overview of CDTs performance for both usual power and location accuracy. We evidence

the properties of these two indicators and the superiority of the cumulated TC to assess per-

formance. We tested these indicators to conduct a systematic spatial assessment displayed

through performance maps.

Introduction
Assessing performance of local cluster detection tests (CDTs) is a complex but necessary task.
For development of new statistical methods, simulation studies are obviously essential. In field
investigation, they provide useful knowledge for interpretation of real data and decision mak-
ing [1]. However, from a methodological point of view, there is still no commonly accepted
protocol for simulation studies in spatial epidemiology. Evaluations are often incomplete as
they are conducted only on a few clustering models which are defined by arbitrary settings that
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cannot reflect all the possible clustering configurations. Furthermore, performance, a critical
aspect of which is the location accuracy, cannot be assessed just by usual power because it only
measures the null hypothesis rejection. To address this issue, many different indicators of per-
formance have been proposed.

Power and location accuracy are sometimes assessed separately using indicators purely ded-
icated to assess the location accuracy. These indicators are based on a 4-types spatial units
(SUs) classification resulting from the confrontation between the detected cluster (positives or
negatives SUs) and the simulated cluster (the gold standard leading to classification in true/
false positives or negatives SUs). From this classification indicators such as sensitivity and posi-
tive predictive value are computed (for example see [2–6]). However, their mathematical defi-
nitions are heterogeneous. Some authors assess all clusters whether the null hypothesis is
rejected or not [6], others only the detected clusters (i.e. with null rejection) [2, 5] and, finally,
some authors also assess power by considering each analysis without null rejection as “no
detected cluster” (i.e., all SUs are false or true negatives) [4]. Other studies equally proposed
concomitant assessment using conditional power, such as power-to-detect at least one spatial
unit of the true cluster or power-to-detect exactly the true cluster (for example see [6–8]). As
these indicators are based on very restrictive definitions, they only partially measure
performance.

As only partial performance indicators are available, performance is usually assessed using a
more or less large set of complementary indicators. Depending on the set of performance indi-
cators used, interpretations and comparisons between studies might be difficult.

If the use of multiple indicators can provide very detailed information on CDTs behaviour,
it also limits the number of clustering models that can be simulated. Indeed, a large number of
clustering models results in a huge amount of information to treat and interpret, making it dif-
ficult to provide a comprehensible overview of performance. Even when clustering models are
restricted by setting some parameters—such as relative risk and baseline incidence—in realistic
ranges regarding the disease under study, global overview of performance is easier by measur-
ing a single indicator. Such an indicator should obviously assess both power and location accu-
racy. However, what can be considered a sufficiently accurate test is quite ambiguous and
depends on context. For example, one will need a far better accuracy for a secondary investiga-
tion than for a surveillance system. Thus, location accuracy should be measured with a quanti-
tative indicator. In [9], we proposed the area under the curve of extended Power [10]. This
indicator, while accounting for both usual Power and location accuracy, is complex.

This work is based on the coefficient developed by Tanimoto [11] (see also [12]). The Tani-
moto coefficient (TC) is an easily comprehensible, fast computed indicator extensively used in
image science [13–15] and biochemistry [16, 17]. The TC is a measure of similarity comparing
two sample sets by using the ratio of the intersecting set to the union set. It is thus well suited
to assess location accuracy for one detected cluster (i.e. the result of one test). To assess CDTs
performance, we propose two statistics of the TC, both taking into account location accuracy
and usual power in simulation studies. We conduct a systematic spatial assessment that, com-
bined with these global measures, enables the building of performance maps.

The structure of this paper is as follows: in the Methods’ section, we describe each procedure
of this simulation study following guidelines proposed by [18] when relevant. In the Results’
section, we present the performance of Kulldorff’s spatial scan statistic as measured by the pro-
posed statistics. Finally, in the Discussion, we briefly compare these indicators with the area
under the extended Power curve, discuss the behavior of these two statistics derived from the
TC and argue the recommendation of the cumulated TC.

Global Performance Indicator for Cluster Detection Tests
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Methods

Clustering model
The study region is the Auvergne region (France), divided into n = 221 spatial units (SUs)
equivalent to U.S. ZIP codes. For a realistic analysis, we used data archived in CEMC (birth
defects registry for the Auvergne region) and INSEE (French Institute of Statistics and Eco-
nomic Studies) databases. We collected two categories of data from 1999 to 2006: all birth
defects and cardiovascular birth defects. For each SU, the number of live births (i.e., the size of
the at-risk population) was approximated by the number of birth declarations in the at-
risk population. Global annual incidences of all birth defects and cardiovascular birth defects
were estimated as 2.26% and 0.48% of births, respectively.

We applied these two baseline risks (incidences) of birth defects to the same at-
risk population, which size was approximated by mean annual number of live births. (The dis-
tribution of the at-risk population is shown in Fig 1.) For each baseline incidence (I = 2.26% of
births or I = 0.48%), we defined two cluster collections by applying two relative risks (3 and 6)
to the same pattern of location and cluster size. The relative risks were chosen in order to
observe all the range of performance. Each cluster collection contains 221 clusters of four SUs
(one central SU and its three nearest neighbors in euclidean distances) successively centered on
each SU of the region.

Datasets
We generated 1000 datasets for each combination of baseline risk, relative risk and cluster loca-
tion, i.e. a total of 884 000 datasets.

Each dataset is a table of 221 rows and 5 columns. The rows contain the coordinates (longi-
tude and latitude) of a SU, the observed number of cases, the size of the at-risk population (i.e.,
the number of live births) and the expected number of cases in the specified SU assuming an
inhomogeneous Poisson process for the cases distribution. The expected number of cases is the
product of the global incidence (I = 2.26% or I = 0.48%) and the size of the at-risk population
in the SU. The observed case numbers are assumed as independent Poisson variables such that

H0 : Ni � PoisðεiÞ; i ¼ 1; :::; n

H1 : Ni � Pois ðpiÞ; pi ¼ εi½1þ Iðy� 1Þ�; i ¼ 1; :::; n

(

where Ni is the observed number of cases, εi denotes the expected number of cases in the ith
SU under the null hypothesis of risk homogeneity (H0) and πi the expected number of cases in
the ith SU under the alternative hypothesis of one simulated cluster (H1), θ is the relative risk,
and I is a binary indicator set to 1 if the ith SU is within the simulated cluster, and 0 otherwise.

We used the R function “rpois” [19] with the default Mersenne-Twister pseudo-random
number generator developed by Matsumoto [20]. For reproducibility purpose, all datasets were
archived.

Statistical programming
Statistical programming was done with R 3.0.2 64 bits using the “SpatialEpi” library [21] and
the “kulldorff” function to perform the analysis.

In order to optimize computational time, we used parallel programming through the func-
tion “foreach” of package “Foreach” [22] with the parallel backend provided by the package
“DoSNOW” [23]. Computation were done on a Dell T7600 (processor Intel(R) Xeon CPU ES-
2620 2 GHz and 32 Go RAM).

Global Performance Indicator for Cluster Detection Tests
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Kulldorff’s spatial scan statistic
In this study, we selected Kulldorff’s spatial scan statistic [24, 25] as a well-known and widely
used CDT which performance has been studied by many authors [6, 26–28]. The spatial scan
statistic detects the most likely cluster on locally observed statistics of likelihood ratio tests. The
scan statistic considers all possible zones z defined by two parameters: a center that is succes-
sively placed on the centroid of each SU, and a radius varying between 0 and a predefined max-
imum. The true geography being delineated by administrative tracts, each zone z, defined by all
SUs which centroids lie within the circle, is irregularly shaped. Let Nz and nz be the size of
the at-risk population and the number of cases counted in zone z, respectively (over the whole

Fig 1. Size of the at-risk population for each SU in the Auvergne region, as defined bymean number of
live births per year between 1999 and 2006 (source: INSEE).Q1:� 17;Q2:> 17 and� 35;Q3:> 35
and� 70;Q4:> 70.

doi:10.1371/journal.pone.0130594.g001
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region, these quantities are the total population size N and the total number of cases n). The

probabilities that a case lies inside and outside zone z are defined by pz ¼
nz

Nz

and

qz ¼
n� nzð Þ
N � Nzð Þ, respectively. Given the null hypothesis of risk homogeneity H0: pz = qz, versus

the alternativeH1: pz = qz and assuming a Poisson distribution of cases, the likelihood ratio sta-

tistics are defined as proportional to nz
lNz

� �nz n�nz
lðN�NzÞ

� �n�nz
I½nz > lNz�, where λ is the annual

incidence I (here equal to 2.26% or 0.48%) and the indicator function I equals 1 when the num-
ber of observed cases in zone z exceeds the expected number under H0 of risk homogeneity,
and 0 otherwise. The circle yielding the highest likelihood ratio is identified as the most likely
cluster. The p-value is obtained by Monte Carlo inference.

Over the 884 000 simulated datasets, each test was performed with a maximum size of zone
z set to 50% of the total at-risk population, a number of 999 Monte Carlo samples for signifi-
cance measures, and alpha risk set to 5%.

Measure of performance
For each simulation, in order to compute the performance measures, we stored the identifiers
of the SUs in the most likely cluster and the corresponding estimated p-value. As Monte Carlo
hypothesis testing is based on simulations, there is no guarantee that p-values would be exactly
the same for successive analyses of the same datasets. For reproducibility purpose, the afore-
mentioned results were thus archived along with the original datasets.

Tanimoto coefficient. The TC was computed for each analysed dataset. This coefficient
measures the similarity between the simulated cluster and the detected cluster. The superim-
posing of these two clusters leads to the definition of four types of SUs. The SUs both within
the simulated and the detected cluster are true positives (TP), the SUs only within the detected
cluster are false positives (FP), the SUs only within the simulated cluster are false negatives
(FN) and, finally, the SUs within neither cluster are true negatives (TN). When no cluster was
detected, i.e. p-value higher than 0.05, all 221 SUs were considered negatives and the analysis
resulted in TP = 0, FP = 0, TN = 217, FN = 4.

The TC, computed for each analyzed dataset, is such that TC ¼ TP
TPþFPþFN

. For each simulated

cluster, 1000 datasets were analyzed, and thus 1000 TC were computed.
We defined two statistics of TC, both ranging between 0 and 1, in order to obtain two per-

formance measures for each simulated cluster (with a total of 884 clusters).
Averaged Tanimoto coefficient. This first summary statistic of TC, referred to as TCa is

the arithmetic mean of all TC over them simulated datasets. It is defined as

TCa ¼
1

m
�
Xm
i¼1

TPi

TPi þ FPi þ FNi

:

Cumulated Tanimoto coefficient. The second summary statistic, the TCc, is the cumu-
lated TC over them simulated datasets, and is defined as

TCc ¼
Pm

i¼1 TPiPm
i¼1 TPi þ FPi þ FNi

:

Performance mapping
Following a previous study [9], global performance is visualised over the entire region using
maps representing the TCa and TCc for each collection of clusters.

Global Performance Indicator for Cluster Detection Tests
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Each of these measures corresponds to one measure of a cluster and thus is associated with
four SUs. In order to obtain a global overview on a single map, we assigned the performance
measure for one cluster to its central SU. We thus affected a single measure of performance to
each SU of the map. As we defined four cluster collections for four risks combinations (inci-
dence and relative risks), we produced four performance maps for each indicator.

Results

Performance maps
The results of this simulation study are shown in Figs 2 and 3. Whatever the indicator, the per-
formance was heterogeneously distributed, in close relationship with the size of the at-
risk population (Fig 4). The distributions of the TCa and TCc for each risks level are described
in Fig 5.

Averaged Tanimoto coefficient versus cumulated Tanimoto coefficient
The TCc was generally lower than the TCa, that is, the test performance is judged as less by the
TCc (see Fig 6d). For RR = 6 with I = 2.26%, RR = 3 with I = 2.26% and RR = 6 with I = 0.48%,
the TCc was lower than the TCa in 100%, 74.7% and 75.6% of simulations, respectively. On the
contrary, for RR = 3 with I = 0.48%, i.e. the lowest risks level, the TCc was higher than TCa in
97.3% of simulations.

Fig 6a and 6b show TCc and TCa compared with the usual Power. Usual Power was always
higher than both the TCc and TCa, as was expected. Indeed, each detected cluster (most likely
cluster with significant p-value) always contributes for 1 in the usual Power, but it contributes
for 1 in the TCc or TCa only if the detected cluster is exactly the same as the simulated cluster,
and less than 1 otherwise.

With both TCc and TCa, the spatial scan showed comparable performance on the two inter-
mediate levels of risks (RR = 3 with I = 2.26% and RR = 6 with I = 0.48%) and a poor perfor-
mance on the lowest level of risks (RR = 3 with I = 0.48%). The TCc showed more variability
than TCa when the spatial scan was the most efficient in terms of usual power (see Fig 6a
and 6b).

Discussion
Both indicators enable the construction of performance maps, providing a global overview of
Kulldorff’s spatial scan performance.

In a previous study [9], we used the area under the curve of extended Power (AUCEP),
whose concept and construction are described in Takahashi et al. [10]. Compared to this previ-
ous study (Fig 7), the results of the current study are very similar, especially considering TCa

(see Fig 6b, 6c and 6f). However, both TCa and TCc indicate a lower performance of the test
(see Fig 6e and 6f).

The test performance was judged as less by the TCc than either the TCa or the AUCEP (see
Fig 6d and 6e), except for the lowest risks level where this order relation is reversed.

Ideally, we would already dispose of a gold standard capable of measuring the true perfor-
mance of the test. As this is not the case, we cannot compare the observed TCa and TCc to
determine the one closer to the true performance. Thus, simply observing a lower or higher
value of TCa compared to TCc cannot be used as an objective argument in favour or disfavour
of one indicator. However, the systematic nature of the relationship between TCa and TCc

must be explained, as its reasons are the only objective arguments on which to base a decision
to recommend one over the other.

Global Performance Indicator for Cluster Detection Tests
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Fig 2. TCa of Kulldorff’s spatial scan. TCa measured for four combinations of two relative risks (RR) and two annual incidences of birth defects: low RR = 3
and high RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% births per year.

doi:10.1371/journal.pone.0130594.g002
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Fig 3. TCc of Kulldorff’s spatial scan. TCcmeasured for four combinations of two relative risks (RR) and two annual incidences of birth defects: low RR = 3
and high RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% births per year.

doi:10.1371/journal.pone.0130594.g003

Global Performance Indicator for Cluster Detection Tests
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In order to understand this behaviour, we considered the functions f(s) and g(s) represent-
ing the computation at simulation s of respectively TCa and TCc. The simulations are sorted as
follows: (i), the s = 1 to q simulations resulting in cluster detection, i.e. with p-value< 0.05, are
sorted by increasing number of FP;(ii), the remaining simulations (s = q + 1 tom0) are sorted
without particular order as they result in the exact same assessment of performance (TP = 0,
FP = 0, TN = 217, FN = 4).

Fig 8 shows two examples of curves defined by f(s) and g(s). Fig 8a corresponds to the simu-
lated cluster with the maximum value of TCa—TCc and Fig 8b corresponds to the one with the
minimum value of TCa—TCc.

At the simulation q, f(q) is equal to

f ðqÞ ¼
Pq

s¼1

TPs

TPs þ FNs þ FPs

q

¼
Pq

s¼1

TPs

Dþ FPs

q

¼
Xq

s¼1

TPs

qDþ qFPs

;

Fig 4. Performance indicators and size of at-risk population. Indicators are measured for four
combinations of two relative risks (RR) and two annual incidences of birth defects: low RR = 3 and high
RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% births per year.

doi:10.1371/journal.pone.0130594.g004
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where D is the number of SUs in the simulated cluster (by definition D is constant in our simu-
lations). The value of g(s) at the simulation q is equal to

gðqÞ ¼
Pq

s¼1 TPsPq
s¼1 TPs þ FNs þ FPs

¼
Pq

s¼1 TPs

qDþPq
s¼1 FPs

:

These two equations, easily explain the first part of the curves shown in Fig 8. Indeed, when a
detected cluster does not contain FP (up to the dotted line), these equations are strictly equiva-
lent and the two curves are superposed.

From the results of the 884 simulations conducted in this study, we first note that, f(q) was
always strictly greater than the corresponding g(q). This relationship can be explained by parti-
tioning the q simulations in three disjoint sets: S0 = {sjTPs = 0}, S1 = {sjFPs = 0} and S2 = {sjTPs
6¼ 0 and FPs 6¼ 0}. (In the first q simulations, a cluster is always detected and thus true and false

Fig 5. Summary statistics of usual Power, AUCEP, TCa and TCc. Results for four combinations of two relative risks (RR) and two annual incidences of
birth defects: low RR = 3 and high RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% births per year.

doi:10.1371/journal.pone.0130594.g005
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Fig 6. Performance measures for four combinations of two relative risks (RR) and two annual incidences of birth defects: low RR = 3 and high
RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% per year births. (a) Usual Power and TCc, (b) Usual Power and TCa, (c) Usual
Power and AUCEP, (d) TCc and TCa, (e) TCc and AUCEP, (f) TCa and AUCEP

doi:10.1371/journal.pone.0130594.g006

Global Performance Indicator for Cluster Detection Tests
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Fig 7. AUCEP of Kulldorff’s spatial scan. AUCEP was measured for four combinations of two relative risks (RR) and two annual incidences of birth defects:
low RR = 3 and high RR = 6; low incidence = 0.48% births per year and high incidence = 2.26% births per year.

doi:10.1371/journal.pone.0130594.g007
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positives can never be both null.) We can then write

f ðsÞ ¼
X
S1

TPs

qD
þ
X
S2

TPs

qDþ qFPs

ð1Þ

and

gðsÞ ¼
P

S1
TPs þ

P
S2
TPs

qDþP
S0
FPs þ

P
S2
FPs

;

or equivalently

gðs ¼ qÞ ¼
P

S1
TPs

qDþP
S0
FPs þ

P
S2
FPs

þ
P

S2
TPs

qDþP
S0
FPs þ

P
S2
FPs

ð2Þ

It is then easy to show graphical proof that the first terms of the sums in Eqs (1) and (2),
referred to as A1 and C1 respectively in Fig 9, determine the order relation between f(q) and g
(q). (The second terms of the sums in Eqs (1) and (2) are referred to as A2 and C2 respectively.)
In fact, simulations where there is no TP do not impact f(q) but decrease g(q) all the more so
due to the FP. Also, g(q) decreases more strongly than f(q) with higher number of FP. As the

Fig 8. Values of f(s) and g(s) for simulation s = 1: 1000. The simulations displayed before the vertical plain line lead to null rejection (p—value < 0.05). They
are sorted by increasing number of FP SUs. The dotted line represent the last simulation resulting in a detected cluster without FP SUs. The functions f(s)
and g(s) represent respectively the computation of TCa and TCc over them0 simulations. (a) simulated cluster with the maximum value of TCa—TCc and (b)
simulated cluster with the minimum value of TCa—TCc.

doi:10.1371/journal.pone.0130594.g008
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mean number of FP (for all 884 simulated clusters) is 11.07 (median 4) when there is no TP
and 6.5 (median 0 and third quartile 3) when there is at least one TP, the order relation (f(q)>
g(q)) is explained.

Our second observation is that TCc (i.e. g(s =m0)) is less than TCa (i.e., f(s =m0)), except for
the lowest risks level. To explain this, let now consider any simulation s, where s> q. As no

cluster is detected, there are neither false nor true positives and the quantitiesM ¼ Pq
s¼1

TPs
DþFPs

,

A ¼ Pq
s¼1 TPs and B ¼ Pq

s¼1 FPs are equal to
Pm0

s¼1
TPs

DþFPs
,
Pm0

s¼1 TPs and
Pm0

s¼1 FPs, respectively.

Fig 9. Relationship between f(s) and g(s) at simulation s = q. (a) f(q) versus g(q) and (b) Contribution of
each term of the sums f(q) = A1 + A2(in ordinate) and g(q) = C1 + C2 (in abscissa). With A1 ¼

P
S1

TPs
qD ,

C1 ¼
P

S1
TPs

qDþ
P

S0
FPsþ

P
S2

FPs
, A2 ¼

P
S2

TPs
qDþqFPs

andC2 ¼
P

S2
TPs

qDþ
P

S0
FPsþ

P
S2

FPs
.

doi:10.1371/journal.pone.0130594.g009
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Thus, we can write

f ðs > qÞ ¼ M
s

and

gðs > qÞ ¼ A
Bþ qDþ ðs� qÞD ¼ A

Bþ sD
:

The asymptotic behavior of the ratio of f(s) to g(s), is then

lim
s!1

f ðsÞ
gðsÞ ¼ lim

s!1
M
s
� Bþ sD

A

¼ lim
s!1

M
A

� B
s
þ D

� �� �

¼ MD
A

;

as B
s
tends to 0. AsM can only be less than or equal to A

D
, then lim s!1

f ðsÞ
gðsÞ is less than or equal to

1. When there is at least one FP in the first q simulations, then A
D
is strictly greater than M and

lim s!1
f ðsÞ
gðsÞ is strictly less than 1. That is, TCa is less impacted by simulations where no cluster

are detected (p-value� 0.05), explaining the higher final values of TCc compared to TCa for the
lowest risk levels where usual Power is of 11.7% on average.

The absence of TP, or a high number of FP when a cluster is detected, reflects a poor perfor-
mance and should negatively impact the indicators. As the contributions of these simulations
are much stronger in TCc than in TCa, TCc better distinguishes low accuracy in cluster location.
Furthermore, even if TCa is generally lower than TCc when the usual power is very low, the
range of values reflects unambiguously low performance. Finally, TCc can be directly inter-
preted like the original Tanimoto coefficient, i.e. a measure of similarity comparing two sample
sets by using the ratio of the intersecting set to the union set where the two sets are the stacked
results of the simulations. For these reasons, we recommend the use of TCc to assess CDTs
performance.

This type of study is generally undertaken for a purpose of research or to prepare for the
deployment of a health monitoring system. In this context, long computational time can be tol-
erated, as there is no need to repeat the study. Nevertheless, a systematic spatial assessment of a
CDT performance in detecting a type of cluster (fixed shape, size and epidemiological factors)
is bound to be time-costing. In this study, the simulation and analysis of the 221 000 datasets
necessary for the construction of one map required about 43 hours of computation. Most of
this time was taken by the analysis of the datasets by the CDT, however. Once obtained the
characteristics of the detected clusters, computation of the performance indicators and con-
struction of the maps were relatively short (less than half an hour). Thus, using the cumulated
Tanimoto coefficient would not substantially extend computational time of simulations studies
conducted with a language faster than R, and analyses of results from previous simulation stud-
ies should be fast enough.

Many statistical methods are available to analyse spatial and temporal data. Quality of mon-
itoring system or epidemiological research does not depend per se on the performance of these
methods, but on how well their performance is known. Indeed, such knowledge is essential to
chose appropriate methods and to interpret results. Every new or improved CDT is proposed
along with an assessment of its performance. However, there is neither consensus nor
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commonly used methodology for performance evaluation. Then studies are rarely comparable
and each new performance assessment must repeat assessment of the same reference CDTs in
order to dispose of interpretable results. A sensible gain could be obtained by homogenisation
of assessment methods. Furthermore, the use of a global performance indicator would allow
for a great number of simulations, while still being able to communicate findings in a concise,
comprehensible manner with a clear interpretation. We here propose a global performance
indicator taking into account both usual Power and location accuracy and easy to compute and
interpret. Finally, the cumulated Tanimoto coefficient can be used as is for assessment of per-
formance on temporal data, and can be easily adapted to spatio-temporal data.
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