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ABSTRACT
In this paper, we consider the problem of optimal experiment design for LPV system
identification with the local approach when the identified model has to be used for
LPV control. This local approach for LPV system identification is characterized by
a number of local LTI identification experiments performed at constant values of the
scheduling variable. In this paper, we determine these constant values of the schedul-
ing variable as well as the input spectra of the corresponding local LTI identification
experiments in an optimal way. The optimal LPV identification experiment is here
defined as the experiment with the least input energy while guaranteeing that the
identified LPV model is sufficiently accurate to yield a satisfactory LPV controller.

KEYWORDS
Optimal identification experiment design, LPV system identification, Identification
for control

1. Introduction

In this paper, we consider the problem of identifying, in an optimal way, a model
of a Linear Parameter Varying (LPV) system that is sufficiently accurate to design
a satisfactory LPV controller for the LPV system. We thus address the problem of
extending the literature on identification for control (see, e.g., [15, 19] for good surveys)
to the case of LPV systems.

A LPV system is a system whose parameters vary as a function of an external
variable, the so-called scheduling variable [31]. When the scheduling variable is kept
constant, the LPV system reduces to a Linear Time-Invariant (LTI) system whose
dynamics depend on the chosen value for the constant scheduling variable. A constant
scheduling variable is often called an operating point in the literature (see, e.g., [3]).

There exist two mainstream approaches for the identification of LPV systems,
namely the local [33, 23, 31, 30] and the global approaches [4, 31, 3, 22, 17]. In this
paper, we will restrict attention to the so-called local approach for LPV system identi-
fication. In the first step of this local approach, the scheduling variable is kept constant
at successive operating points and the corresponding local LTI models are identified
using classical LTI identification [24]. In a second step, these identified models are
interpolated to deliver a model of the LPV system. This second step is generally done
by determining an estimate of the time-invariant coefficients θ0 of the (e.g. polyno-



mial) function describing the dependence of the system parameters on the scheduling
variable [31, 3].

In order to perform a local LPV identification experiment, a number of important
choices have to me made: the operating points at which the local LTI identification
experiments will be performed as well as the input spectra that will be used in each of
these local LTI identification experiments. As shown, e.g., in [16], these choices strongly
influence the accuracy of the identified LPV model. Consequently, it is of importance
to be able to perform these choices in an optimal way. In our recent paper [16], we have
determined a procedure to determine these experimental conditions in such a way that
we can guarantee an user-defined model accuracy with the least input energy. In [16],
the desired model accuracy was expressed in the form of a constraint P−1

θ > Radm
where Pθ is the covariance matrix of the estimate of θ0 (i.e. the size of the uncertainty
region of this estimate and thus of the identified LPV model) and Radm an arbitrary
matrix. In the present paper, we also consider the problem of designing the LPV
system identification experiment with the least input energy, but the model accuracy
constraint will be now ensuring that the uncertainty of the model is small enough to
guarantee that the LPV controller designed based on the identified model achieves
satisfactory performance with the unknown true LPV system. As it was the case in
[16], the optimal LPV identification experiment under this more complex constraint
will also only be made up of a limited amount of local LTI identification experiments.

Efficient control design methods are available for LPV systems [1, 2, 29, 13].
These control design methods deliver controllers whose parameters are, such as the
system itself, a function of the scheduling variable. By considering the variability of
the scheduling variable as an uncertainty and by defining the performance using the
L2 gain [34], robustness analysis tools have been developed to assess the performance
of a closed loop made up of such LPV controller and an uncertain LPV system [26, 35,
20, 6, 1]. However, to the best of our knowledge, none of these tools tackle the type of
uncertainty that follows from an LPV identification experiment. This uncertainty is
indeed relatively nonstandard since it takes the form of a parametric ellipsoid centered
at the estimate of θ0 and whose size is determined by the covariance matrix Pθ of this
estimate. Based on our previous results on this type of nonstandard uncertainty (see,
e.g., [5]), we use the separation of graph theory [28] to derive efficient robustness
tools that take both this parametric uncertainty and the variability of the scheduling
variable into account. Using these robustness tools, convex optimization can indeed
be used to verify the robustness of a LPV controller designed based on the identified
LPV model. These robustness tools can then be integrated in the optimal experiment
design procedure of [16] to derive the LPV identification experiment with the least
input energy that nevertheless is guaranteed to yield a model with sufficiently small
uncertainty to enable robust LPV control.

It is to be noted that we will distinguish two possible situations for the way the
LPV controller will be operated. In the first situation, the scheduling variable will
remain constant during operation, but this constant scheduling variable can take any
value in a given interval (see, e.g., [13]). This situation is referred to as the frozen
aspects of an LPV representation or the Linear Parameter Invariant (LPI) situation.
The second situation consists in the case that is often understood when speaking
about LPV control (see, e.g., [29]), i.e., the case where the scheduling variable can
vary over time during operation in a given interval. These two situations will lead to
two different ways of considering the scheduling variable in the robustness analysis
tools. In the second situation, the scheduling variable will have to be considered as
a time-variant parametric uncertainty, while, in the first situation, the scheduling

2



variable will be considered as a time-invariant parametric uncertainty.

Notations. The matrix 
X1 0 0

0
. . . 0

0 0 XN


will be denoted diag(X1, ..., XN ) if the elements Xi (i = 1, ..., N) are scalar quantities

while it will be denoted bdiag(X1, ..., XN ) if the elements Xi (i = 1, ..., N) are matrices.
In addition, L2 represents the set of discrete-time signals x(t) with finite energy, i.e.,
such that

∑∞
t=0 x

2(t) <∞.

2. Identification Procedure

2.1. True System

We consider a Single-Input Single-Output (SISO) LPV system, i.e., a SISO system
whose parameters vary with time as a function of an exogenous variable, the so-called
scheduling variable p(t). We assume that p(t) is a scalar signal that is known at each t
and that varies in a given scheduling interval P. We will further assume that the
scheduling variable can be manipulated for identification purpose. Without loss of
generality1, we will define the scheduling interval P as:

P = [−pmax, pmax]. (1)

for a given pmax.
More precisely, we will consider an LPV system that can be described as follows:

A(z, ζ0(p(t))) y̆(t) = B(z, ζ0(p(t))) u(t) (2)

with u(t) the input signal and y̆(t) the noise-free output. In (2), A(z, ζ0) and B(z, ζ0)
are polynomials in the delay operator z−1 and with arbitrary orders: A(z, ζ0) = 1 +
a0

1z
−1 + . . . + a0

naz
−na and B(z, ζ0) = z−nk(b00 + b01z

−1 + . . . b0nbz
−nb). The vector ζ0

in (2) is a column vector of dimension n
∆
= na + nb + 1 containing the coefficients of

these two polynomials, i.e., a0
1, ..., a

0
na , b

0
0, ..., b

0
nb . All the entries ζ0

i (i = 1, ..., n) of
ζ0 depend on the scheduling variable p(t) as follows:

ζ0
i (p(t)) =

nζ∑
j=0

ζ0
i,j fj(p(t)) i = 1, ..., n (3)

where nζ is an arbitrary order and fj(p(t)) (j = 0, . . . , nζ) correspond to
a set of unisolvent and rational basis functions, e.g., fj(p(t)) = pj(t) (see,
e.g., [12]). In (3), we suppose that nζ is the same for each entry ζ0

i (i =
1, ..., n) in order to simplify the notations (this is nevertheless not a neces-
sity). Let us define by θ0 = (ζ0

1,0, ζ
0
1,1, . . . , ζ0

n,nζ)
T , the vector of dimension

k
∆
= (nζ + 1)n which contains all the time-invariant coefficients of these polynomial

expansions. The relation between θ0 and the time-varying parameter vector ζ0(p(t))

1If the scheduling space is not centered at 0, a simple change of variable can transform it in (1).
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can thus be expressed as follows:

ζ0(p(t)) = T (p(t)) θ0 (4)

for a given matrix T (p(t)) of dimension n × k which is only a function of fj(p(t))
(j = 0, ..., np).

The noise-free output y̆(t) of (2) is perturbed as follows:

y(t) = y̆(t) + v(t) (5)

where v(t) is a stochastic signal representing both process and measurement distur-
bances. The signal y(t) in (5) is thus the measured output of the LPV system. In the
sequel, we will suppose that:

v(t) = H(z)e(t) (6)

where H(z) is a linear time-invariant (LTI) transfer function which is stable, inversely
stable and monic and where e(t) is a white noise signal of variance σ2

e . In other words,
we will suppose that v(t) is independent of the scheduling variable p and we will also
suppose in the sequel that H(z) is known. As shown in, e.g., [16], these assumptions
are not required, but they strongly simplify the notations.

Based on the above description, we observe that the parameter vector θ0 en-
tirely describes the LPV system. In the sequel, we will use the shorthand notation
Ḡ(ζ0(p(t))) = Ḡ(T (p(t))θ0) for the LPV system described in (2). Using this nota-
tion, (5) can be rewritten as:

y(t) = Ḡ(T (p(t))θ0)u(t) + v(t) (7)

where y̆(t)
∆
= Ḡ(T (p(t))θ0)u(t)

2.2. LPV system identification using the local approach

We will now show how we can deduce an estimate θ̂ of θ0 using the local approach for
LPV system identification and how we can evaluate the accuracy of this estimate θ̂.
The first step of this local approach consists in performing a certain number (say M)
of so-called local LTI identification experiments (m = 1, ...,M) [31].

Let us describe one of these local LTI identification experiments. We first bring
the scheduling variable to a given constant value (or operating point) pm. Then, while
maintaining the scheduling variable at this operating point p(t) = pm, we apply an
input sequence u(t) = um(t) (t = 1, ..., Np) of spectrum Φum to the LPV system (7).
The duration of the experiment is thus denoted by Np. By measuring the corresponding
output y(t) = ym(t), we obtain the data set Zm = {um(t), ym(t) | t = 1, . . . , Np}2.
Since p(t) is kept constant to pm during the local LTI experiment, the dynamics of
the true system (7) can be represented by the following LTI system described by the
time-invariant parameter vectors ζ0(pm) = T (pm)θ0:

y(t) = G(z, ζ0(pm)) u(t) +H(z) e(t) (8)

2The time index is set back to one at the beginning of each local LTI identification experiment.
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where G(z, ζ0(pm)) is the LTI transfer function corresponding to Ḡ(ζ0(p(t))) at the op-

erating point pm, i.e., G(z, ζ0(pm))
∆
= Ḡ(ζ0(pm)). This transfer function G(z, ζ0(pm))

is therefore given by:

G(z, ζ0(pm)) =
B(z, ζ0(pm))

A(z, ζ0(pm))
=
B(z, T (pm)θ0)

A(z, T (pm)θ0)
(9)

with the polynomials A(z, ζ) and B(z, ζ) as defined below (2).
Based on the data set Zm and a full order model structure: M = {G(z, ζ) =

B(z,ζ)
A(z,ζ) | ζ ∈ Rn} for the LTI representation (8), we determine an estimate ζ̂m of

ζ0(pm) using prediction error identification [24]:

ζ̂m = arg min
ζ

1

Np

Np∑
t=1

ε2m(t, ζ) (10)

with εm(t, ζ) = H−1(z)(ym(t) − G(z, ζ)um(t)). This estimate has the fol-

lowing asymptotic distribution: ζ̂m ∼ N (ζ0(pm), Pζ,m) where the covari-

ance matrix Pζ,m > 0 can be estimated from the data Zm and ζ̂m [24].
Note furthermore that Pζ,m has the following theoretical expression: Pζ,m =
σ2
e

Np

(
Ē
(
ψm(t, ζ0(pm)) ψTm(t, ζ0(pm))

))−1
with ψm(t, ζ) = −∂εm(t,ζ)

∂ζ and with Ēx(t)
∆
=

limNp→∞
1
Np

∑Np
t=1Ex(t) (E is the expectation operator) [24]. Using Parseval’s theo-

rem, we can expand this expression for Pζ,m and this yields:

P−1
ζ,m =

Np

σ2
e

(
1

2π

∫ π

−π
Fu,m(ejω)F ∗u,m(ejω)Φum(ω)dω

)
(11)

with3 Fu,m(z) = 1
H(z)

∂G(z,ζ)
∂ζ |ζ=ζ0(pm).

The above procedure is repeated for M different values of pm (m = 1, ...,M)

yielding M independent estimates ζ̂m and their respective covariance matrix Pζ,m. We
will assume that the durations of these M local LTI experiments will be all equal to
Np, but that the spectrum Φum of the input signal can be chosen differently in these
M experiments. Indeed, the LTI representation (8) will be different for each pm and
it makes thus sense to use a different input spectrum for these different LTI systems.

If the local LTI identication experiments have been performed at at least nζ +

1 different operating points, the estimates ζ̂m of ζ0(pm) (m = 1, ...,M) can then

be used to determine an estimate θ̂ of the time-invariant parameter vector θ0 using
the mapping (4). Since the M estimates are independent and are (asymptotically)

distributed as ζ̂m ∼ N (ζ0(pm), Pζ,m), the minimal variance estimate θ̂ of θ0 can be
computed via generalized least-squares (or weighted least-squares) [16]:

θ̂ =

(
M∑
m=1

TT (pm) P−1
ζ,m T (pm)

)−1( M∑
m=1

TT (pm) P−1
ζ,m ζ̂m

)
(12)

and this estimate θ̂ has the following (asymptotic) property: θ̂ ∼ N (θ0, Pθ) with a

3Note that, if the transfer function H would be unknown and estimated together with G(z, ζ0(pm)), the
expression (11) would remain identical [16].
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strictly positive-definite covariance matrix Pθ that can be computed as [16]:

Pθ =

(
M∑
m=1

T T (pm)P−1
ζ,mT (pm)

)−1

. (13)

This statistical property can be rewritten as θ0 − θ̂ ∼ N (0, Pθ) and we can therefore

conclude that, with probability β, the estimation error θ0 − θ̂ lies in the following
uncertainty ellipsoid U :

U = {δθ ∈ Rk | δθTP−1
θ δθ ≤ χ} (14)

where Pr(χ2(k) ≤ χ) = β. Consequently, the local approach for LPV identification

not only delivers an estimate θ̂ for θ0, but also, via Pθ and U , a description of the
uncertainty of this estimate θ̂. The estimate θ̂ of θ0 in turn defines a model Ḡ(T (p(t))θ̂)

of the LPV system Ḡ(T (p(t))θ0). The model Ḡ(T (p(t))θ̂) will be used to design a
controller for Ḡ(T (p(t))θ0).

2.3. Some notations

For the sequel, it will be important to note that Ḡ(T (p(t))θ) for any p(t) and any

θ = θ̂ + δθ is rational in both p(t) and δθ and can therefore be written as an Linear
Fractional Transformation (LFT) in p and in δθ, i.e., we can determine vectors of
signals qG and sG such that the operator Ḡ(T (p(t))θ) between u and y̆ can be written
as:

sG =

=∆G︷ ︸︸ ︷
bdiag(p InpG , InθG ⊗ δθ) qG and

(
qG
y̆

)
= MG(z)

(
sG
u

)
(15)

with InpG and InθG identity matrices of given dimensions npG and nθG and with MG(z)
a known matrix of LTI transfer functions. Note that the transfer functions in MG are
LTI since the time-varying element p(t) has been isolated in the uncertainty block ∆G

of the LFT.
Moreover, the LTI transfer function G(z, T (p)θ) = G(z, ξ(p)) corresponding to

Ḡ(T (p(t))θ) at any given operating point p can be rewritten as the following rational
relation in θ:

G(z, T (p)θ) =
ZN (z,p)θ

1 + ZD(z,p)θ
(16)

for some given row vectors ZN (z,p) and ZD(z,p). An example for a simple LPV
system is given in Appendix A.1.
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3. Control design based on Ḡ(T (p(t))θ̂)

3.1. LPI and LPV control

The control design method will generally depend on the type of scheduling sequences
we will encounter during the operation of the system and the designed controller will
also generally depend directly on the observed value of the scheduling variable. To

stress this, we will use the following notation for the controller: ˆ̄C(p(t)).
In some cases, the scheduling sequence can be very close to the type of scheduling

sequences considered for the local LPV identification procedure: the scheduling vari-
able can take any value in the scheduling space P, but remains constant during the
operation of the controller. In other words, the scheduling sequences are restricted to
lie in the set P:

P = {p(t) | p(t) = p ∀t with p ∈ P} (17)

This is, e.g., the case when the scheduling variable p represents the payload of a
rocket (i.e. the mass of the to-be-launched satellites). When designing a controller for
the rocket, it seems a good idea to take into account that this payload can vary from
mission to mission and thus to design a controller that depends on this payload. For
a given mission, the payload is nevertheless equal to a constant value p and the LPV
model Ḡ(T (p(t))θ̂) is thus equivalent to the LTI transfer function:

G(z, T (p)θ̂) =
B(z, T (p)θ̂)

A(z, T (p)θ̂)
(18)

which can be controlled with a LTI controller. The control problem therefore consists
in determining a parametrization Ĉ(z,p) defining an LTI controller for each p ∈ P
and ensuring, for any of these values p ∈ P, that the closed loop [Ĉ(z,p) G(z, T (p)θ̂)]

made up of the LTI controller Ĉ(z,p) and the LTI model G(z, T (p)θ̂) is stable and
achieves satisfactory performance (more details will be given in the next subsection).
We will call this situation Linear Parameter Invariant (LPI) control as done in [13].

In other cases, the scheduling sequence will not remain constant during the oper-

ation of the controller. In this case, control design methods yield a controller ˆ̄C(p(t))
whose coefficients are dependent on the time-varying scheduling sequence and that

is such that the closed loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)] is stable and achieves satisfactory
performance for all possible scheduling sequences, i.e., for all sequences p lying in the
set P̄ :

P̄ = {p(t) | p(t) ∈ P ∀t} (19)

In this case, both the plant and the controller are time-varying operators and we will
talk of LPV control.

Note that the LPI control design method can also be rephrased in a framework

similar to the LPV case, i.e., as the problem of designing a controller ˆ̄C(p(t)) such that

[ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)] is stable and achieves satisfactory performance for all scheduling
sequences p ∈ P (and thus not all scheduling sequences p ∈ P̄ as in the LPV case). It

is clear that the controller ˆ̄C(p(t)) designed for the LPI situation will only be used for

7



p ∈ P and, from a notation point-of-view, we have that Ĉ(z,p)
∆
= ˆ̄C(p) ∀p ∈ P.

Note finally that, in this paper, we will more particularly consider the methods
of [13] for LPI control and of [29] for LPV control since the model Ḡ(T (p(t))θ̂)
is rational in p (see Appendix A.2. for more precision). Using these methods, the

obtained controller ˆ̄C(p(t)) is also rational in p. However, any other control methods
could also be considered as long as the controller can be expressed/approximated as
a rational function of p.

Important remark. The LPV situation described above is a demanding situation. In-
deed, the desired performance has to be guaranteed for scheduling variables that may
vary as fast as a (bounded) white noise. In many cases, though, the scheduling variable
p(t) will be slowly varying and an LPI controller achieving good performance for all
(frozen) operating points p in P will generally be sufficient.

3.2. Performance requirements for [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)]

As mentioned in the previous subsection, LPI and LPV control methods such as the

ones in [13, 29] allow to design, based on the model Ḡ(T (p(t))θ̂), a controller ˆ̄C(p(t))

guaranteeing that the closed loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)] (see Figure 1) is stable and ex-
hibits a certain level of nominal performance for a given class of scheduling sequences.
This level of performance can be the ability to reject certain disturbances or to track
certain reference signals while maintaining an acceptable control effort. For simplicity,
let us focus on one of these control aspects: the disturbance rejection ability. Let us

for this purpose consider the designed loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)] in Figure 1 and let

us denote by ˆ̄S(p(t)) the operator between the to-be-rejected disturbance v and the
output y, i.e., the sensitivity operator. If the plant model and the controller in Figure 1
are LTI transfer functions (Ĝ(z) and Ĉ(z)), the disturbance rejection ability of the

loop is classically ensured by imposing that ‖ ˆ̄SWi‖∞ ≤ η for a given scalar η < 1. For

this particular case, ˆ̄S is an LTI transfer function, i.e., ˆ̄S = (1 + Ĝ(z)Ĉ(z))−1 and the
weighting Wi(z) is a (stable and inversely stable) LTI transfer function, which reflects
the frequency content of the disturbance v (Wi(z) can be determined based4 on H(z)
in (6)).

In the situation considered in this paper (i.e. when both the plant and the con-
troller can be time-varying), the performance requirements will be expressed via the
notion of L2-gain [34].

Definition 1. Consider a time-varying SISO operator L̄ that takes as input the signal
w ∈ L2 and as output the signal y, i.e., y(t) = L̄w(t). The L2-gain ‖L̄‖L2

of L̄ is
defined5 as:

‖L̄‖L2
= sup

w∈L2

‖y‖2
‖w‖2

(20)

4The weighting Wi(z) is generally determined not only based on H(z), but also based on a number of other

considerations (e.g. robust stability considerations).
5A limitation to signals w in L2 (i.e. w with finite energy) may seem restrictive. However, the quantity defined

in (20) is also equal to the maximal ratio between the power of L̄w and the power of w for any finite power
signal w [34].
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Figure 1.: The designed closed loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)]

where ‖x‖2 is defined as:

‖x‖2 =

√√√√ ∞∑
t=0

x2(t). (21)

The operator L̄ is said stable if and only if ‖L̄‖L2
<∞.

The fact that the L2-gain has been chosen to define performance requirements
in the time-varying situation is relatively logical since the L2-gain of a LTI transfer
function is its H∞-norm (see below for more details).

When LPV control is considered, the disturbance rejection ability of the loop in
Figure 1 can be defined via the following constraint:

sup
p∈P̄
‖ ˆ̄S(p(t)) Wi(z)‖L2

≤ η (22)

where η and the weighting Wi(z) are defined similarly as in the LTI case described

above. The operator ˆ̄S(p(t)) Wi(z) used in (22) is the operator between w and y in
Figure 1. The weighting Wi allows to define the class VWi

of considered signals v: VWi

is the class of signals v such that ‖W−1
i v‖2 < ‖v‖2. The criterion (22) guarantees that,

for all v ∈ VWi
and for all p ∈ P̄ , the output y in the loop of Figure 1 is such that

‖y‖2 < η‖v‖2. In other words, the smaller η, the larger is the rejection rate for the
disturbances v ∈ VWi

.
In the case of LPI control, the disturbance rejection ability can be ensured by

imposing the same criterion, but now for all scheduling sequences p(t) in P instead
of P̄ :

sup
p∈P
‖ ˆ̄S(p(t)) Wi‖L2

= sup
p∈P

∥∥∥∥∥ Wi(z)

1 + Ĉ(z,p)G(z, T (p)θ̂)

∥∥∥∥∥
∞

< η (23)

with the notations introduced in the previous subsection. The performance require-
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ment (23) can also be equivalently rewritten as:

sup
p∈P

∣∣∣∣∣ 1

1 + Ĉ(ejω,p)G(ejω, T (p)θ̂)

∣∣∣∣∣ < η

|Wi(ejω)|
∀ω (24)

Finally, note that, in addition to the input weighting Wi, output weightings can also
be added in the performance requirements used in the control design methods [13, 29].

4. Robustness analysis

4.1. Concepts

As shown in the previous section, LPI and LPV control design methods can be used

to determine, based on the model Ḡ(T (p(t))θ̂), a controller ˆ̄C(p(t)). This controller
achieves a certain level of (nominal) performance for a given class P of scheduling se-
quences (P is either P̄ in the LPV control situation or P in the LPI control situation).
As shown in the previous subsection, when considering the objective of disturbance re-

jection, this level of performance can be measured as: Jnom = maxp∈P ‖ ˆ̄S(p(t)) Wi‖L2
.

Other performance requirements (i.e. on the control efforts) can also be defined and
treated in a similar way as the one on disturbance rejection considered below.

The control design method ensures that Jnom < η for an user-chosen η < 1.

However, this performance level only pertains to the loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ̂)]. In

particular, this level of performance is not guaranteed when ˆ̄C(p(t)) is applied to

the (unknown) true system Ḡ(T (p(t))θ0) (since θ̂ 6= θ0). Consider thus the loop

[ ˆ̄C(p(t)) Ḡ(T (p(t))θ0)] which is the loop in Figure 1 where Ḡ(T (p(t))θ̂) is replaced

by Ḡ(T (p(t))θ0). In order to verify the robustness of the designed controller ˆ̄C(p(t)),
we have to verify that

J0 = sup
p∈P
‖S̄0(p(t)) Wi‖L2

< ηrob (25)

where S̄0(p(t)) is the operator between v and y in this loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ0)] and
where ηrob > η is an user-chosen scalar (the difference ηrob − η thus represents the
maximal performance degradation that can be allowed).

Since θ0 is unknown, in order to verify (25), we will consider the uncertainty
ellipsoid U defined in (14) and, more precisely, the following quantity representing the
worst case performance with respect to U :

Jwc = sup
δθ∈U

sup
p∈P
‖S̄δθ(p(t)) Wi‖L2

(26)

where S̄δθ(p(t)) is the operator between v and y in the loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ)]

made up of the designed controller ˆ̄C(p(t)) and the plant Ḡ(T (p(t))θ) with θ = θ̂ +

δθ ([ ˆ̄C(p(t)) Ḡ(T (p(t))θ)] is the loop in Figure 1 where Ḡ(T (p(t))θ̂) is replaced by
Ḡ(T (p(t))θ)).

Like in many robustness analysis problems [36], it will not be possible to compute
the quantity Jwc exactly. However, using the separation of graph theory [28, 18, 25], we

10



Figure 2.: The closed loop [ ˆ̄C(p(t)) Ḡ(T (p(t))θ)] for an arbitrary θ using the LFT
representations

will see in the sequel that we can compute an upper bound Jubwc for Jwc using convex
optimization. Based on this computable upper bound for Jwc, (25) will be deemed
verified if

Jubwc < ηrob (27)

To find a method to compute Jubwc, it is important to note that Ḡ(T (p(t))θ) can

be expressed as an LFT in p and in δθ = θ − θ̂ (see (15)) and to recall that the

designed controller ˆ̄C(p(t)) has the property to be rational in p (See Section 3.1), i.e.,

we can define signal sC and qC such that the operator ˆ̄C(p(t)) can be expressed as the
following LFT:

sC =

=∆C︷ ︸︸ ︷
(p InpC ) qC and

(
qC
u

)
= MC(z)

(
sC
−y

)
(28)

for some given scalar6 npC and some matrix of transfer functions MC(z).

Consequently, the operator S̄δθ(p(t))Wi can also be expressed as an LFT in p and
in δθ, i.e., for q = (qTC , q

T
G)T and s = (sTC , s

T
G)T , the operator S̄δθ(p(t))Wi between w

and y (see Figure 2) can be written as:

s =

=∆︷ ︸︸ ︷
bdiag(p Inp , Inθ ⊗ δθ) q and

(
q
y

)
= M(z)

(
s
w

)
(29)

with ∆ = bdiag(∆C ,∆G) (np = npC +npG and nθ = nθG) and with M(z) a known ma-
trix of stable LTI transfer functions. These transfer functions are stable since the loop

[ ˆ̄C(p(t) = 0) Ḡ(T (p(t) = 0)θ̂)] corresponding to δθ = 0 and p(t) = 0 is stable (see

6If the control design methods in, e.g., [13, 29] are used, we have that npC = npG .

11



Section 3.1). In the sequel, we will use the shorthand relation F(., .) for such a LFT
representation (29), i.e., S̄δθ(p(t))Wi = F(M(z),∆).

Remark 1. The operator S̄δθ(p(t)) (without weighting Wi) can of course also be
expressed as an LFT using the same uncertainty block ∆, i.e., S̄δθ(p(t)) = F(M̃(z),∆)
where M̃(z) is also a known matrix of stable LTI transfer functions.

In the next subsections, we will see how Jubwc can be computed in practice.

4.2. Separation of graph

Let us first notice that the worst-case performance Jwc defined in (26) is the square
root

√
γopt of the solution γopt of the following optimization problem:

min
γ

γ

‖F(M(z),∆)‖2L2
< γ ∀∆ ∈∆

(30)

where ∆ is either ∆P̄ in the LPV case or ∆P in the LPI case:

∆P̄ = {∆ = bdiag(p Inp , Inθ ⊗ δθ) | p ∈ P̄ and δθ ∈ U} (31)

∆P = {∆ = bdiag(p Inp , Inθ ⊗ δθ) | p ∈ P and δθ ∈ U} (32)

Remark 2. The set ∆P can also be rewritten as:

∆P = {∆ = bdiag(p Inp , Inθ ⊗ δθ) | p ∈ P and δθ ∈ U} (33)

and can consequently be considered as a fully time-invariant uncertainty set.
As already mentioned before, the optimization problem (30) yielding Jwc is not

tractable. However, we will show in this section that if a certain LMI constraint is
satisfied, then the constraint in (30) is also satisfied. Replacing the non-tractable con-
straint in (30) by this LMI constraint yields a convex optimization problem delivering
the upper-bound Jubwc on Jwc. This LMI constraint will be given in Proposition 1. A
necessary ingredient for this proposition is to associate, with the set ∆ (i.e. ∆P̄ for the
LPV situation or ∆P in the LPI situation), a so-called set of multipliers. In a nutshell,
this set of multipliers is an explicit parametrization of the quadratic constraints
satisfied by the graphs of all uncertainties ∆ ∈ ∆ [28, 18, 25]. Since p may be
time-varying, we cannot define these quadratic constraints on a frequency-wise man-
ner (like in, e.g., [5]), but we will instead use Integral Quadratic Constraints (IQC) [25].

Definition 2. Consider a set ∆ of the form (31) or of the form (32). Consider also
the set G∆ containing all (q(t) s(t))T that can be generated by an element ∆ in such

12



a set ∆:

G∆ =

{(
q
s

)
∈ L2 | s(t) = ∆q(t) with q ∈ L2 and ∆ ∈∆

}
.

The set A of multipliers associated to ∆ is a set of affinely parametrized and frequency-
dependent Hermitian matrices A(ω) and all frequency-dependent matrices A(ω) ∈ A
satisfy the following Integral Quadratic Constraint (IQC) for all (q(t) s(t))T ∈ G∆:

1

2π

∫ π

−π

(
q(ejω)
s(ejω)

)∗(
A11(ω) A12(ω)
A∗12(ω) A22(ω)

)
︸ ︷︷ ︸

=A(ω)

(
q(ejω)
s(ejω)

)
dω ≥ 0 (34)

with q(ejω) and s(ejω) the Fourier transforms of q(t) and s(t).

We will in the sequel determine a specific set of multipliers AP̄ for the uncer-
tainty set ∆P̄ corresponding to the LPV situation and one specific set AP for the
uncertainty set ∆P corresponding to the LPI situation. However, let us first show
how this set of multipliers can be used to obtain a tractable condition that implies
‖F(M(z),∆)‖L2

< γ ∀∆ ∈∆ (i.e. the constraint in (30)).

Proposition 1. Consider an LFT representation F(M(z),∆) as given in (29) where
M(z) is a stable matrix of LTI transfer functions and ∆ is a stable operator lying in the
set ∆ (given by (31) for the LPV situation or by (32) in the LPI situation). Suppose
that we have determined a set A of multipliers associated to ∆ (see Definition 2).
Then, if there exist a frequency-dependent matrix A(ω) ∈ A and a positive scalar
γ <∞ such that7: (

M(ejω)
I

)∗
B(A(ω), γ)

(
M(ejω)

I

)
< 0 ∀ω (35)

B(A(ω), γ) =

(
bdiag(A11(ω), 1) bdiag(A12(ω), 0)
bdiag(A∗12(ω), 0) bdiag(A22(ω),−γ)

)
,

then this implies both the stability of F(M(z),∆) for all ∆ ∈ ∆ and the following
property:

‖F(M(z),∆)‖2L2
< γ ∀∆ ∈∆ (36)

Proof. See Appendix B.

4.3. Sets of multipliers for ∆P̄ and ∆P

To be able to use Proposition 1 in order to compute Jubwc in the LPV and LPI
situations, we need to associate a set of multipliers to both ∆P̄ and ∆P. This is
done in the next two propositions. It is important to stress that the more extensive
the parametrization of the set of multipliers, the closer the upper bound Jubwc will

7In (35), I is the identity matrix with dimension np + knθ + 1.
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be from Jwc. With respect to the classical literature on LPV robustness analysis
[25, 26, 35, 20, 6, 1], the main difference is the second block-diagonal term Inθ ⊗ δθ
in the uncertainty ∆ in (29), i.e., the uncertainty related to the estimation error
following from the LPV identification procedure. Such an uncertainty block has been
treated in [5] in the case where the identified system was an LTI transfer function
(i.e. without scheduling variable p). With respect to [5], the difference is thus the
combination of this uncertainty block Inθ ⊗ δθ with the uncertainty block made up of
a repeated scalar p which is either time-varying or time-invariant.

Proposition 2. Consider the set ∆P̄ defined in (31) where P̄ is defined in (19) and

U is defined in (14). The frequency-dependent matrices A(ω) =

(
A11(ω) A12(ω)
A∗12(ω) A22(ω)

)
belonging to the set AP̄ of multipliers associated to ∆P̄ are of the form Aij(ω) =
bdiag(Aij,p(ω), Aij,δθ(ω)) (i, j = 1, 2).

The matrices Aij,p(ω) are square matrices of dimension np that are parametrized
as follows: A11,p(ω) = p2

maxS, A12,p(ω) = G and A22,p(ω) = −S where pmax is defined
in (1) and where S and G can take any value provided that i) S is a positive definite
Hermitian matrix, ii) G is a skew-symmetric matrix and iii) S and G do not depend
on the frequency ω.

At any frequency ω, the matrices Aij,δθ(ω) are parametrized as follows:

A11,δθ(ω) = A0(ω)

A22,δθ(ω) = −A0(ω)⊗ P−1
θ

χ + jÃ(ω)− B̃(ω)

A12,δθ(ω) =


jv̂T11(ω) jv̂T12(ω) . . . jv̂T1nθ (ω)
jv̂T12(ω) jv̂T22(ω) . . . jv̂T2nθ (ω)

...
. . .

...
jv̂T1nθ (ω) . . . . . . jv̂Tnθnθ (ω)

 + . . .

. . . +


0 ṽT12(ω) . . . ṽT1nθ (ω)

−ṽT12(ω) 0 . . .
...

... . . .
. . . ṽT(nθ−1)nθ

(ω)

−ṽT1nθ (ω) . . . −ṽT(nθ−1)nθ
(ω) 0


where A0(ω) is a square matrix of dimension nθ that can take any value as long as
A0(ω) is a positive definite Hermitian matrix, where v̂lr(ω) and ṽlr(ω) are column
vectors of dimension k that can take any value (l = 1, .., nθ and r = 1, .., nθ) and

finally where Ã(ω) and B̃(ω) are square matrix of dimension knθ that can take any
values as long as:

Ã =


L11(ω) L12(ω) . . . L1nθ (ω)
L12(ω) L22(ω) . . . L2nθ (ω)

...
. . .

...
L1nθ (ω) L2nθ (ω) . . . Lnθnθ (ω)



B̃ =


0 K12(ω) . . . K1nθ (ω)

−K12(ω) 0 . . .
...

...
. . . K(nθ−1)nθ (ω)

−K1nθ (ω) . . . −K(nθ−1)nθ (ω) 0
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with the constraints that Li,j(ω) = Li,j(ω)T ∈ Rk×k and Ki,j(ω) = −KT
i,j(ω) ∈ Rk×k.

Finally, as long as they keep the structure defined above, the elements A0(ω), Ã(ω),
B̃(ω), v̂lr(ω) and ṽlr(ω) can take different values at each frequency ω.

Proof. See Appendix C.

Proposition 3. Consider the set ∆P defined in (33) where P is defined in (1) and

U is defined in (14). The frequency-dependent matrices A(ω) =

(
A11(ω) A12(ω)
A∗12(ω) A22(ω)

)
belonging to the set AP of multipliers associated to ∆P are of the form Aij(ω) =
bdiag(Aij,p(ω), Aij,δθ(ω)) (i, j = 1, 2).

At any frequency ω, the matrices Aij,p(ω) are square matrices of dimension
np that are parametrized as follows: A11,p(ω) = p2

maxS(ω), A12,p(ω) = G(ω) and
A22,p(ω) = −S(ω) where pmax is defined in (1) and where S(ω) and G(ω) can take
any value provided that i) S(ω) is a positive definite Hermitian matrix, ii) G(ω) is a
skew-symmetric matrix. Moreover, as long as they keep the structure defined above,
the matrices S(ω) and G(ω) can take different values at each frequency ω.

Finally, the matrices Aij,δθ(ω) are parametrized in AP in the same way as in
AP̄ (see Proposition 2).

Proof. See Appendix D.

The parametrization of the frequency-dependent matrices A(ω) in Propositions 2
and 3 is made up of fixed elements, i.e., pmax and P−1

θ /χ and of free variables that
appear affinely in the parametrization. In the case of AP̄ , these free variables are S, G,
A0(ω), Ã(ω), B̃(ω), v̂lr(ω) and ṽlr(ω) (l = 1, .., nθ and r = 1, .., nθ). In the case of AP,
these free variables are S(ω), G(ω), A0(ω), Ã(ω), B̃(ω), v̂lr(ω) and ṽlr(ω) (l = 1, .., nθ
and r = 1, .., nθ). When, such as in Proposition 1, we have to find A(ω) in a set of
multipliers, it is in fact those free variables that have to be determined (according to
the defined structure for each of these variables). In the case of AP̄ , some of these free
variables (i.e. S and G) are constant over the frequencies while, in the case of AP,
the values of all these free variables can be determined independently and differently
at each frequency ω. This last property is a consequence of the fact that ∆P is in
fact a time-invariant uncertainty set (see Remark 2) and the set AP of multipliers
associated to ∆P deduced from Definition 2 corresponds to the set that would have
been deduced from the (frequency-wise) definition of the set of multipliers for time-
invariant uncertainty sets (this definition is, e.g., used in our previous contribution
[5]).

4.4. Computation of the upper bound for Jwc

Based on the discussion in the previous subsections, an upper bound Jubwc for the
worst-case performance Jwc defined in (26) (see also (30)) can be derived using a
convex LMI optimization problem [11] both for the LPI and LPV situations. This is
summarized in the following proposition. Using the quantity Jubwc computed with this
convex optimization problem, we will be able to verify the robustness condition (27)

and, consequently, whether the controller ˆ̄C(p(t)) designed based on the identified

model Ḡ(T (p(t))θ̂) will achieve sufficient performance with the unknown true system
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Ḡ(T (p(t))θ0) for all scheduling sequences p ∈ P (in the LPI situation) or p ∈ P̄ (in
the LPV situation).

Proposition 4. Consider the worst case performance Jwc defined as shown in
Section 4.2 via the solution of the optimization problem (30) with ∆ = ∆P̄ in the
LPV situation and with ∆ = ∆P in the LPI situation (see (31)-(32)). Consider
also the sets AP̄ and AP of multipliers associated respectively to ∆P̄ and ∆P (see
Propositions 2 and 3). An upper bound Jubwc for Jwc can be derived using convex LMI
optimization in both the LPV situation and the LPI situation. Indeed, in the LPV
situation, Jubwc is the square root of the smallest value of γ for which we can still find
a frequency-dependent matrix A(ω) ∈ AP̄ such that (35) holds for these A(ω) and γ.
Similarly, in the LPI situation, Jubwc is the square root of the smallest value of γ for
which we can still find a frequency-dependent matrix A(ω) ∈ AP such that (35) holds
for these A(ω) and γ.

Proof. That Jubwc is an upper bound for Jwc is a direct consequence of Proposition 1.
That the optimization problems yielding Jubwc is a convex LMI optimization problem
is a consequence of the fact that (35) is affine in both A(ω) and γ and that the to-
be-determined free variables appear in an affine manner in the parametrization of the
matrices A(ω) given in Propositions 2 and 3.

The constraints in both optimization problems presented in Proposition 4 are
given by (35) which specify an LMI constraint for all frequencies ω ∈ [−π, π]. The LMI
optimization problem has thus an infinite number of constraints. A possible solution
to this difficulty is to factorize the matrices B(A(ω), γ) as L∗(ejω)ΠL(ejω) with L(z) a
matrix containing known basis functions and Π a matrix containing free coefficients8.
This factorization would allow to use the KYP lemma [11] to replace the infinite
number of LMI constraints in (35) by one single LMI constraint. Another solution is
to replace the infinite number of constraints (i.e. one for each ω in the continuous
interval [−π, π]) by a finite number of constraints, i.e., one for each frequency in a
finite grid Ω of the interval9 [0, π]:(

M(ejω)
I

)∗
B(A(ω), γ)

(
M(ejω)

I

)
< 0 ∀ω ∈ Ω (37)

with B(., .) defined in the same way as in (35). If we use (37) instead of (35) in the
optimization problems of Proposition 4, the determination of a frequency-dependent
matrix A(ω) is replaced by the determination of the value of A(ω) at each frequency ω
in the finite grid Ω. Even though it possibly entails some approximation, this gridding
approach will be the approach considered in this paper for its simplicity.

8To find an appropriate factorization for B, the approach presented in Proposition 1 of [8] can, e.g., be followed.
9Note that we here use the symmetry between positive and negative frequencies.
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4.5. Specific robustness analysis approach in the LPI situation

4.5.1. Approach based on graph separation

Due to the fact that the value of the frequency-dependent matrix A(ω) can be chosen
independently at each frequency in the LPI situation (see Proposition 3), another
approach (which is even simpler) can also be considered for this case, i.e., solving,
for each frequency ω in the finite grid Ω of the interval [0 π], an LMI optimization
problem with one single LMI constraint. The LMI optimization problem considered at
one given frequency ω in this grid is the following one: determine the smallest value of
the scalar γ(ω) for which we can still find a matrix A(ω) having the structure given in
Proposition 3 such that, for these A(ω) and γ(ω), the following LMI constraint holds:(

M(ejω)
I

)∗
B(A(ω), γ(ω))

(
M(ejω)

I

)
< 0 (38)

When we speak here of a matrix A(ω) having the structure given in Proposition 3, we
mean a matrix A(ω) which is equal to the value at ω of a frequency-dependent matrix
in AP.

If we denote by Jubwc(ω) the square root of the solution γopt(ω) of this optimization
problem at a given frequency ω, we have the following result.

Proposition 5. Consider an LFT representation F(M(z),∆) with M(z) a stable ma-
trix of transfer functions and ∆ a (time-invariant) operator that lies in the uncertainty
set ∆P (see (33)). Consider also the optimization problem defined above yielding a so-
lution Jubwc(ω) at a given ω. Then, at any ω, we have that Jubwc(ω) is an upper bound
for:

Jwc(ω) = max
∆∈∆P

∣∣F(M(ejω),∆)
∣∣ (39)

and the upper bound Jubwc defined in Proposition 4 for the LPI case is equal to
supω J

ub
wc(ω).

Proof. See Appendix E.

As already mentioned, it is clear from Proposition 5 that the robustness
condition (27) in the LPI case can be checked by computing Jubwc(ω) at all frequencies
in a fine grid Ω of the interval [0 π] and by verifying that Jubwc(ω) < ηrob at all these
frequencies. This also means that the LMI optimization problem with multiple LMI
constraints (37) will in practice only be used for the LPV case.

Remark 3. Note that the expression (39) valid for the LPI case is equivalent to:

Jwc(ω) = sup
δθ∈U

sup
p∈P

∣∣∣∣∣ Wi(e
jω)

1 + Ĉ(ejω,p)G(ejω, T (p)(θ̂ + δθ))

∣∣∣∣∣ (40)
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Using Proposition 5 and Remark 1, one can also compute an upper bound J̃ubwc(ω) for

J̃wc(ω) = sup
δθ∈U

sup
p∈P

∣∣∣∣∣ 1

1 + Ĉ(ejω,p)G(ejω, T (p)(θ̂ + δθ))

∣∣∣∣∣ (41)

In this case, verifying (27) consists in checking that J̃ubwc(ω) < ηrob/|Wi(e
jω)| at all

frequencies in a fine grid Ω of [0, π].

4.5.2. Approach based on the gridding of P

The approach presented in the previous subsection allows one to compute an upper
bound Jubwc(ω) for the quantity Jwc(ω) defined in, e.g., (40). In the sequel, we will show
that we can easily also compute a reliable lower bound J lbwc(ω) of Jwc(ω) by using the
fact that the scheduling space is of dimension one (and can thus be easily gridded).
A lower bound could seem less attractive than an upper bound. Indeed, verifying
that J lbwc(ω) < ηrob is no guarantee for Jwc(ω) < ηrob (unlike Jubwc(ω) < ηrob). However,
we will see in the next section that this lower bound can lead to an interesting
alternative/initialization for the optimal experiment design problem. Moreover,
this lower bound can be used as a tool to verify the conservatism of Jubwc(ω): this
conservatism is limited if J lbwc(ω) ≈ Jubwc(ω) ∀ω.

Let us see how we can determine a reliable lower bound J lbwc(ω) for Jwc(ω). For
this purpose, observe that Jwc(ω) can be rewritten as

Jwc(ω) = sup
p∈P

Jwc(ω,p) (42)

with Jwc(ω,p)
∆
= sup

δθ∈U

∣∣∣∣∣ Wi(e
jω)

1 + Ĉ(ejω,p)G(ejω, T (p)(θ̂ + δθ))

∣∣∣∣∣ (43)

Using our previous results (see, e.g., [7] and Proposition 6 in the sequel), we know
that Jwc(ω,p) can be exactly computed for given p and ω. We can therefore deduce a
lower bound J lbwc(ω) for Jwc(ω) by considering a fine grid Pgrid of the scheduling space
P:

J lbwc(ω) = sup
p∈Pgrid

Jwc(ω,p) (44)

It is important to note that this lower bound is indeed a reliable lower bound, i.e.,
the difference between Jwc(ω) and J lbwc(ω) can be made as small as possible by ever
refining Pgrid. Let us finish this subsection by recalling how Jwc(ω,p) defined above
can indeed be computed exactly for given p and ω using convex optimization.

Proposition 6. Consider the quantity Jwc(ω,p) defined in (43) for a given ω, a given
p and a given uncertainty U (see (14)). Consider also the parametrization (16) for

G(ejω, T (p)θ) (θ = θ̂+δθ). Then, Jwc(ω,p) is given by
√
γopt where γopt is the solution

of the following LMI convex optimization problem: determine the smallest value of γ
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for which we can still determine a positive scalar τ such that, for these γ and τ , the
following LMI holds:

E(ω,p) − γ Eγ(ω,p) − τ

(
P−1
θ P−1

θ θ̂

P−1
θ θ̂ χ− θ̂TP−1

θ θ̂

)
< 0 (45)

E(ω,p) = |Wi(e
jω)|2

(
Re(Z∗D(ejω,p)ZD(ejω,p)) Re(Z∗D(ejω,p))

Re(ZD(ejω,p)) 1

)

Eγ(ω,p) =

(
Re(Z∗1 (ejω,p)Z1(ejω,p)) Re(Z∗1 (ejω,p))

Re(Z1(ejω,p)) 1

)

where Re(a) is the real part of the complex quantity a and Z1(ejω,p)
∆
=

Ĉ(ejω,p)ZN (ejω,p) + ZD(ejω,p). Note that the optimal γ and τ can be differ-
ent for different ω and p.

Proof. As shown in [7], the proposition follows from the fact that the existence of τ > 0
such that (45) holds is equivalent to:

∣∣∣∣∣ Wi(e
jω)

1 + Ĉ(ejω,p)G(ejω, T (p)(θ̂ + δθ))

∣∣∣∣∣
2

< γ ∀δθ ∈ U

Note that we can similarly also compute a lower bound J̃ lbwc(ω) for the quantity
J̃wc(ω) defined in (41) using the procedure described in this section.

Note also that, as mentioned at the end of Section 3.1, the robustness analysis
presented in this subsection for the LPI case can also be applied to assess the robustness
of an LPV control loop with slowly varying scheduling variable p. The performance
difference between the LPI case and this slowly varying case will indeed be generally
neglectable.

5. Optimal identification experiment design for LPI/LPV control

5.1. Concepts

In both the LPI and LPV cases, the robustness of the controller designed based on the
identified model can be verified by considering the upper bound Jubwc for the worst case
performance achieved by this controller over the set of plants that are defined based
on the uncertainty set U (see (14)). In some cases, the uncertainty set U will be small
enough to guarantee Jubwc < ηrob. However, in some cases too, the uncertainty set (or,

equivalently, the covariance matrix Pθ of θ̂) will be too large to guarantee Jubwc < ηrob.
In this section, we will give tools that, in the latter cases, will help designing a second
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LPV identification experiment yielding a new model whose uncertainty will be small
enough to guarantee Jubwc < ηrob with the controller designed with this new model
(using the same (LPI or LPV) control design method as for the initial controller).

For this purpose, let us describe a bit more both the initial and second LPV
identification experiments. Without loss of generality, we will suppose that the initial
LPV identification experiment (see Section 2.2) has been performed with M1 local

LTI experiments. This initial identification experiment has delivered an estimate θ̂1

having a covariance matrix Pθ1 . We thus suppose that, for the controller ˆ̄C1(p(t))

designed based on Ḡ(T (p(t)θ̂1), the quantity Jubwc computed with the uncertainty set
U1 defined with Pθ1 is larger than ηrob. To improve the accuracy of the LPV model,
we will design (in an optimal way) a second LPV identification procedure made up
of M local LTI experiments (of duration Np each). These M local LTI experiments

are performed at the operating points in PM ∆
= {p1, . . . ,pM}. Let us also introduce

Φ(PM)
∆
= {Φu1

, . . . ,ΦuM} as the set containing the input spectra used in these M
local LTI identification experiments.

As also proposed in [16], after the second LPV identification experiment, the
information brought during the initial and the second LPV identification procedure
will be combined to deliver an estimate θ̂ of θ0 and its covariance matrix Pθ. The
estimate θ̂ can be deduced as in (12), but with a summation pertaining to the M1 +M
local experiments performed in both the initial and the second LPV identification
procedures. As shown in [16], the covariance matrix Pθ of θ̂ is then given by:

Pθ =

(
P−1
θ1

+

M∑
m=1

T T (pm)P−1
ζ,mT (pm)

)−1

(46)

where pm (m = 1, ...,M) are the M operating points in PM and where P−1
ζ,m is defined

in (11) as a function of the spectrum Φum(ω) (m = 1, ...,M) in Φ(PM). We see that

the accuracy of θ̂ (i.e. P−1
θ ) is the sum of the accuracy obtained during the initial

identification experiment (i.e. P−1
θ1

) and of the increases of accuracy obtained after
each local LTI experiment in the second LPV identification procedure.

As already mentioned, the second LPV identification procedure will be designed
in an optimal way. More precisely, we will determine the number M of experiments,
the set PM of operating points and the set of spectra Φ(PM) in such a way that
the corresponding LPV identification experiment is the one corresponding to the least
input energy J = Np

∑M
m=1

1
2π

∫ π
−π Φum(ω)dω while guaranteeing that the uncertainty

set U defined with (46) is small enough to ensure Jubwc < ηrob for the (LPI or LPV)

controller ˆ̄C(p(t)) designed with Ḡ(T (p(t)θ̂).

5.2. Design of Φ(PM) for given M and PM

Like in [16], a first step towards the solution of the above-mentioned optimal experi-
ment design problem is to consider the case where we have fixed a-priori the number
M of local LTI experiments in the second LPV identification experiment and the set
PM of operating points where these local LTI experiments will be performed. The
optimal experiment problem then consists in determining Φ(PM) in such a way that
J is minimized while guaranteeing that the uncertainty set U defined with (46) is
small enough to ensure Jwc < ηrob.
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To solve this optimal experiment design problem, we first need to define a
parametrization for the to-be-determined spectra Φum (m = 1, . . . ,M). Here, we will
use two types of parametrization. The first parametrization [21] corresponds to the
spectrum of a signal that is generated by a white noise filtered by an arbitrary FIR
filter of degree L (L is an user-chosen parameter):

Φum(ω) = cm,0 + 2

L∑
i=1

cm,i cos(iω) (47)

The positivity of (47) for all ω can be imposed by a LMI constraint on the coefficients
cm,i (i = 0, . . . , L) [21]. With this parametrization, the cost function J of the optimal
experiment design problem defined above is given by:

J = Np

M∑
m=1

1

2π

∫ π

−π
Φum(ω)dω = Np

M∑
m=1

cm,0 (48)

which is, as we can see, an affine function of the coefficients cm,i (i = 0, . . . , L)
(m = 1, . . . ,M) of the parametrization of the spectra. Using (46) and (11), we see

that the inverse P−1
θ of the covariance matrix of θ̂ is also an affine function of these

coefficients.

The second spectrum parametrization considered in this paper corresponds to the
spectrum of a multisine signal at fixed frequencies ωi (i = 0...L) but with unknown

amplitudes [21]: Φum(ω) = π
∑L

i=0 cm,i (δ(ω − ωi) + δ(ω + ωi)). In this case, the posi-
tivity of Φum(ω) for all ω can be imposed by the constraints cm,i > 0 (i = 0, . . . , L). The

cost J = Np
∑M

m=1

∑L
i=0 cm,i and P−1

θ are here also affine functions of the coefficients
cm,i (i = 0, . . . , L) (m = 1, . . . ,M).

5.2.1. Non-convex optimal experiment design for the LPI and LPV cases

When M and PM are fixed, the optimal experiment design problem in both the
LPI and LPV situations consists in determining the coefficients cm,i (i = 0, . . . , L)
(m = 1, . . . ,M) of the spectra in Φ(PM) using the following optimization problem:

min J
over A(ω) ∈ A and cm,i ∈ R (i = 0, . . . , L) (m = 1, . . . ,M)

such that

(
M(ejω)

I

)∗
B(A(ω), η2

rob)

(
M(ejω)

I

)
< 0 ∀ω

(49)

The constraints of the above optimization problem have to be completed by the con-
straints on cm,i guaranteeing that Φum > 0 ∀ω (m = 1, . . . ,M). In (49), B(., .) is
defined as in (35) where A is either AP̄ in the LPV situation or AP in the LPI situ-
ation. Indeed, the existence of a frequency-dependent matrix A(ω) ∈ A such that the
constraint in (49) holds is equivalent to Jubwc < ηrob (see Propositions 1 and 4). Recall
that the actual decision variables corresponding to A(ω) are given below Proposition 3
and note that, in B(A(ω), η2

rob), the term A22(ω) contains P−1
θ which is given in (46)

and which is a function of the decision variables cm,i (i = 0, . . . , L) (m = 1, . . . ,M).
There are a number of issues with this optimization problem. First, the constraint

has to hold at an infinite number of frequencies. This issue can be solved using either
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the KYP lemma or, as we will do in this paper, a fine grid Ω of the interval [0, π]
(see also Section 4.4) and by replacing the constraint in (49) by the constraint (37)
with γ = η2

rob. Second, as in all optimal experiment design problem, (49) depends on a

number of unknown variables. Indeed, P−1
θ depends on the unknown true parameter

vector θ0 (see (46) and (11)) and M(ejω) depends on the to-be-identified parameter

vector θ̂ and the coefficients of the to-be-designed controller. This issue can, e.g., be
resolved by replacing, in (49), these variables respectively by θ̂1 and by the coefficients

of the initial (LPI or LPV) controller ˆ̄C1(p(t)). The final issue is related to the term
A22(ω) in A(ω) (see Propositions 2 and 3). In both the LPI and LPV situations,
this term A22 contains the Kronecker product of the decision variable A0(ω) (also
present in A11) and of the expression of P−1

θ as a function of the decision variables
cm,i (i = 0, . . . , L) (m = 1, . . . ,M). The optimization problem (49) is thus bilinear. To
tackle this bilinearity, we will use the iterative approach inspired by the so called D-K
iterations [36] and introduced in [5] (see also [9]). Before presenting this approach, we
note that, if we arbitrarily choose the spectra Φum (m = 1, ...,M), we can compute the
corresponding Pθ via (46) and (11). With this Pθ, we can compute Jubwc via Proposition 4
and we can therefore verify whether Jubwc < ηrob or not. If that is the case, we will say
that the spectra Φum (m = 1, ...,M) are validated.
Algorithm 1. The algorithm is made up of an initialization step (step 0) and each
iteration consists of two steps.

S.0. We initialize the algorithm by arbitrarily choosing the spectra Φum (m =
1, ...,M).

S.1. Using a subdivision algorithm, we determine, using the notion of validation de-
fined above, the minimal positive scalar α ∈ R such that the spectra αΦum

(m = 1, ...,M) remain validated. Denote this minimal α by αmin. To validate
αminΦum, the optimization problem in Proposition 4 has been used. The corre-
sponding decision variables are γ and the free variables in A(ω). From those
decisions variables, A0(ω) is conserved for Step 2.

S.2. The optimal experiment design problem (49) is transformed into an LMI opti-
mization problem by fixing the decision variable A0(ω) to the one determined in
Step 1. The solution of this transformed optimization problem define, via cm,i,
new spectra Φum. These new spectra Φum can then be used in Step 1 for a new
iteration.

The algorithm is stopped when the optimal cost Jopt in Step 2 no longer decreases
significantly after each iteration. The optimal spectra Φum are then the ones corre-
sponding to this last iteration (Step 1 is used a last time to further refine the solution).

Since the spectra Φum delivered by Algorithm 1 are validated, they are guaranteed to

lead to a covariance matrix Pθ for which Jubwc (computed with θ̂1 and ˆ̄C1(p(t)), the initial

guesses, respectively, for θ0, θ̂ and for the to-be-designed controller) is smaller than
ηrob. However, there is no guarantee that the corresponding cost Jopt is the smallest
possible. Like in any non-convex optimization, it is advisable to initialize Algorithm 1
with spectra that are close to the ones solving the non-convex optimization problem
described in (49). For the LPI case, this can be done by using a convex approximation
of (49) which is described below. For the LPV case, this approach is not possible and
a possible initialization is then the spectra used in the initial LPV experiment (the

one yielding the initial guess θ̂1).
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5.2.2. Convex optimal experiment design based on a grid of P

In the LPI case, the approach presented in Section 4.5.2 allows one to approximate (49)
by a convex alternative where the constraint on the upper bound on the worst case
performance is replaced by a constraint on the lower bound of this worst case perfor-
mance. For this purpose, we will thus have to approximate the scheduling space P by
a fine grid Pgrid. This convex formulation consists in determining the coefficients cm,i
(i = 0, . . . , L) (m = 1, . . . ,M) of the spectra in Φ(PM) that minimize J under the
constraint that we can find, for each ω in a fine grid Ω of [0 π] and for each p in a fine
grid Pgrid of P, a positive scalar τ(ω,p) such that the following LMI holds:

τ(ω,p)
(
E(ω,p) − η2

rob Eγ(ω,p)
)
−
(

P−1
θ P−1

θ θ̂

P−1
θ θ̂ χ− θ̂TP−1

θ θ̂

)
< 0 (50)

Consequently, this LMI optimization problem contains one LMI for each pair (ω,p)
such that ω ∈ Ω and p ∈ Pgrid. The decision variables are the coefficients cm,i
(i = 0, . . . , L) (m = 1, . . . ,M) of the spectra in Φ(PM) and the scalar coefficients
τ(ω,p) (one for each pair (ω,p) such that ω ∈ Ω and p ∈ Pgrid). In (50), the
covariance matrix Pθ should be replaced by its expression as a function of the
coefficients cm,i (i = 0, . . . , L) (m = 1, . . . ,M). Here also the unknown quantities

(such as θ̂) has to be replaced by initial guesses.

Imposing (50) for each ω ∈ Ω and for each p ∈ Pgrid is equivalent to imposing
that, for all ω ∈ Ω,

Jwc(ω,p) < ηrob ∀p ∈ Pgrid (51)

with Jwc(ω,p) as defined in (43). Consequently, if the grid Pgrid is sufficiently fine,
the solution of this optimization problem will be very close to the solution of the
original optimal experiment design problem. This solution can therefore be used as
initialization for Algorithm 1. As will be shown in the numerical illustrations, Algo-
rithm 1 may not be necessary since the solution obtained by the above procedure will
be (approximately) equal to the optimal solution of (49).

5.3. Selection of the optimal operating points

The optimization problem (49) pertains to the determination of the optimal Φ(PM)
for given M and PM. Let us for further reference denote the optimal cost of (49) by
Jopt(M,PM). In this section, we will consider the more general optimal experiment
design problem where M and PM have to be determined together with Φ(PM). Recall
that M , PM and Φ(PM) are the experimental conditions of a second LPV identifi-
cation experiment (see Section 5.1). Like in [16], we will assume that the local LTI
identification experiments of this second LPV identification experiment can only be
performed at the Mgrid points in a fine grid Pgrid = {p1, . . . ,pMgrid

} of the continuous

scheduling interval P = [−pmax, pmax]. In other words, we assume that the set PM

can only be chosen as a subset of Pgrid. Under this assumption, the optimal cost Jopt
of the more general optimal experiment design problem will be the minimal value of
Jopt(M,PM) among all possible subsets PM of Pgrid.

In the sequel, we will show that Jopt is in fact given by Jopt(Mgrid,P
grid) (see
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also [16]). Let us for this purpose observe that the optimization problem (49) only
depends, via J and P−1

θ , on the experimental conditions M , PM and Φ(PM). Let
us also observe that, for any (second) LPV identification experiment at the operating
points in a strict subset PM of Pgrid, one can find a (mathematically) equivalent LPV
experiment with local LTI experiments at all operating points in Pgrid that leads to
the same cost J and the same P−1

θ . This mathematically equivalent experiment with
Mgrid local LTI experiments is an experiment where Φum is chosen equal to zero for
all Mgrid −M operating points that lie in Pgrid, but not in PM. Both experiments
have of course the same spectrum Φum for the common operating points. Conversely,
a LPV identification experiment at all operating points in Pgrid, for which Φum = 0 at
a certain number of operating points, is (mathematically) equivalent to an experiment
at only those operating points for which Φum 6= 0 (see [16] for the full discussion).

Based on the discussion above, it is clear that the minimal cost Jopt will thus be
obtained by solving (49) (via Algorithm 1) for M = Mgrid and PM = Pgrid. However,
in general, the optimal second LPV identification experiment will not require Mgrid

local LTI experiments since the optimization problem for M = Mgrid and PM =
Pgrid will generally lead to a sparse solution with a large number of spectra Φum

equal to 0. The optimal experiment will therefore be the (mathematically equivalent)
LPV identification experiment with local LTI identification experiments at only those
operating points in Pgrid for which the corresponding spectra Φum are nonzero.

The tendency to obtain sparse solutions had already been observed in [16] where
different (and much simpler) accuracy constraints were considered. It can be explained
as follows. Since J must be minimized, power will only be injected at those operating
points that allow to obtain the maximum information on θ0 and therefore, in turn, the
smallest uncertainty set U . This phenomenon can presumably also be explained by
the fact that the cost function J has a l1-norm structure and it is frequently observed
that such cost functions, when minimized under convex constraints10 generate a sparse
solution (see, e.g., [32]).

Note that what has been said in this section for the optimal experiment design
problem (49) also holds for the optimal experiment problem presented in Section 5.2.2.

6. Numerical illustration 1

6.1. Description of the LPV system

For this numerical illustration, we consider a true system Ḡ(T (p(t))θ0) of the form (2)
with A(z, ζ0(p(t)) = 1 + a0

1(p(t))z−1 and B(z, ζ0) = b00(p(t)) z−1. The two parameters
in these polynomials are supposed to have an affine dependence on the scheduling
variable p(t) (np = 1): a0

1(p(t)) = −0.7 + 0.1p(t) and b00(p(t)) = 8 − 1 p(t) with a
scheduling interval P characterized by pmax = 2, i.e., P = [−2, 2]. The true parameter
vector θ0 is therefore given by: θ0 = (−0.7, 0.1, 8, −1)T . We also suppose that the
noise-free output y̆ is perturbed as shown in (5)-(6) with a stochastic disturbance v(t)
characterized by H(z) = 1

1−0.995z−1 and σ2
e = 0.5.

10Even though the constraint in (49) is not convex due to the Kronecker product of P−1
θ and A0(ω), the

optimization problem is actually solved via Algorithm 1 where the constraint is convexified.
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6.2. LPI situation

6.2.1. Initial identification and Robustness analysis

Let us first consider the LPI situation. A first identification experiment is performed
on the true system in order to obtain a model for the design of a LPI controller. This
first identification experiment is made up of four local LTI experiments of duration
Np = 1000 at the operating points p1 = −1.25, p2 = −0.75, p3 = −0.25 and p4 =
0.75. The input spectra Φum for these four local LTI experiments are all given by:
Φum(ω) = 0.05 ∀ω (m = 1, ..., 4). Following this procedure, we have obtained a first

estimate θ̂ of θ0 together with its uncertainty ellipsoid U defined as in (14) with the

covariance matrix Pθ of θ̂ and with χ = 9.5 (χ = 9.5 corresponds to β = 0.95).

With the model G(z, T (p)θ̂), we design a LPI controller Ĉ(z,p) ensuring a certain
nominal level of disturbance rejection and limited control efforts when applied to
G(z, T (p)θ̂), for p ∈ P. Focusing on the disturbance rejection and defining Wi(z) =
0.1565−0.1416z−1

1−0.995z−1 , the nominal performance of the loop made up of the LPI controller

Ĉ(z,p) and the model G(z, T (p)θ̂) is given by Jnom = supp∈P

∥∥∥ Wi(z)

1+Ĉ(z,p)G(z,T (p)θ̂)

∥∥∥
∞

.

Using a procedure similar to the one in Section 4, but with an uncertainty limited to p,
an upper bound for the nominal performance can be evaluated. This upper bound for
the nominal performance Jnom is here equal to 0.2528. The frequency-wise version of
Jnom given in the left hand side of (24) is represented in Figure 3 (blue dash-dotted
curve).

Let us now analyze the robustness of the designed LPI controller over the un-
certainty region U and verify therefore whether (27) is satisfied when we choose
ηrob = 0.2654 (i.e. we allow a 5%-degradation with respect to the nominal perfor-
mance: 0.2654 = 1.05 × 0.2528). For this purpose, we will follow the procedure of
Section 4.5 and use Proposition 5 and Remark 1 to compute, at each frequency ω in a
fine grid Ω of [0, π], the upper bound J̃ubwc(ω) for the quantity J̃wc(ω) defined in (41).
The obtained upper bound J̃ubwc(ω) is represented in Figure 3 (red solid curve) and we
observe that the robustness condition (27) is not respected since we do not have that
J̃ubwc(ω) < ηrob/|Wi(e

jω)| at all frequencies.
As already mentioned, we verify the robustness of the controller based on an

upper bound J̃ubwc(ω) of the actual worst case performance J̃wc(ω). This could lead to
conservatism if J̃ubwc(ω) is much larger than J̃wc(ω). In order to verify that this conser-
vatism remains limited, we have also computed, using the procedure of Section 4.5.2,
the lower bound J̃ lbwc(ω) for the quantity J̃wc(ω). This lower bound is also represented
in Figure 3 (green dashed curve) and we observe that the conservatism is indeed limited
in this example since the lower and upper bounds are almost overlapping.

6.2.2. Optimal experiment design

As shown in the previous subsection, the initial uncertainty region U is thus too
large. We will therefore proceed to optimal experiment design to reduce the size of
this uncertainty in an optimal way. We follow the procedure in Section 5 to design a
second LPV identification experiment (with minimal input energy J ) which combined
with the first one will yield a model with a smaller uncertainty region U for the LPI
controller designed based on this new model to be guaranteed to satisfy (27) with the
new uncertainty region U . For this purpose, as proposed in Section 5.3, we suppose that
the local LTI identification experiments of the second LPV identification experiment
are all of duration Np = 1000 and that they can only be performed at the Mgrid = 17
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Figure 3.: LPI situation: desired performance ηrob/|Wi(e
jω)| (black dotted), J̃ubwc(ω)

(red solid), J̃ lbwc(ω) (green dashed-dotted) and the upper bound for the left hand side
of (24) (blue dashed) as a function of the frequency ω

operating points obtained by gridding the scheduling interval P with a fixed step
of 0.25, i.e., Pgrid = {−2, −1.75, −1.5, ..., 1.75, 2}. We then solve the optimal
experiment design problem (49) for M = Mgrid and PM = Pgrid and for ηrob = 0.2654.
The input spectra will be parametrized as in (47) with L = 12 while the model and the
controller obtained after the initial experiment (see Section 6.2.1) will be used in lieu
of the unknown variables in (49). Due to the bilinearity of (49), Algorithm 1 is used to
solve this optimization problem. To initialize this algorithm, we have considered both
the initialization proposed in Section 5.2.2 as well as an initialization with the white
noise spectra used in the initial LPV identification experiment (see Section 6.2.1). Both
initializations here lead to the same (sub)optimum Jopt = Jopt(Mgrid,P

grid) = 103
and to the same optimal spectra after one iteration of Algorithm 1. Further iterations
do not decrease this cost. Algorithm 1 thus seems robust to its initialization in this
example, but the advantage of the initialization of Section 5.2.2 is that the initialization
spectra are (as expected) already approximately equal to the optimal spectra delivered
by Algorithm 1 (i.e. the ones in Figure 4).

In addition, we observe that the obtained spectra Φum (m = 1, ..., 17) are nonzero
at only two values (i.e. p = −2 and p = 2) of the 17 operating points in Pgrid. The
nonzero spectra at p = −2 and p = 2 are given in Figure 4. Using the same initial
guesses as for solving (49) to evaluate the covariance matrix (46) of the uncertainty
ellipsoid U corresponding to the combination of the initial LPV experiment (see Sec-
tion 6.1) and this optimal LPV experiment with L = 12, we evaluate J̃ubwc(ω) for this
new uncertainty U (red solid curve in Figure 5) and we observe that, as expected, the
robustness condition is now respected since J̃ubwc(ω) < ηrob/|Wi(e

jω)| at all frequencies.
In order to further validate our results, we perform the second LPV identification

experiment on the true system by realizing the two local LTI identification experi-
ments with input signals of duration Np = 1000 and of spectra as given in Figure 4.
Combining this optimal experiment and the initial experiment, we can deduce a new
estimate θ̂ and its covariance matrix (46) yielding the uncertainty ellipsoid U . Based

on the new model Ḡ(T (p)θ̂) and with the same LPI control design method as in Sec-

tion 6.1, we can deduce a new LPI controller Ĉ(z,p). The robustness of this new LPI
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Figure 4.: LPI situation: optimal power spectra Φu for p = −2 (blue solid) and for
p = 2 (red dashed)

Figure 5.: LPI situation: desired performance ηrob/|Wi(e
jω)| (black dotted), expected

worst case performance J̃ubwc(ω) after optimal experiment design and using the initial
guesses (red solid), obtained worst case performance J̃ubwc(ω) after identification and
redesign of the controller (blue dashed), worst case performance J̃ubwc(ω) corresponding
to a (non-optimized) second LPV experiment using the global approach (green dash-
dotted)
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controller over the new uncertainty region U is analyzed by computing J̃ubwc(ω) at each
frequency ω (blue dashed curve in Figure 5) and we observe that, even if initial guesses
were used for the design of the optimal spectra, the robustness condition is, as desired,
respected since J̃ubwc(ω) < ηrob/|Wi(e

jω)| at all frequencies.
The cost J of the initial LPV identification experiment (see Section 6.1) is equal

to 200 while we have seen that the cost of the second LPV identification experiment
(the one that has been optimized) is equal to 103. Using the proposed procedure, the
total identification cost to obtain a sufficiently accurate model for LPI control is thus
J = 200+103 = 303. Now, using the experimental conditions of the initial experiment
(i.e. four LTI identification experiments at p1 = −1.25, p2 = −0.75, p3 = −0.25 and
p4 = 0.75 with white noise inputs having the same power for each of them), we would
have needed a cost of 2075 to obtain the same result. This clearly show the benefit of
optimizing the second LPV identification experiment.

6.2.3. Local vs. global LPV identification

The second LPV identification experiment that has been optimized in the previous
subsection is based on the local approach for LPV identification. We will now compare
this optimal local experiment with a global experiment having the same cost J = 103.
In the global experiment, we will collect 2000 samples of input and output data (the
optimal local LPV experiment consists of two times a local experiment of duration
Np = 1000). The output data are obtained by applying, for t = 1, ..., 2000, a white
noise input u(t) of variance 103/2000 (the cost of this global experiment is thus also
equal to J = 103) while modifying p(t) as a ramp going from p(t) = −2 at t = 1 to
p(t) = 2 at t = 2000. The covariance matrix corresponding to this global experiment
will be estimated using the inverse of the Fisher information matrix and is combined
with the information gathered during the initial experiment (like for the optimal local
LPV experiment). We then compute J̃ubwc(ω) corresponding to this case (see the green
dashed-dotted line in Figure 5) and we observe that the desired robust performance is
not attained in this case. If we compare this green curve in Figure 5 with the red solid
curve in Figure 3, we can also conclude that the amount of extra information brought
by this non-optimized global LPV experiment is really limited.

6.3. LPV situation

6.3.1. Initial identification and Robustness analysis

Let us now consider the LPV situation. Since LPV control is more stringent, we
decide to increase the power of the first LPV identification experiment with respect
to the LPI case. In other words, the initial identification experiment is also made
up of four local LTI experiments of duration Np = 1000 at the operating points
p1 = −1.25, p2 = −0.75, p3 = −0.25 and p4 = 0.75, but the input spectra Φum

for these four local LTI experiments are now all given by: Φum(ω) = 0.15 ∀ω (m =

1, ..., 4). With the model Ḡ(T (p(t))θ̂) of the LPV system, we design an LPV controller
ˆ̄C(p(t)) ensuring a certain nominal level of disturbance rejection and limited control

efforts when applied to Ḡ(T (p(t))θ̂) for p ∈ P̄ . Focusing here also on the disturbance

rejection, the nominal performance of the LPV controller ˆ̄C(p(t)) can be defined as

Jnom = supp∈P̄ ‖ ˆ̄S(p(t)) Wi‖L2
with ˆ̄S(p(t)) as defined in Section 3.2 and with the

same Wi(z) as in the LPI case. We can here also evaluate an upper bound for Jnom
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which is here equal to 0.8557. As expected since P ⊂ P̄ , we observe that the level of
(nominal) performance is lower in the LPV case.

We now analyze the robustness of the designed LPV controller over the uncer-
tainty region U . For this purpose, we will verify whether (27) is satisfied when we
choose ηrob = 0.8985 (i.e. we allow a 5%-degradation with respect to the nominal
performance: 0.8985 = 1.05× 0.8557). We follow the procedure of Section 4.4 and use
Proposition 4 to compute the upper bound Jubwc for the quantity Jwc defined in (26).
The obtained upper bound Jubwc is here equal to 1.0597 which is obviously larger than
ηrob = 0.8985.

6.3.2. Optimal experiment design

Like in Section 6.2.2, we will here also follow the procedure in Section 5 to design a
second LPV identification experiment (with minimal input energy J ) which combined
with the first one will yield a model with a smaller uncertainty region U for the LPV
controller designed based on this new model to be guaranteed to satisfy (27) with
the new uncertainty region U . Using the same settings11 as for the LPI situation, we
perform ten iterations of Algorithm 1 leading to an optimal second LPV identification
experiment with a cost Jopt = 165 with, like in the LPI case, two local LTI identifica-
tion experiments at the operating points p = −2 and p = 2 and with similar spectra.
It is to be noted that Algorithm 1 allowed us to reduce the cost from 197 (after the
first iteration) to 165 (after the tenth iteration).

Using the procedure proposed in this paper, the total cost required to obtain a
sufficiently accurate model for LPV control is thus J = 600 + 165 = 765. The benefit
of optimizing the second LPV identification experiment can also in this case be easily
evidenced: using the experimental conditions of the initial experiment (i.e. four LTI
identification experiments at p1 = −1.25, p2 = −0.75, p3 = −0.25 and p4 = 0.75 with
white noise inputs having the same power for each of them), we would have needed a
cost of 3393 to obtain the same result.

We then perform a second LPV identification experiment on the true system by
realizing the two local LTI identification experiments with input signals of duration
Np = 1000 and having the optimal spectra determined by the experiment design.
Combining this optimal experiment and the initial experiment, we can deduce a new
estimate θ̂ and its covariance matrix (46) yielding the uncertainty ellipsoid U . Based

on the new model Ḡ(T (p)θ̂) and with the same LPV control design method as in

Section 6.3.1, we can deduce a new LPV controller ˆ̄C(p(t)). The robustness of this
new LPV controller over the new uncertainty region U is analyzed by computing Jubwc.
We obtain Jubwc = 0.8972 ≈ ηrob showing that the new uncertainty is small enough to
guarantee the robustness condition.

7. Numerical illustration 2

Accelerometers [14] are sensors that are generally operated in closed loop and whose
dynamics depend on the temperature. An accelerometer can be seen as a mass whose
position y is influenced by the total force on this mass. This total force is the sum
of the force v induced by the acceleration and a counter-force u generated by the
control system. The control system is designed in such a way that the total force is

11with an initialization of Algorithm 1 using the same spectra as in the initial LPV experiment.
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equal to zero (i.e. the mass position remains close to zero). The applied counter-force
is therefore a measure of the acceleration.

The dynamical relation between the total force (i.e. u+ v) and the mass position
can be described by a second-order differential equation which is dependent on the
temperature (i.e. the temperature is the scheduling variable p of this example). At
a given frozen temperature, the transfer function between the total force and the
mass position is generally a second-order transfer function with a resonance whose
frequency depends on the temperature. It will be supposed that the temperature will
vary slowly and that the accelerometer operation will therefore be close to the LPI
situation. The LPI controller will be designed in such a way that, for each temperature
in the working range, the output of the controller u (i.e. the counter-force) is close to
−v for acceleration force v having a frequency content up to a certain frequency. The
force induced by the acceleration is thus considered as an (input) disturbance in the
control problem and the control objective can be achieved by imposing a weighting on
the sensitivity function (which is the transfer function between v and the difference
between u and −v).

We will illustrate the accelerometer using the following continuous-time descrip-
tion12:

ÿ(t) + ζ0
1 (p(t))ẏ(t) + ζ0

2 (p(t))y(t) = ζ0
3 (p(t)) (u(t) + v(t)) (52)

where ζ0
1 (p(t)) = θ0

1 + θ0
2p(t), ζ

0
2 (p(t)) = θ0

3 + θ0
4p(t) + θ0

5p
2(t) and ζ0

3 (p(t)) = θ0
6

with θ0 = (θ0
1, ..., θ

0
6)T = (0.3, 0.1, 0.5625, 0.375, 0.0625, 1)T . The scheduling variable p

represents here the normalized temperature varying in the working range P = [−1 1].
If we compare the transfer functions between u + v and y for different operating
points p in the working range, the resonance frequency

√
ζ0

2 (p) varies between 0.5
rad/s (when p = −1) and 1 rad/s (when p = 1).

We want to design an LPI controller for this accelerometer. The main control
objective will be to guarantee a sensitivity function with a minimal gain of 0.02 in
the frequency range [0 0.075] which we suppose to be the main bandwidth of the
to-be-measured acceleration v. This performance objective can, e.g., be expressed via
the sensitivity weighting Wi = 100s2+20s+1

0.25s2+s+1 and via ηrob = 0.011 as can be seen in
Figure 6.

To design the LPI controller and guarantee this control objective even in the
presence of modeling error, we need a sufficiently accurate estimate of the true
parameter vector θ0. This estimate will be deduced using the procedure of Section 2
under no acceleration (i.e. v = 0) and using multisine counter-force u at different
operating points p. We suppose that the output data y are sampled with a sampling
time of 0.31 s and perturbed by a measurement noise which is a white noise of variance
σ2
e = 0.5. We also suppose that the duration of the local LTI experiments is Np = 1000.

Since the dynamics (52) is only valid for relatively small total force, the
optimal experiment design procedure aiming at minimizing the excitation energy

12The results of this paper can be easily extended to the continuous-time situation using the same philosophy
as in, e.g., [27]
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J (see Section 5) is certainly relevant here. Since we are considering the LPI
case, we will first use the procedure of Section 5.2.2 to determine the optimal
operating points of which the local identification experiments have to be per-
formed and the (multisine) excitation signals to be applied at those operating
points. As mentioned in Section 5.2.1. the experiment design procedure requires
an initial estimate θ̂1. We will here suppose that this initial estimate13 is given as:
θ̂1 = (0.2493, 0.0202, 0.5605, 0.2996,−0.0374, 0.9636)T . Using this initial estimate,
we can design an initial LPI controller which ensures a nominal performance
ηnom = 0.01 < ηrob with the weighting Wi defined above (see blue-dashed curve in
Figure 6).

Moreover, we choose Pgrid as (−1,−0.9,−0.8, ..., 0.9, 1) (Mgrid = 21). The spec-
tra Φum (m = 1, ...,Mgrid) are parametrized to represent multisines containing ten
equally spaced frequencies ωi ranging from 0.1 to 1 rad/s. By solving the optimal
experiment design problem14 of Section 5.2.2 for M = Mgrid and PM = Pgrid, we
obtain a sparse solution with M = 3 local LTI experiments15 at p = −1, p = −0.9
and p = 1. The obtained multisines are also sparse, i.e., for each operating point,
only two amplitudes out of the ten are significant. It is to be noted that, for each of
the three operating points, one of these two frequencies is at the resonance frequency
of the corresponding local LTI system (which is logical since we try to minimize the
input energy). The optimal cost Jopt is equal to 156.4.

If we evaluate Pθ using the same initial guesses as in the optimal experiment
design procedure, the lower bound J̃ lbwc(ω) for J̃wc(ω) is guaranteed to satisfy J̃ lbwc(ω) <
ηrob/|Wi(jω)| at all frequencies. Instead of using Algorithm 1 to refine this optimal
experiment, we here instead just verify that the grid Pgrid has been chosen sufficiently
fine to also guarantee that J̃ubwc(ω) < ηrob/|Wi(jω)| at all frequencies (J̃ubwc(ω) computed
using the procedure of Section 4.5.1 and the same Pθ). We observe that it is here the
case (see the red-solid curve in Figure 6) and we thus conclude that further refinement
via Algorithm 1 is not necessary in this example.

In order to further validate our results, we really perform the optimal LPV iden-
tification experiment on the true system by realizing the three local LTI identification
experiments with input signals of duration Np = 1000 and corresponding to the opti-

mal multisines. This delivers an estimate θ̂ and its covariance matrix (46) yielding the
uncertainty ellipsoid U . Based on this estimate and with the same LPI control design
method, we can deduce a new LPI controller Ĉ(z,p). The robustness of this new LPI
controller over the new uncertainty region U is analyzed by computing J̃ubwc(ω) at each
frequency ω (blue dashed curve in Figure 7) and we observe that, even if initial guesses
were used for the design of the optimal spectra, the robustness condition is, as desired,
respected (modulo some numerical approximations/errors in low frequencies).

8. Concluding remarks

This paper constitutes a first step in connecting LPV control design and LPV system
identification. More precizely, this paper extends to the LPV case the results of ro-
bustness analysis and of optimal experiment design for robust control that had been
developed in [7, 10, 5] in the LTI case. In this paper, we have nevertheless restricted

13For the sake of brievity, we will here suppose that P−1
θ1

= 0.
14We also add an accuracy constraint for the accuracy of each local estimate.
15M = 3 is the minimal number of local LTI experiments to obtain a consistent estimate θ̂.
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Figure 6.: Desired performance ηrob/|Wi(jω)| (black dotted), expected worst case per-
formance J̃ubwc(ω) after optimal experiment design and using the initial guesses (red
solid) and the upper bound for the left hand side of (24) (blue dash-dotted) as a
function of the frequency ω

Figure 7.: Desired performance ηrob/|Wi(jω)| (black dotted), expected worst case per-
formance J̃ubwc(ω) after optimal experiment design and using the initial guesses (red
solid), obtained worst case performance J̃ubwc(ω) after identification and redesign of the
controller (blue dashed)
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attention to LPV systems where the scheduling variable is considered as an external
variable. Future work will consider the interesting case of quasi-LPV systems where
the scheduling variable can also be an internal variable of the system (e.g. the input
or one of the elements of the state vector). We will also consider an interesting in-
termediary situation between the LPI and the LPV situations as they were defined
in this paper, i.e., the case where the scheduling variable p can vary over time, but
with a limited rate of variation. Finally, we will also consider the case of optimal LPV
experiment design in a closed-loop setting, i.e., the identification experiment has to be
performed when the LPV system is already operated with an LPV controller.
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Appendix A. Description of the LPV system

A.1. Example of LFT representations

For this example, we consider a true system Ḡ(T (p(t))θ) given by (np = na = nb = 1):

y̆(t) = − (θ1 + θ2p(t)) y̆(t− 1) + (θ3 + θ4p(t))u(t− 1)

with θ = (θ1 θ2 θ3 θ4)T . This relation can be represented as in Figure A.1. In this
figure, we see that:

 s1

s2

s3


︸ ︷︷ ︸

=sG

= bdiag(p(t), θ, θ)

 q1

q2

q3


︸ ︷︷ ︸

=qG

and we have also that:


q1

q2

q3

y̆

 =


0 −e2 e4 0
z−1 −e1 z

−1 e3 z
−1 0

0 0 0 z−1

1 −e1 e3 0




s1

s2

s3

u


where ei (i = 1, ..., 4) is a row vector of dimension 4 where the ith entry is equal to 1
and where all other entries are equal to zero. We have thus found that Ḡ(T (p(t))θ) is
an LFT in bdiag(p(t), θ, θ) = bdiag(p(t)I1, I2 ⊗ θ) (npG = 1 and nθG = 2). An LFT in
bdiag(p, δθ, δθ) can then be also easily deduced by noticing that bdiag(p(t), θ, θ) can
be written as an LFT in bdiag(p(t), δθ, δθ).

For this LPV system, the transfer function corresponding to a given operating
point p is:

Ḡ(T (p)θ) =
(θ3 + θ4p) z−1

1 + (θ1 + θ2p) z−1
=

ZN (z,p)θ

1 + ZD(z,p)θ

with ZN (z,p) = (0, 0, z−1, pz−1) et ZN (z,p) = (z−1, pz−1, 0, 0).

35



Figure A1.: Representation of the LPV system considered in Appendix A.1

A.2. State-space representation vs. IO representation of the LPV system

We have chosen to represent the LPV system using an input-output (IO) representa-
tion (see (2)). The LPI and LPV control design methods [13, 29] require a LPV system
in state-space representation in which the coefficients of the state-space matrices are
rational in the scheduling variable p. Canonical forms can be used to transform the
IO representation (2) into a state-space representation. In order to show that, let us
consider the type of IO representation introduced in Section 2.1:

A(z, ζ(p(t))) y̆(t) = B(z, ζ(p(t))) u(t) (A1)

This representation holds both for the true system and for the model. For simplicity,
we will suppose that the orders of the polynomials A(z, ζ) and B(z, ζ) are equal to

na = nb + 1
∆
= ñ and that the delay nk = 1, i.e., A(z, ζ) = 1 + ζ1z

−1 + . . .+ ζñz
−ñ and

B(z, ζ) = z−1(ζñ+1 + ζñ+2z
−1 + . . . ζ2ñz

−(ñ−1)). As in Section 2.1, all these parameters
are rational functions of p (see (3)).

Defining Zden(p(t)) = (ζ1(p(t)), ..., ζñ(p(t))) and Znum(p(t)) =
(ζñ+1(p(t)), ..., ζ2ñ(p(t))), we can propose the following state-space representation in
canonical form for (A1):

x(t+ 1) =

(
−Zden(p(t))(
Iñ−1 0

) )x(t) +

(
1
0

)
u(t)

y̆(t) = Znum(p(t))x(t)
(A2)

It is clear that the coefficients of the state-space matrices in (A2) are all rational in p.
Consequently, this state-space representation can be used as a starting point for the
LPI and LPV control design methods16.

16Note that [13, 29] are continuous-time control design methods. However, we can easily transform (A2) into a
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It is important to note that, as mentioned in [31], the representations (A1)
and (A2) are only fully equivalent for scheduling sequences p ∈ P (i.e. in the case
considered for LPI control). When p ∈ P̄ , the trajectories of (A1) and (A2) can be
slightly different. Consequently, to be fully rigorous in the LPV situation, we should
assume that the true LPV system and its model have the structure (A2) and that this
structure is used for control design. Note nevertheless that, even if the LPV system is
described by (A2) and not by (A1), this does not change the identification procedure
of Section 2.2 since the LTI systems (8) corresponding to all operating points pm ∈ P
are fully identical for (A1) and (A2).

Appendix B. Proof of Proposition 1

Proposition 1 is a classical result in the literature of the so-called separation of graphs
theory [28, 18, 25]. However, we give the proof for the sake of completeness. Let us
thus suppose that there exist A(ω) ∈ A and γ <∞ such that (35) holds and let us first
prove that this implies the stability of F(M(z),∆) for all ∆ ∈ ∆. For this purpose,
let us split M in (29) into:(

q
y

)
=

(
Mqs(z) Mqw(z)
Mys(z) Myw(z)

)(
s
w

)
(B1)

and let us observe that if there exist a finite γ and a frequency-dependent matrix
A(ω) ∈ A such that (35) holds, this implies that, for the same A(ω) ∈ A:(

Mqs(e
jω)

I

)∗
A(ω)

(
Mqs(e

jω)
I

)
< 0 ∀ω (B2)

Since the considered uncertainty set ∆ is convex and contains 0, the latter is a sufficient
condition for the stability of F(M(z),∆) for all ∆ ∈∆ (see, e.g., [25]).

Let us now prove that the existence of A(ω) ∈ A and γ <∞ such that (35) holds
implies (36). Condition (35) implies that:

1

2π

∫ π

−π
g∗(ejω)

(
M(ejω)

I

)∗
B
(
M(ejω)

I

)
g(ejω) dω < 0 (B3)

with g(ejω) = (s(ejω), w(ejω))T a vector containing the Fourier transform of signals
s(t) and w(t) in L2. Since F(M(z),∆) is stable for all ∆ ∈∆, (B3) holds in particular
for the signals s(t) and w(t) corresponding to any trajectory of F(M(z),∆) induced
by signals w(t) ∈ L2 when ∆ satisfies ∆ ∈∆. Since M is stable, we can expand (B3)
using (29):

1
2π

∫ π
−π

(
q(ejω)
s(ejω)

)∗
A(ω)

(
q(ejω)
s(ejω)

)
dω + ...

....+ 1
2π

∫ π
−π

(
y(ejω)
w(ejω)

)∗
diag(1,−γ)

(
y(ejω)
w(ejω)

)
dω < 0

(B4)

Denoting the first integral in the left hand side of (B4) by XA and using Parseval’s
theorem on (21), (B4) is equivalent with:

XA + ‖y‖22 < γ‖w‖22 (B5)

continuous model rational in p and the continuous-time controller can also be transformed into a discrete-time

controller which is rational in p.
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Consequently, if there exist A(ω) ∈ A and γ such that (35) holds, this implies that,
for the same A(ω) and γ, (B5) also holds for any trajectory q, s, y, w of the systems
F(M(z),∆) with ∆ ∈∆. Observe now that, by virtue of the fact that the frequency-
dependent matrix A(ω) lies in the set of multipliers associated to ∆, XA ≥ 0 for the
signals (q, s)T in any trajectory of the systems F(M(z),∆) with ∆ ∈∆. Consequently,
‖y‖22 < γ‖w‖22 for any trajectory of the systems F(M(z),∆) with ∆ ∈ ∆, which is
equivalent to (36).

Appendix C. Proof of Proposition 2

Let us first split the first equation of (29):(
sp
sδθ

)
= bdiag(p Inp , Inθ ⊗ δθ)

(
qp
qδθ

)
(C1)

with sp(t)
∆
= (p(t)Inp)qp(t) and sδθ(t)

∆
= (Inθ ⊗ δθ)qδθ(t).

With the block-diagonal structure of A(ω) given in Proposition 2 and (C1), we
have that:

1

2π

∫ π

−π

(
q(ejω)
s(ejω)

)∗
A(ω)

(
q(ejω)
s(ejω)

)
dω = Ip + Iδθ (C2)

with

Ip = 1
2π

∫ π
−π g

∗
p(ejω)

(
A11,p(ω) A12,p(ω)
A∗12,p(ω) A22,p(ω)

)
gp(e

jω) dω

Iδθ = 1
2π

∫ π
−π g

∗
δθ(e

jω)

(
A11,δθ(ω) A12,δθ(ω)
A∗12,δθ(ω) A22,δθ(ω)

)
gδθ(e

jω) dω

(C3)

with gp(e
jω) = (qp(e

jω) sp(e
jω))T and gδθ(e

jω) = (qδθ(e
jω) sδθ(e

jω))T .

In order to prove the proposition, we will prove that

(1) for any matrices Aij,p(ω) (i, j = 1, 2) as parametrized in the proposition, the
integral Ip is larger than 0 for the Fourier transform gp(e

jω) of all (qp, sp)
T in

GP̄
GP̄ =

{(
qp
sp

)
∈ L2 | sp(t) = (p Inp)qp(t) ...

.... with qp ∈ L2 and p ∈ P̄
}
.

(2) for any matrices Aij,δθ(ω) (i, j = 1, 2) as parametrized in the proposition, the

integral Iδθ is larger than 0 for the Fourier transform gδθ(e
jω) of all (qδθ, sδθ)

T

in GU
GU =

{(
qδθ
sδθ

)
∈ L2 | sδθ(t) = (Inθ ⊗ δθ)qδθ(t) ...

.... with qδθ ∈ L2 and δθ ∈ U} .
(C4)

Let us start with item (2). Since δθ is time-invariant, we have that sδθ(e
jω) =

(Inθ ⊗ δθ) qδθ(ejω). Consequently, we can rewrite Iδθ as follows:

Iδθ =
1

2π

∫ π

−π
q∗δθ(e

jω)K(ω)qδθ(e
jω) dω (C5)
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K(ω) =

(
Inθ

Inθ ⊗ δθ

)T (
A11,δθ(ω) A12,δθ(ω)
A∗12,δθ(ω) A22,δθ(ω)

)(
Inθ

Inθ ⊗ δθ

)
It is clear that, if K(ω) ≥ 0 at all ω, Iδθ ≥ 0 whatever qδθ ∈ L2. Item (2) will
therefore be proven if we show that, for any matrices Aij,δθ(ω) (i, j = 1, 2) having the
parametrization in the statement of the proposition, K(ω) ≥ 0 for all δθ ∈ U and that
this holds true whatever ω. That the latter holds is a direct consequence of Proposition
2 in [5]. Indeed, whatever ω, we have the following identities for all A12,δθ(ω), Ã(ω)

and B̃(ω) as parametrized in the proposition:

A12,δθ(ω) (Inθ ⊗ δθ) + (Inθ ⊗ δθ)T A∗12,δθ(ω) = 0

(Inθ ⊗ δθ)T j Ã(ω) (Inθ ⊗ δθ) = 0

(Inθ ⊗ δθ)T B̃(ω) (Inθ ⊗ δθ) = 0

(C6)

Consequently:

K(ω) =

(
1− δθT

P−1
θ

χ
δθ

)
A0(ω) (C7)

Recalling that A0(ω) can take any values as long as it is positive definite at each ω,
we see that, whatever ω, K(ω) is indeed a positive semi-definite matrix for all δθ ∈ U .

Let us now consider item (1). Since p is time-varying, we need to prove this item
differently [25]. Using the frequency-independent parametrization of Aij,p (i, j = 1, 2)
and recalling that sp(t) = (p(t)Inp)qp(t), we can use Parseval’s theorem to rewrite Ip
successively as follows:

Ip =

∞∑
t=0

(
qp(t)
sp(t)

)T (
p2
max S G
G∗ −S

)(
qp(t)
sp(t)

)
(C8)

Ip =

∞∑
t=0

qTp (t)

(
Inp

p(t)Inp

)T (
p2
max S G
G∗ −S

)(
Inp

p(t)Inp

)
︸ ︷︷ ︸

=X (t)

qp(t) (C9)

It is clear that, if X (t) ≥ 0 at all t, Ip ≥ 0 whatever qp ∈ L2. Item (1) will therefore
be proven if we show that, for any matrices S and G having the structure given in
the statement of the proposition, X (t) ≥ 0 for all p ∈ P̄ and that this holds true
whatever t. That the latter holds is easily proven. Indeed, using the fact that p(t) is a
scalar signal, we observe that, whatever t,

X (t) =
(
p2
max − p2(t)

)
S + p(t)(G + G∗). (C10)

Using the facts that G is skew-symmetric, X (t) reduces to:

X (t) =
(
p2
max − p2(t)

)
S (C11)

Recalling (19) and (1) and the fact that S is restricted to be positive definite, we
conclude that, whatever t, X (t) is indeed positive semi-definite for all p(t) ∈ P̄ .
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Appendix D. Proof of Proposition 3

The proof follows the same line as the one of Proposition 2. The reasoning starts also
with (C2) where Ip and Iδθ have the expressions given in (C3). In order to prove
Proposition 3, we will prove that:

(1) for any matrices Aij,p(ω) (i, j = 1, 2) as parametrized in the proposition, the
integral Ip is larger than 0 for the Fourier transform gp(e

jω) of all (qp, sp)
T in

GP

GP =

{(
qp
sp

)
∈ L2 | sp(t) = (p Inp)qp(t) ...

.... with qp ∈ L2 and p ∈ P} .
(2) for any matrices Aij,δθ(ω) (i, j = 1, 2) as parametrized in the proposition, the

integral Iδθ is larger than 0 for the Fourier transform gδθ(e
jω) of all (qδθ, sδθ)

T

in GU (see (C4)).

The proof of item (2) is the same as in Appendix C. Let us thus prove item (1). In
this case, since p is time-invariant, we have that sp(e

jω) = (pInp)qp(e
jω). This yields

the following relation for Ip:

Ip =

∫ π

−π
q∗p(e

jω)X (ω)q∗p(e
jω) dω (D1)

X (ω) =

(
Inp
pInp

)T (
p2
max S(ω) G(ω)
G∗(ω) −S(ω)

)(
Inp
pInp

)
It is clear that, if X (ω) ≥ 0 at all ω, Ip ≥ 0 whatever qp ∈ L2. Item (1) will therefore
be proven if we show that, for any matrices S(ω) and G(ω) having the parametrization
in the statement of the proposition, X (ω) ≥ 0 for all p ∈ P and that this holds true
for all ω. That the latter holds follows from similar arguments than in Appendix C.
Indeed, using the fact that p is a scalar, we observe that, whatever ω,

X (ω) =
(
p2
max − p2

)
S(ω) + p(G(ω) + G∗(ω)). (D2)

Using the facts that G(ω) is skew-symmetric, X (ω) reduces to:

X (ω) =
(
p2
max − p2

)
S(ω) (D3)

Recalling (1) and the fact that S(ω) is restricted to be positive definite, we conclude
that, whatever ω, X (ω) is indeed positive semi-definite for all p ∈ P.

Appendix E. Proof of Proposition 5

This proposition is also a classical result of the separation of graphs theory, but we
give the proof for completeness. Let us consider a given frequency ω and let us first
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observe that if there exist a finite γ(ω) and a matrix A(ω) having the structure of
Proposition 3 such that (38) holds, this implies that, for the same A(ω),(

Mqs(e
jω)

I

)∗
A(ω)

(
Mqs(e

jω)
I

)
< 0 (E1)

using the notations in (B1). That (E1) holds for a matrix A(ω) having the structure
of Proposition 3 is a sufficient condition to ensure that det(I −Mqs(e

jω)∆) 6= 0 for all
∆ ∈ ∆P [28]. One consequence of the latter is that the LFT relation (29) evaluated
at ω is well-posed for all ∆ ∈ ∆P.

Using this well-posed relation at ω, let us now observe that, whatever ∆ ∈ ∆P,
the complex number F(M(ejω),∆) is equal to y(ejω) in the following expression:

s(ejω) =

=∆︷ ︸︸ ︷
bdiag(p Inp , Inθ ⊗ δθ) q(ejω)(

q(ejω)
y(ejω)

)
= M(ejω)

(
s(ejω)

1

)
︸ ︷︷ ︸

=g(ejω)

(E2)

The fact that (E2) is well-posed for all ∆ ∈ ∆P implies that, for each ∆ ∈ ∆P, one can
determine finite complex numbers/vectors q(ejω), s(ejω) and y(ejω) = F(M(ejω),∆)
satisfying/solving relation (E2).

To prove Proposition 5, note first that condition (38) implies:

g∗(ejω)

(
M(ejω)

I

)∗
B
(
M(ejω)

I

)
g(ejω) < 0 (E3)

with g(ejω) as defined in (E2). We can expand (E3) using (E2):(
q(ejω)
s(ejω)

)∗
A(ω)

(
q(ejω)
s(ejω)

)
+ ...

....+

(
y(ejω)

1

)∗
diag(1,−γ(ω))

(
y(ejω)

1

)
< 0

(E4)

Denoting the first term in the left hand side of (E4) by XA(ω), (E4) yields

XA(ω) + |y(ejω)|2 < γ(ω) (E5)

Consequently, if there exists γ(ω) > 0 and a matrix A(ω) having the structure
given in Proposition 3 such that (38) holds, this implies that, for the same A(ω) and
γ(ω), (E5) holds for all q(ejω), s(ejω) and y(ejω) that can be obtained by solving
relation (E2) for a given ∆ ∈∆P.

Using the notations introduced in Appendices C and D, XA(ω) can be rewritten
as:

XA(ω) = q∗p(e
jω)X (ω)qp(e

jω) + q∗δθ(e
jω)K(ω)qδθ(e

jω) (E6)

with q = (qp, qδθ)
T . Since we show in Appendix D, that, for the matrices A(ω) having

the structure of Proposition 3, both K(ω) and X (ω) are positive semi-definite matrices
for all ∆ ∈ ∆P, we can conclude that XA(ω) ≥ 0 for all q(ejω) and s(ejω) satisfying
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relation (E2) with a certain ∆ ∈∆P. Consequently, we have that |y(ejω)|2 < γ(ω) for
all y(ejω) satisfying relation (E2) with ∆ ∈∆P, which is equivalent to:

|F(M(ejω),∆)|2 < γ(ω) ∀∆ ∈∆P (E7)

With this, we have thus proven that Jubwc(ω) is (at least) an upper bound of (39). The
second part of the proposition is a direct consequence of the facts i) that, due to the
structure of AP in Proposition 3, we can independently choose the value at each ω
of the frequency-dependent matrix lying in AP that has to be determined in the
optimization problem of Proposition 4 pertaining to the LPI situation and ii) that,
if there exists γ(ω) > 0 and a matrix A(ω) having the structure given in Proposi-
tion 3 such that (38) holds, then, for the same A(ω), (38) also holds for any γ∗ ≥ γ(ω).

Remark. Since ∆P is a time-invariant uncertainty set, the stability of F(M(z),∆) for
all ∆ ∈∆P can be verified by checking that, at all ω, det(I −Mqs(e

jω)∆) 6= 0 for all
∆ ∈ ∆P [36]. It is clear from the first part of Proposition 5 that this will be verified
if Jubwc(ω) is finite at all frequencies.
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