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Abstract: Natural elicitors induce plant resistance against a broad spectrum of diseases, and are
currently among the most promising biocontrol tools. The present study focuses on the elicitor
properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this
major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of
surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse
trials. Surfactin protected wheat by 70% against Z. tritici, similarly to the chemical reference elicitor
Bion®50WG. In vitro biocidal assays revealed no antifungal activities of surfactin towards the
pathogen. A biomolecular RT-qPCR based low-density microarray tool was used to study the relative
expression of 23 wheat defense genes. Surfactin significantly induced wheat natural defenses by
stimulating both salicylic acid- and jasmonic acid-dependent signaling pathways. Surfactin was
successfully tested as an elicitor on the pathosystem wheat–Z. tritici. These results promote further
sustainable agricultural practices and the reduction of chemical inputs.
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1. Introduction

Biocontrol is an alternative plant protection method which promotes sustainable agricultural
practices and contributes to reducing chemical inputs. Elicitors, in particular, are promising biocontrol
tools which are currently the subject of intensive research within the framework of integrated pest
management (IPM) strategies [1–3]. They correspond to natural molecules, generally emitted by
pathogens or beneficial microorganisms, which induce a non-specific resistance of the plant against a
broad spectrum of diseases [4,5]. Using elicitors as complements to fungicide applications thus offers
the dual advantage of reducing the amount and application frequency of chemical inputs in the field,
and of implementing sustainable plant protection methods in agricultural practices [6]. Among the
numerous natural elicitors which have been identified up to now, major attention is today focused on
surfactin. This cyclic lipopeptide consists of heptapeptides interlinked with a β-amino fatty acid chain
of varying length to form a cyclic lactone ring structure [7,8]. In contrast to elicitor compounds secreted
by pathogens (pathogenic-associated molecular patterns or PAMPs), surfactin is a microbe-associated
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molecular pattern (MAMP) which is generally produced by plant growth-promoting rhizobacteria
(PGPR) belonging to specific Bacillus strains [8–11]. Surfactin is a powerful biosurfactant which has
mostly been studied for its antagonistic and cytotoxic activity against multiple pathogens [8,12].
However, research carried out in the past decade has also demonstrated that surfactin can act as
an elicitor, by triggering an induced systemic resistance (ISR) of plants such as tomato, tobacco,
bean, and beet against various diseases [7,13–15]. Jourdan et al. (2009) reported, for instance, that the
application of surfactin at micromolar concentrations on tobacco cell suspensions led to the induction
of early defense responses (ion fluxes across the plasma membrane and the production of reactive
oxygen species) coupled with the activation of defense-related enzymes phenylalanine ammonia lyase
(PAL) and lipoxygenase (LOX), and the production of the plant defense hormone salicylic acid [14].
It must, however, be noted that little research has been carried out so far concerning the potential
of elicitors, such as surfactin, to induce resistance of major monocotyledonous plants [16]. In the
present study, we investigated the elicitor potential of surfactin to protect winter wheat against the
Septoria tritici blotch (STB) disease. Wheat is indeed one of the most cultivated crops in the world,
with up to 734 million tons produced in 2015–2016 [17,18]. The STB disease caused by the fungal
pathogen Zymoseptoria tritici (teleomorph: Mycosphaerella graminicola) represents a persistent threat each
year to wheat crops all over Europe [17,19]. For instance, particularly strong STB pressures inflicted
drastic yield losses during the 2016 season in Northern France: losses reached around 2.5 tons per
hectare, which amounts to 36% of the total yield [20]. Furthermore, there are, so far, no wheat cultivars
which are totally resistant to Z. tritici, and only the use of conventional fungicides can prevent massive
yield losses [21,22]. The development of new and efficient biocontrol tools for wheat protection is thus
critical [3].

In this study, we evaluated, in three steps, the biocontrol potential of surfactin to induce wheat
resistance against Z. tritici: (i) we first investigated the efficacy of surfactin in protecting wheat against
STB under glasshouse conditions. Three different concentrations of surfactin were tested in order to
identify possible dose-dependent effects; (ii) the potential biocidal activity of surfactin directly against
the pathogen was assessed through in vitro sensitivity bioassays. Such assays enabled us to check
whether surfactin behaved as a fungicide and/or as an elicitor at the concentrations tested during
greenhouse trials; (iii) biomolecular tests were finally carried out to provide further evidence as to
the elicitor potential of surfactin to induce wheat defenses. The recognition of an elicitor by the plant
triggers a cascade of defense mechanisms leading to induced resistance. We thus investigated the
expression of 23 defense genes of wheat in treated versus untreated plants by using an innovative
biomolecular tool developed by INRA [23,24]. Such tests provided useful information regarding the
defense signaling pathways preferentially triggered in the plant by surfactin.

2. Materials and Methods

2.1. Plant and Fungal Materials

Experiments were conducted on wheat (Triticum aestivum L.) of the susceptible cv. Avatar. Elicitor
screening and biomolecular experiments were carried out independently. For screening experiments,
seeds were sown in 25 × 15 cm plastic pots (10 plants per pot). For the investigation of plant signaling
pathways, seeds were sown in 30 × 40 cm boxes (40 plants per box). In both cases, wheat was grown
under greenhouse semi-controlled conditions (natural photoperiod supplemented with artificial light
if needed, with 20 ◦C ± 5 according to the sunlight).

The Z. tritici strain T01187 (isolated in 2009 from Northern France) was used for plant inoculation
during screening trials and during in vitro sensitivity bioassays. Fungal culture was performed on
potato dextrose agar (PDA) medium for eight days at 18 ◦C with a 12/12 h day–night cycle.
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2.2. Screening Trials

2.2.1. Treatment Preparation

Surfactin consisted of a mixture of homologues (95% purity) obtained from the Bacillus amyloliquefaciens
S499 strain and purified by solid phase extraction. A methanolic stock solution was prepared at
10 mg mL−1, and surfactin was tested at three different concentrations: 0.001, 0.01, and 0.1 mg mL−1,
respectively. Treatment solutions were freshly prepared before use in distilled water supplemented
with 0.1% (v/v) of spreading agent Break-Thru®S240 (polyether trisiloxane, Evonik Industries,
Marl, Germany), and 0.05% (v/v) of solubilizing agent Tween 20 (polyoxyethylene-sorbitan
monolaurate, Sigma Aldrich, Saint Louis, MO, USA). Control plants were treated with distilled water
only. In addition, the synthetic elicitor BION®50WG consisting of acibenzolar-S methyl (Syngenta,
Guyancourt, France) was used as an elicitor reference at 0.6 mg mL−1.

2.2.2. Plant Treatment, Inoculation, and Infection Level Assessment

At the 3–4 leaf stage (third leaf fully expanded), the plants of each pot were sprayed to
runoff with 30 mL of one of the treatment solutions using a hand sprayer. Plant inoculation was
performed 5 days after treatment. Inocula were prepared by washing the Z. tritici cultures with
10 mL of sterile distilled water, and the resulting spore suspension was adjusted to the desired
concentration using a Bürker cell. Inoculation was performed by spraying the plants of each pot
to runoff with 30 mL of a spore suspension (106 spores mL−1 of distilled water) amended with
0.05% (v/v) of Tween20 (Sigma-Aldrich). Immediately after inoculation, each pot was covered with
a transparent polyethylene bag for 3 days, in order to ensure water-saturated conditions suitable
for spore germination. The disease level was scored at 28 days post-inoculation by measuring the
percentage of the third leaf area covered with symptomatic lesions (necrosis and chlorosis) bearing
pycnidia. Values correspond to the average infection levels scored on the third leaf of plants treated
with water, surfactin or Bion. Linear mixed-effects model analysis was realized, and the Tukey multiple
comparison procedure at p = 0.05 was used to compare the mean disease severity of the treated plants.
Two independent biological experiments were performed with 40 technical repetitions (40 plants) for
each condition.

2.3. In Vitro Sensitivity Bioassay

The potential direct effect of surfactin on Z. tritici fungal growth was assessed through in vitro
bioassays. Such experiments enabled us to confirm that surfactin did not exert a fungicidal effect against
the fungal pathogen, rather than an elicitor activity on wheat, at the concentrations tested during
greenhouse screening trials. PDA plates were amended with different concentrations of surfactin,
according to the method of Siah et al. [25]. Surfactin was first added at the highest concentration
(0.1 mg mL−1) to PDA medium at 30 ◦C after autoclaving. It corresponds as well to the highest
concentration tested in greenhouse trials. Successive dilutions were then carried out in order to test
five decreasing concentrations (0.02 mg mL−1, 0.01 mg mL−1, 0.004 mg mL−1, and 0.001 mg mL−1).
The control consisted of plates containing PDA only. The plates were subsequently spotted with 5 µL
of 5 × 105 spores mL−1 suspension. Fungal growth was scored by measuring the colony perpendicular
diameters of each spot at 10 days after incubation in the dark at 18 ◦C. Values correspond to the average
diameter of Z. tritici colonies scored on amended PDA media. The comparison of mean fungal growth
was performed with the Tukey (ANOVA) test at p = 0.05. Three plates with five spots per plate were
used as replicates for each condition, and two independent experiments were carried out.
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2.4. Determination of Defense Gene Induction in Wheat

2.4.1. Plant Treatment

We investigated the defense signaling pathways that were potentially triggered in wheat following
treatment with surfactin. For this experiment, treatments were prepared similarly to screening trials,
although in this case, surfactin was tested only at the average concentration of 0.01 mg mL−1,
due to space limitations. Plants at the 3–4 leaf stage were either sprayed to runoff with surfactin
(0.01 mg mL−1), Bion (0.6 mg mL−1), or water using an electric sprayer. Each treatment was applied
on one box of 40 wheat plants (40 repetitions). One day after plant treatment, potential priming
activities were also tested by applying a water solution containing 40 nm of hydrogen peroxide (H2O2)
on the plants on each half of the box. Elicitor priming is a phenomenon whereby plant natural defenses
are only activated when a subsequent challenge occurs, and not directly after elicitor recognition [26].
The exact molecular mechanisms involved in priming are still poorly understood. However, fitness
benefits have been observed on primed plants in the field under high disease pressures as the energy
of the plant remains devoted to its development until a biotic stress actually occurs [27,28]. In the
present case, we used H2O2 to mimic a biotic stress comparable to a Z. tritici infection, as described by
Dugé de Bernonville et al. [24]. Hydrogen peroxide is indeed a reactive oxygen species (ROS) which
acts as a central player in the transduction of stress signals in the plant [29,30]. In the event that
surfactin and/or the elicitor control Bion exert a priming activity, the expression of defense genes in
the plant would be strongly induced in wheat after the application of H2O2.

2.4.2. RNA Extraction and Quantification of Gene Expression by Quantitative RT-PCR

For each condition (e.g., water only, Bion or surfactin), the third leaf of five distinct seedlings
was sampled at day 1 after plant treatment, right before H2O2 application on the half of each box.
Similarly, the third leaf of five distinct seedlings was sampled at day 2 and day 3 after treatment on
the whole boxes, for plants which received H2O2 or were untreated. All samples were immediately
pooled, frozen, and stored at −80 ◦C until use. Total RNA was extracted from 100 mg of plant tissue
using the Nucleospin®RNA Plant Kit (Macherey-Nagel, Düren, Germany). Reverse-transcription of
total RNA was carried out using the M-MLV Reverse Transcriptase (ref M1701, Promega, Madison,
WI, USA), according to the manufacturer’s protocol. Real-time qPCR was performed with MESA
BLUE qPCR MasterMix (ref RT-SY2X-03 + WOUFLB, Eurogentec, Liège, Belgium) according the
manufacturer’s instructions, using the biomolecular tool described by Brisset and Dugé de Bernonville
(2011), on a Biorad MyiC detection system [23]. The qRT-PCR bioassay focused on twenty-three
different genes involved in various wheat defense mechanisms. These include pathogenesis-related
(PR) proteins, oxidative stress, and defense signaling pathways (e.g., salicylic acid, jasmonic acid,
and ethylene) [31–34]. Relative changes in defense gene expression of treated plants were compared
to the relative expression of the same genes in water control plants by using the 2−∆∆Ct method
described by Schmittgen & Livak [35]. Three internal reference genes were used for normalization
(e.g., TubA, GAPDH, and actin). Relative defense gene expression was calculated for each time point.
The gene expression levels were obtained from two independent biological experiments, with three
technical replicates.

The effect of plant treatment on wheat defense responses was evaluated by multivariate ANOVA.
In order to visualize and analyze gene expression, a heatmap representation was performed using
dissimilarity distance (1-cor(X, Y)). Moreover, the identification of sets of genes that may be similarly
expressed across all conditions within the dataset (relationship discovery) was realized by hierarchical
clustering of gene expression. Hierarchical clustering analysis is a stepwise algorithm which merges
two gene variables at each step, the two of which have the least dissimilarity distance. Such distance
between clusters of genes was defined using the complete linkage method (using the “hclust” function
in the R statistical software). In addition, the “pvclust” package in R was used to calculate the
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probability values (p-values) for each cluster using bootstrap resampling techniques. Gene clusters
which were not significantly supported by the data were rejected with a significance level of 0.05.

3. Results

3.1. Screening and Biocidal Results

The efficacy of surfactin to protect winter wheat against Z. tritici was assessed through greenhouse
trials (Figure 1). Control plants were infected on up to 20% of their third leaf surface by the pathogen.
On the other hand, symptomatic lesions occurred only on 6% to 8% of the leaf surface of plants
treated with surfactin, regardless of its concentration. Finally, plants treated with Bion had barely
6% of their leaf surface covered with lesions. The disease severity was significantly lower (p = 0.05)
on plants treated with Bion or with surfactin when compared to control plants. Hence, wheat was
similarly protected by surfactin and the elicitor control Bion, with a protection efficacy of up to
70% and 69%, respectively.
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Figure 1. Mean disease severity of Zymoseptoria tritici on treated wheat plants. Data corresponds
to the average percentage of the third leaf surface of wheat plants exhibiting symptomatic lesions
(necrosis and/or chlorosis) bearing pycnidia. Plants were treated at the 3–4 leaf stage and five days
before inoculation with water (Control), surfactin (Surfactin), or Bion®50WG (Bion, Syngenta Europe).
Surfactin was applied at three different concentrations: 0.001 mg mL−1 (C1), 0.01 mg mL−1 (C2) and
0.1 mg mL−1 (C3). Bion was used as an elicitor reference and applied at 0.6 mg mL−1. The protection
efficacy of each treatment compared to water treated plants is represented in white inside the bars
and corresponds to the percentage of reduction of disease severity. Bars tagged with the same letters
correspond to means that are not significantly different using the Tukey test at p = 0.05 (n ≥ 40,
e.g., 5 pots of 8 plants per treatment × 2 independent experiments).

The potential direct effect of surfactin on Z. tritici was studied through in vitro sensitivity bioassays
(Figure 2). Such experiments are a first indication to understand if the protective efficacy of surfactin
assessed during greenhouse trials was potentially due to a direct fungicidal effect against the pathogen.
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Figure 2. Biocidal effect of surfactin on the in vitro fungal growth of Zymoseptoria tritici. Potato dextrose
agar (PDA) medium was amended with five decreasing concentrations of surfactin: 0.1 mg mL−1,
0.02 mg mL−1, 0.01 mg mL−1, 0.004 mg mL−1, and 0.001 mg mL−1. The control corresponds to PDA
medium without surfactin (0 mg mL−1). Means tagged with the same letters are not significantly
different using the Tukey test at p = 0.05.

The highest concentration of surfactin amended to the PDA media (0.1 mg mL−1) corresponds
to the highest concentration of surfactin tested during greenhouse trials. The mean fungal growth
of Z. tritici was 0.6 cm on control plates containing PDA medium only. On the other hand, the mean
diameter of fungal spots significantly increased from 0.8 to 1 cm when Z. tritici was grown on PDA
amended with increasing concentrations of surfactin (p = 0.05) (Figures 2 and 3). It thus appears that
surfactin amended to fungal culture media has a positive effect on the in vitro growth of Z. tritici.
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Figure 3. Illustration of Zymoseptoria tritici fungal growth on PDA medium amended with surfactin
at six concentrations: 0.1 mg mL−1, 0.02 mg mL−1, 0.01 mg mL−1, 0.004 mg mL−1, 0.001 mg mL−1,
and 0 mg mL−1 (Control).

3.2. Induction of Defense Responses

The expression level of 23 defense-related genes of wheat was monitored 1, 2, and 3 days after
treatment with either Bion or surfactin. The treatments applied on wheat plants had a significant effect
on the expression of defense genes (MANOVA, p-value < 0.05). For each gene, the average expression
level measured in treated plants was compared to the water control (which received no H2O2) and
represented on a heatmap profile (Figure 4). The average expression level of genes for water-treated
plants which received hydrogen peroxide (labelled “+H2O2”) after 1 day was similarly compared to
the water control. Hierarchical clustering of genes according to their expression levels revealed five
gene clusters which were significantly supported by the data (p-value ≤ 0.05).
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Figure 4. Heatmap profiling across all experimental conditions (product, ±H2O2, day post-treatment)
with hierarchical clustering of 23 defense-related genes of wheat [23]: Apox, ascorbate peroxidase;
CalS, callose synthase; CHS, chalcone synthase; CAD, cinnamyl-alcohol dehydrogenase; CSL, cysteine
sulfoxide; EIN3, EIN3-binding F box protein; EDS1, enhanced disease susceptibility 1; Far, (E,E)-α-farnesene
synthase; FPPS, farnesyl pyrophosphate synthase; GST, glutathione S-transferase; HMGR, hydroxymethyl
glutarate-CoA reductase; JAR, jasmonate resistant 1; Lox2, 13-lipoxygenase 2; PAL, phenylalanine
ammonia-lyase; PR, pathogenesis-related protein; PPO, polyphenol oxidase; POX, peroxidase;
WRKY, WRKY transcription factor 30. The averaged defense gene expression profiles are compared
to a water control, and were obtained after plant treatment at the 3–4 leaf stage. Treatments consisted of
water control plants subsequently treated with hydrogen peroxide after 1 day (H2O2), the elicitor reference
BION® applied at 0.6 mg mL−1, or surfactin applied at 0.01 mg mL−1.

The first cluster (1) includes gene EDS1 (enhanced disease susceptibility 1) involved in
the production of the defense hormone salicylic acid (SA), JAR (jasmonate resistant 1) involved
in jasmonic acid (JA)-related defense signaling, PAL (phenylalanine ammonia lyase) involved
in the phenylpropanoid pathway, and CSL (cysteine sulfoxide) involved in antioxidative stress.
The expression level of genes EDS1 and JAR was similar between the control and the treated
plants. On the other hand, Bion and surfactin induced about a 3-fold upregulation of PAL and
CSL gene expression compared to the control, whether the plants were later sprayed with H2O2 or
not. A similar 2- to 3-fold upregulation of PAL and CSL occurred for “+H2O2” plants which were
treated only with water before being sprayed with H2O2 one day later. The second gene cluster
(2) includes EIN3 (EIN3-binding F box protein) involved in ethylene (ET)-related defense signaling,
CAD (cinnamyl-alcohol dehydrogenase) involved in cell wall reinforcement, and Apox (ascorbate
peroxidase) involved in antioxidative stress. Wheat plants treated with Bion or surfactin showed a
significant upregulation (3- to 4-fold increase) of the expression level of these three genes at day 2 after
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treatment. On the other hand, “+H2O2” plants showed no difference with the control, except for a
4-fold upregulation of EIN3 expression level at day 2.

A third cluster (3) includes the WRKY transcription factor 30 gene involved in defense signaling,
HMGR (hydroxymethyl glutarate-CoA reductase) involved in the mevalonate pathway leading to
biosynthesis of terpenoid defense compounds, LOX2 (Lipoxygenase 2) involved in the octadecanoid
pathway leading to the biosynthesis of the defense hormone JA, and genes PR15 (pathogenesis-related
protein 15) and GST (glutathione S-transferase) which are involved in antioxidative stress. Both Bion
and surfactin induced a significant upregulation of HMGR, LOX2, and PR15 gene expression in wheat
from day 1 to day 3 after treatment. Such upregulation occurred whether the corresponding plants
later received H2O2 or not. Notably, the upregulation of LOX2 gene expression was particularly strong:
10-fold increase for wheat treated with Bion and about 8-fold increase for plants treated with surfactin.
On the other hand, “+H2O2” plants showed no difference with the control. Another cluster (4) includes
genes PR4 and PR8 which both code for antimicrobial chitinases, and gene POX (peroxidase) involved
in antioxidative stress. The expression level of these three genes was significantly upregulated by 5- to
6-fold in plants treated with Bion or with surfactin compared to the control. Finally, a last cluster (5)
includes gene PR14 coding for a lipid-transfer protein and gene CHS (chalcone synthase) involved
in the flavonoid/isoflavoid pathway and SA-related defense signaling. In particular, Bion induced
a strong 7-fold downregulation of CHS (chalcone synthase) gene expression up to three days after
treatment, while surfactin induced a 4-fold downregulation of CHS only at day 2. On the other hand,
“+H2O2” water-treated plants showed no difference with the control.

Overall, treatment of wheat with either Bion or surfactin induced a significant upregulation of
the expression level of several genes involved in key defense mechanisms, notably genes involved
in SA- and JA-related signaling pathways, oxidative stress, and cell wall reinforcement. Moreover,
the application of H2O2 on water-treated plants was successful in being recognized as an attack
by the plant by inducing the expression of defense genes, such as PAL and POX. On the other
hand, the application of H2O2 on plants treated with Bion or surfactin showed no difference in
terms of defense gene expression compared to treated plants which received no hydrogen peroxide,
thus suggesting that nor Bion nor surfactin exerted a priming activity.

4. Discussion

Previous studies have demonstrated that pure surfactin extracted from strains of non-pathogenic
Bacillus could significantly protect thale-cress, bean, tomato and tobacco plants against the fungal
pathogen Botrytis cinerea [10,13,14]. Surfactin was also proven to efficaciously protect sugar beet
against the virus Polymyxa betae [15] and strawberry plants against Colletotrichum gloesporioides [36].
More recently, Mejri et al. (2017) reported that surfactin extracted from the Bacillus subtilis strain
BBG131 and applied at 0.1 mg mL−1 on the susceptible wheat cultivar “Alixan” could efficaciously
protect the plant by up to 35% against Z. tritici [37]. Our results are thus in accordance with previous
research, as we demonstrated that surfactin applied at low doses (e.g., 0.001, 0.01, and 0.1 mg mL−1)
efficaciously protected wheat by up to 70% against Z. tritici. Moreover, surfactin was as efficacious
as the synthetic elicitor control Bion. In the present study, such high protection efficacy of surfactin
could be linked to the mixture of homologues extracted from the B. amyloliquefaciens strain S499 and/or
to the wheat cultivar “Avatar” that was used for greenhouse trials. The efficacy of a given elicitor
can indeed be cultivar-dependent [38,39], and the elicitor activity of surfactin was proven to rely on
specific structural traits such as the length of the fatty acid [7].

In addition to greenhouse trials, we showed that surfactin had no direct in vitro biocidal effect
against the pathogen at the concentrations tested in the greenhouse. Rather, it appears that high
concentrations of surfactin promoted the in vitro growth of Z. tritici. This lipopeptide is indeed a
powerful amphiphilic biosurfactant involved in bacterial mobility and in the formation of biofilms,
pellicles, and fruiting bodies of Bacillus [8,9]. It is therefore likely that the surface tension of PDA media
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containing surfactin was lowered, thereby allowing a better spreading of the inoculum droplets on the
plates during inoculation.

The reduction of the surface tension was likely enhanced by increasing concentrations of surfactin
in the PDA media. Then, such increased fungal growth might probably be due to the physicochemical
properties of surfactin, rather than to a growth-promoting effect. These results are once again in
accordance with previous studies. Indeed, Mejri et al. (2017) demonstrated the lack of direct antifungal
activity of surfactin against the pathogen Z. tritici in both in vitro and in planta bioassays [37].
Actually, the fungitoxic effects of surfactin have never been reported [12,13] except in the work
of Tendulkar et al. (2007) on rice. They showed that surfactin extracted from Bacillus licheniformis BC98
exhibited an in vitro direct fungicidal activity against the rice blast disease Magnaporthe grisea [40].
Taken together, the findings of greenhouse trials and in vitro biocidal assays of the present study
confirm that surfactin likely protects wheat against Z. tritici by inducing plant resistance.

Going one step further, our biomolecular tests on wheat immune responses confirmed that
surfactin was indeed perceived by the plant as an elicitor. Surfactin stimulated wheat defense
mechanisms by inducing the expression of various defense genes coding for antimicrobial compounds,
regulators of oxidative stress, and enzymes involved in defense signaling [41]. The induction of plant
resistance by an elicitor is indeed characterized by a complex spatio-temporal network of metabolic
modifications. Early events, such as protein phosphorylation, ion fluxes across the plasma membrane,
and a burst of ROS, occur in a matter of seconds after elicitor recognition by plant receptors [1,42].
Proteins such as POX and PR15 are set to work, in order to control the oxidative burst [43]. After a few
hours, defense genes involved in the biosynthesis of phytohormones and antimicrobial compounds
are activated [1]. The hormones SA, JA, and ET are considered as the three crucial primary signals
which regulate plant defenses against biotic stress [33,44]. Finally, physical and biochemical changes,
such as cell wall reinforcement through callose apposition and PR protein biosynthesis, occur several
hours to several days after elicitor recognition [45]. Previous research has shown that plant resistance
against biotrophic and hemi-biotrophic pathogens is generally regulated by SA, while resistance
against necrotrophic pathogens and chewing insects is regulated by JA and ET [33,46]. Depending on
the triggered signaling pathway, a different set of genes encoding PR proteins are expressed [45,47].
Induced resistance depending on SA, also called systemic acquired resistance (SAR), involves the
marker protein PR1 and the enzymes PAL and CHS [32,48]. Conversely, JA-dependent defense
responses induced by MAMPS generally lead to rhizobacteria-mediated induced systemic resistance
(ISR), and go hand in hand with the expression of the genes LOX2 and PR4 [33,47]. The LOX enzyme
catalyzes the deoxygenation of polyunsaturated fatty acids, leading to the downstream biosynthesis
of JA [31]. However, most studies on SA/JA crosstalk and the corresponding responsive genes
have been carried out on dicotyledonous plants, and less is known concerning monocotyledonous
plants. Still, it appears that similar hormone interactions may be involved in cereals. Indeed, a recent
work carried out by Ding et al. (2016) showed that SA and JA were able to act antagonistically or
synergistically on the expression of wheat defense genes [49]. They also reported that gene PR5 was
specifically induced by SA in the plant, while LOX2 was specifically induced by JA, and that gene PR1
could actually be induced simultaneously by both hormones.

Based on that knowledge, our biomolecular findings suggest that surfactin induced both
SA- and JA-dependent defense responses in wheat, as it triggered a significant upregulation of
the expression level of genes PR5 and LOX2. Interestingly, surfactin produced by the antagonistic
strain Bacillus subtilis UMAF6639 was also shown to protect melon plants against powdery mildew,
by similarly inducing both SA and JA defense signaling pathways, along with the production of ROS
and the reinforcement of the plant cell wall [50]. The simultaneous induction of SA- and JA-dependent
defense responses by some elicitors has also been reported in previous studies on dicotyledonous
plants [51–53]. However, in model plants, the elicitor potential of surfactin has been associated with
JA-dependent responses. For instance, it was proven to stimulate the activity of the LOX enzyme and
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the synthesis of numerous active secondary metabolites in tomato plants [13], and the activity of both
PAL and LOX enzymes in tobacco cells [14,54].

It is clear that plant-induced resistance involves intricate hormonal crosstalk, including in wheat,
and there is no established boundary between SAR and ISR in plants [47,55]. Other hormones
which were not investigated by qRT-PCR might also be involved (e.g., auxin, abscisic acid, cytokinin,
gibberellin) [56,57]. A better insight into the mode of action of surfactin to induce wheat defense
mechanisms would require some additional biochemical experiments on the activity of key defense
enzymes. However, the primary objective of this study was to confirm the elicitor potential of surfactin
for sustainably protecting wheat. Interestingly, Henry et al. (2011) suggested that, depending on the
specific features of the plant plasma membrane (e.g., organization and composition of the lipid bilayer),
surfactin could be perceived at the plant cell surface by interacting with the lipids at the plasma
membrane level [7]. This mode of perception can be considered unusual, since most identified elicitors,
such as flagellin or chitin, are known to be recognized by high affinity protein receptors [7,16].

Concerning Bion, our findings suggest that this synthetic elicitor induced both SA and JA defense
signaling pathways in wheat, with JA signaling clearly outweighing SA signaling up to 3 days after
plant treatment. Such results are in contrast with previous studies, as Bion has been reported, up to now,
to induce solely SA-dependent defense responses in plants [58–60]. As a chemically synthesized elicitor
consisting of acibenzolar-S-methyl, Bion shows indeed a functional analogy to the plant hormone SA,
and is thus well known to trigger SA-responsive genes, notably robust SAR markers, such as PR1,
PR2, and PR5 [6,33,60]. Our results might be explained by the complex hormonal crosstalk involved
in wheat defense signaling. Finally, concerning the investigation of potential priming activities,
we demonstrated that the application of H2O2 following plant treatment with either surfactin or
Bion exerted no additional effect on the expression of wheat defense genes. Plants which are primed
following elicitor perception activate faster and stronger defense responses upon a second pathogen
challenge, rather than directly inducing their defense mechanisms [55,61]. It thus appears that neither
Bion nor surfactin had a priming effect on wheat defenses. However, it would be interesting to carry
out a similar experiment by replacing H2O2 with a real pathogen attack (e.g., an actual inoculation
of Z. tritici), and to investigate the induction of wheat defenses over more sampling times (e.g., at 6,
12, and 96 h after treatment, for example).

5. Conclusions

This study provides further insight into the remarkable elicitor properties of surfactin by
demonstrating its ability to efficaciously protect wheat by up to 70% against the fungal pathogen
Z. tritici. The stimulation of wheat defense mechanisms appears to involve both SA and JA defense
signaling pathways. Research on induced resistance in monocots remains elusive, and is still an
emerging field [16,62]. Both monocots and dicots have undergone evolutionary adaptations which
may involve the triggering of distinct sets of defense gene expression after elicitor recognition [16].
It is noteworthy that previous studies on the elicitor potential of surfactin have mostly been dedicated
to the protection of dicot plants [13–15]. Further research is thus still needed to understand the exact
modes of action of surfactin to induce wheat resistance. Besides, field trials are now required to confirm
the reliability of this lipopeptide elicitor in efficaciously protecting wheat crops. Several environmental
parameters, such as the weather and disease pressure, are indeed known to influence the efficacy
of an elicitor in the open field [6,63]. These results open the way towards the development of novel
surfactin-based biocontrol tools for wheat protection, in order to enhance the sustainability of current
agricultural practices. Moreover, the elicitor potential of surfactin for other cultivated monocots,
such as barley and rice, and against others diseases, deserves to be explored.
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