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Infinite-time observability of the wave equation with time-varying

observation domains under a geodesic recurrence condition

Cyril LETROUIT∗†

April 19, 2019

Abstract

Our goal is to relate the observation (or control) of the wave equation on observation
domains which evolve in time with some dynamical properties of the geodesic flow. In
comparison to the case of static domains of observation, we show that the observability of
the wave equation in any dimension of space can be improved by allowing the domain of
observation to move. We first prove that, for any domain Ω satisfying a geodesic recurrence
condition (GRC), it is possible to observe the wave equation in infinite time on a ball of
radius ε moving in Ω at finite speed v, where ε > 0 and v > 0 can be taken arbitrarily
small, whereas the wave equation in Ω may not be observable on any static ball of radius
ε. We comment on the recurrence condition: we give examples of Riemannian manifolds
(Ω, g) for which (GRC) is satisfied, and, using a construction inspired by the Birkhoff-Smale
homoclinic theorem, we show that there exist Riemannian manifolds (Ω, g) for which (GRC)
is not satisfied. Then we prove that on the 2-dimensional torus and on Zoll manifolds, it is
possible to observe the wave equation in finite time with moving balls. Finally, we establish
a result of spectral observability (or of concentration of eigenfunctions) on time-dependent
domains.
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A t-GCC in infinite time implies observability 17

1 Introduction and main results

Observation of waves. The study of controllability and observability properties for
the wave equation goes back at least to the work of Russell [Rus71a], [Rus71b]. By exact
controllability in time T > 0 for the wave equation

∂2
ttu−4u = χωf (1)

on a Riemannian manifold (Ω, g) with or without boundary controlled in an open subset ω ⊂
Ω, we mean that given an initial state (u0, u1) and a final state (uF0 , u

F
1 ), it is possible to find

a control f such that the solution of (1) with initial datum (ut=0, ∂tut=0) = (u0, u1) verifies
(ut=T , ∂tut=T ) = (uF0 , u

F
1 ). Typically, in case of Dirichlet boundary conditions, we take the

initial datum (u0, u1) in the energy space H1
0 (Ω)× L2(Ω) and we seek f ∈ L2((0, T )× Ω).

By duality, exact controllability of the wave equation is equivalent to the observability
inequality

C(‖u|t=0‖2H1(Ω) + ‖∂tu|t=0‖2L2(Ω)) 6
∫ T

0

‖∂tu‖2L2(ω)dt (2)

for any solution u of the free wave equation ∂2
ttu − 4u = 0 where C > 0 does not depend

on u. This last inequality means that it is possible, from the observation of u in the region
ω, to recover u in the whole manifold Ω, with an accuracy which is measured by the best
possible constant C such that (2) is satisfied.

If the open set ω satisfies the so-called geometric control condition (GCC) in time T ,
which roughly means that all rays of geometric optics in Ω meet ω in time at most T , then
the results of [RTP74] and [BLR92] show that the infimum of all possible times T such that
(2) is verified coincides with the infimum of the times T such that the geometric control
condition is verified in time T . The geometric control condition is ”almost” necessary and
sufficient (see [HPT]).

The time-dependent geometric control condition (t-GCC). It is natural to
generalize GCC to a time-dependent setting, i.e. for a domain of observation ω that is allowed
to move in time. In other words, the domain of observation is now a measurable subset Q of
(0, T )×Ω, which is not necessarily a cylinder (0, T )× ω as in the time-independent setting.

The search for time-varying observation domains is motivated for instance by seismic
exploration, in order to address situations in which all sensors cannot be active at the same
time. In many practical examples, it is also possible to move sensors in order to get better
precision in the inverse problems which arise while trying to recover data.

The observability inequality (2) is now replaced by

C(‖u|t=0‖2H1(Ω) + ‖∂tu|t=0‖2L2(Ω)) 6
∫∫

Q

|∂tu|2dtdx. (3)

The corresponding generalization of the geometric control condition is intuitive: it says that
for any ray of geometric optics t 7→ y(t) in Ω, there exists a time t ∈ (0, T ) such that
(t, y(t)) ∈ Q. This condition, denoted t-GCC, is called the time-dependent geometric control
condition. The main result of [LRLTT17] says that if the t-GCC is verified for an open set
Q, then (3) holds for any solution of the free wave equation ∂2

ttu − 4u = 0 with Dirichlet
boundary conditions.

Main problem. According to the results mentioned above, it is possible to find some
domains Ω and ω ⊂ Ω for which the wave equation in Ω is not observable on ω, mostly in the
case where ω does not satisfy GCC (we give an explicit example below). However, by making
ω time-dependent, we wonder whether it is always possible or not to make the wave equation
observable on ω(t) (i.e., find Q ⊂ (0, T )×Ω which satisfies t-GCC), at least in infinite time. In
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other words, we wonder whether observability can be improved by considering time-varying
observation domains, may it be in infinite time.

This issue was raised as an open problem in [LRLTT17, Section 3E] in the following
form. Let Ω be a bounded domain of Rn (i.e., a bounded connected open set), let x0 ∈ Ω
be a point and let ε > 0 be a (small) positive real number. Let v > 0 be arbitrary. Given
a path t 7→ x(t) in Ω, we define ω(t) = B(x(t), ε) the geodesic ball of radius ε centered at
x(t), with x(0) = x0. We say that the path x(·) is admissible if ω(t) ⊂ Ω for every time
t. The question reads as follows: do there exist T ∈ (0,+∞] and an admissible C1 path
t 7→ x(t) in Ω, with speed less than or equal to v, such that (Q,T ) satisfies the t-GCC, where
Q = {(t, x) | t ∈ (0, T ), x ∈ B(x(t), ε)}?

In this paper, we consider this problem more generally in the case of Ω being a manifold
with or without boundary, so that the geodesic flow which has to be considered in the GCC
or the t-GCC is the (generalized) bicharacteristic flow.

Moreover, to encompass the case of domains Ω with a boundary which is smooth but
folded at a scale smaller than ε (making for example small meanders), we relax the condition
of ω(t) being a ball and consider domains of observation of the form ω(t) = B(x(t), ε) ∩ Ω,
where B(x(t), ε) is the open ball of center x(t) ∈ Ω and radius ε with respect to the geodesic
distance, so that ω(t) is not repelled by the frontiers of Ω. Our goal is to find ω(t) of this
form which meets all geodesic rays of Ω when time ranges over [0, T ]. Note that in our
setting, the observation set Q is not any measurable set of (0, T ) × Ω, since it has to take
the form of a moving open ball.

An example of a manifold Ω such that the wave equation is not observable on any ball
of sufficiently small radius ε is the two-dimensional torus Ω = T2 with the flat metric on
it. For any sufficiently small ball, there is a periodic geodesic which does not meet this
ball, and thus GCC is not verified. Although GCC is not in general a necessary condition
for observability, it is possible to infer in this case (see for example [HPT]) that the wave
equation is not observable on such a small ball. In Theorem 1, we will however show that
if we allow the small ball to move (even with very low speed) in T2, it is always possible to
make the wave equation observable in infinite time on this moving domain.

We now give precise definitions and recall the results which will be used in the sequel.

Setting. We adopt the same setting as in [LRLTT17]. We recall it here for the sake of
completeness. Let (M, g) be a smooth n-dimensional Riemannian manifold with n > 1. Let
Ω be a bounded open connected subset of M , with a smooth boundary if ∂Ω 6= ∅. We
consider the wave equation

∂2
ttu−4gu = 0 (4)

in R × Ω, where 4g denotes the Laplace-Beltrami operator on (M, g). If the boundary ∂Ω
of Ω is nonempty, then we consider boundary conditions of the form

Bu = 0 on R× ∂Ω (5)

where the operator B is either

• the Dirichlet trace operator, Bu = u|∂Ω;

• or the Neumann trace operator, Bu = ∂nu|∂Ω, where ∂n is the outward normal deriva-
tive along ∂Ω.

In the case of a manifold without boundary or in the case of homogeneous Neumann
boundary conditions, the Laplace-Beltrami operator is not invertible on L2(Ω) but is invert-
ible in

L2
0(Ω) =

{
u ∈ L2(Ω)

∣∣ ∫
Ω

u(x)dxg = 0

}
.

In what follows, we set X = L2
0(Ω) in the boundaryless case or in the Neumann case, and

X = L2(Ω) in the Dirichlet case (in both cases, the norm on X is the usual L2-norm). We
denote by A = −4g the operator defined on the domain

D(A) = {u ∈ X | Au ∈ X and Bu = 0}

3



with one of the above boundary conditions whenever ∂Ω 6= ∅. We refer to [LRLTT17] for an
explicit description of D(A), D(A1/2) and of D(A1/2)′.

For all (u0, u1) ∈ D(A1/2) × X, there exists a unique solution u ∈ C0(R;D(A1/2)) ∩
C(R;X) of (4)-(5) such that u|t=0 = u0 and ∂tu|t=0 = u1. Such solutions of (4)-(5) are
understood in the weak sense.

Let Q be an open subset of R× Ω. We set

ω(t) = {x ∈ Ω | (t, x) ∈ Q}.

Let T ∈ (0,+∞] be arbitrary. We say that (4)-(5) is observable on Q in time T if there
exists C > 0 such that

C‖(u|t=0, ∂tu|t=0)‖2D(A1/2)×X 6
∫ T

0

∫
ω(t)

|∂tu(t, x)|2dxgdt (6)

for any solution u of (4)-(5). The integral at the right-hand side of (6) is allowed to be
infinite, when T = +∞.

When ∂Ω 6= ∅, the usual notions of geodesics and of bicharacteristics have to be gener-
alized in order to take into account the reflections on ∂Ω. Generalized geodesics are usual
geodesics in Ω, and they reflect on ∂Ω according to the laws of geometric optics. This gener-
alization is called the generalized bicharacteristic flow of Melrose and Sjöstrand, see [MS78].
We do not recall the construction but simply mention that, setting Y = R×Ω, a generalized
bicharacteristic bγ : R → bT ∗Y is a continuous map which is uniquely determined if it has
no point in G∞, the set of cotangent vectors with contact of infinite order. Using t as a
parameter, generalized geodesics for Ω, traveling at speed 1, are then the projection on M
of generalized bicharacteristics.

The time-dependent GCC is defined as follows.

Definition 1. Let Q be an open subset of R × Ω, and let T ∈ (0,+∞]. We say that
(Q,T ) satisfies the time-dependent geometric condition (in short, t-GCC) if every generalized
bicharacteristic bγ : R → bT ∗Y , s 7→ (t(s), x(s), τ(s), ξ(s)) is such that there exists s ∈ R
such that t(s) ∈ (0, T ) and (t(s), x(s)) ∈ Q. We say that Q satisfies the the t-GCC if there
exists T ∈ (0,+∞] such that (Q,T ) satisfies the t-GCC. When T = +∞, we speak of t-GCC
in infinite time.

If there exists 0 < T < +∞ such that (Q,T ) satisfies t-GCC, the control time T0(Q,Ω)
is defined by

T0(Q,Ω) = inf{T ∈ (0,+∞) | (Q,T ) satisfies the t-GCC}.

The main theorem of [LRLTT17] states:

Let Q be an open subset of R×Ω that satisfies the t-GCC. Let T ∈ (T0(Q,Ω),+∞).
When ∂Ω 6= ∅, we assume moreover that no generalized bicharacteristic has a
contact of infinite order with (0, T )×∂Ω, that is, G∞ = ∅. Then the observability
inequality (6) holds.

In Appendix A, we extend this result to the case where T = +∞, i.e., to the case of
infinite-time observability. Indeed, the main result of [LRLTT17] has been established for
finite-time observability, but actually, following their argument and using microlocal defect
measures on the compressed cotangent bundle, one can show that t-GCC in infinite time
implies infinite-time observability. This fact is not obvious when one thinks of a proof based
on the Egorov theorem, but there is actually no problem in extending [LRLTT17], as we
briefly show in Appendix A. The notion of infinite-time observability is important in the
sequel and we will comment further on it in Section 1.3.

With these results at hand, our goal is therefore to construct a moving ball ω which
captures all geodesics traveling at speed 1 in Ω.
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Remark 1. If ∂Ω is non-empty and not smooth, the generalized bicharacteristic flow is not
necessarily well defined since there may be no uniqueness of a bicharacteristic at the points
where ∂Ω is not smooth. However, when uniqueness is ensured (for example in the case of a
rectangle), the above result is still true (see [LRLTT17, Remark 1.9] for more comments on
this issue).

Class of moving domains. The definition of a moving domain that we adopt here
is physical and adapted to our main goal, which is to show that it is possible to improve
observability by making a domain ω move in time.

Definition 2. Let ε > 0 be a real number, T ∈ (0,+∞] be a fixed time and x : [0, T ]→ Ω be a
C1 path (if T = +∞, we take x : [0,+∞)→ Ω). The moving domain ω(t) associated with the
path x(t) is defined for every t ∈ [0, T ] (or t ∈ [0,+∞) if T = +∞) by ω(t) = B(x(t), ε)∩Ω,
where B(x(t), ε) is the open ball of center x(t) and of radius ε with respect to the geodesic
distance in Ω.

In fact, all our results work in the context of translated domains, meaning that given
open bounded sets ω ⊂ Ω ⊂ Rn, a point x0 ∈ Rn and a C1-path x : [0, T ] → Ω, we define
ω(t) for every t ∈ [0, T ] as ω(t) = (x(t)− x0 + ω)∩Ω. It is then possible to find appropriate
formulations for our results to encompass this slight generalization. For the sake of simplicity
we keep Definition 2 for our moving domains.

Note also that we require all our paths t 7→ x(t) to be C1 because we need to define paths
with bounded speed.

Role of the speed v. In our results, the speed v =
√
g(ẋ(t), ẋ(t)) plays a key role. Let us

first remark that if v is allowed to be very large, then it is easy to construct a moving domain
ω(t) on which the wave equation is observable (even in finite time). For example, if we take a
path x(t) which, within very short time (so that the geodesic rays do not have time to move
much), passes near any point in Ω, then the associated moving domain ω(t) = B(x(t), ε)∩Ω
meets any geodesic ray. More precisely if ε > 0 is fixed, and the C1 path x : [0, ε/2] → Ω
verifies that for any x ∈ Ω, there exists t ∈ [0, ε/2] such that |x(t) − x| < ε/4, then the
moving domain ω(t) = B(x(t), ε) ∩ Ω meets any geodesic ray. Of course, in this case, the
speed |ẋ(t)| is very large (of the order of ε−1) and is therefore not comparable with the speed
of the geodesic rays (which is fixed to 1).

Therefore, our results have to be established for a speed v bounded independently of ε,
or, even better, for any speed v > 0. This is the case in our theorems.

Bibliography. There is not much literature about observation of the wave equation on
moving domains. The first paper to address this question (in one dimension of space) seems to
be [Kha95]. More recently, in [LRLTT17] the authors have proved that the t-GCC condition
is a necessary and sufficient condition for controllability of n-dimensional waves by a moving
domain. In [CCM14] the authors proved the same result for the one-dimensional wave
equation, and then characterized the minimal norm controls. Finally, the paper [Cas13] gives
sufficient conditions on the trajectory of a moving interior point of an interval to ensure the
controllability of the wave equation.

Organization of the paper. The paper is organized as follows. In Section 1, we state
the main results. Namely, in Section 1.1, we state a theorem on observation of the wave
equation in Ω on moving domains ω(t) in infinite time under a certain geodesic recurrence
condition (GRC) on Ω. In Section 1.2 we give examples of manifolds Ω satisfying (GRC)
and, using a construction inspired by the Birkhoff-Smale homoclinic theorem, we build an
example of manifold Ω which does not satisfy (GRC). In Section 1.3 we comment on the
notion of infinite-time observability. In Section 1.4 we build specific bounded domains Ω for
which we can construct a moving domain ω(t) on which the wave equation is observable even
in finite time. In Section 1.5, we prove a result of spectral observability (or of concentration
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of eigenfunctions) which is an analog of our previous results in a quantum setting. Section
2 is devoted to proving our results.

Acknowledgment. I warmly thank Emmanuel Trélat for fruitful discussions and his
careful reading of preliminary versions of this paper, and Yves Coudène for his help in
building the counterexample of Proposition 4. I also thank François Ledrappier and Marie-
Claude Arnaud for interesting discussions.

1.1 Infinite-time observability: main result

Our first result deals with observability in infinite time. It roughly says that if for each
geodesic trajectory t 7→ y(t) in Ω, there exists a small open (time-independent) set ω where
the trajectory spends (asymptotically) some positive part of its time, then we can construct
a ball-shaped domain ω(t) moving at a speed v as small as we want and on which the wave
equation is observable.

Definition 3. Let ε > 0 be a (small) positive real number. We say that the generalized
geodesic t 7→ y(t) in Ω satisfies the Geodesic Recurrence Condition (GRC) for ε if

(GRC) there exists an open set ω ⊂ Ω (depending on y(·)) contained in a ball
of radius < ε such that

liminf
T→+∞

|{t ∈ [0, T ], y(t) ∈ ω}|
T

> 0. (7)

Theorem 1. Let ε > 0 be a positive real number such that any generalized geodesic t 7→
y(t) in Ω satisfies (GRC) for ε. Let v > 0 be a fixed speed. Then there exists a C1 path
x : [0,+∞)→ Ω with speed bounded by v (meaning that for every t > 0, |ẋ(t)| 6 v) such that
the moving domain ω(t) defined by ω(t) = B(x(t), ε) ∩ Ω satisfies the t-GCC for T = +∞.

As a corollary of Theorem 1 and Appendix A, we have:

Corollary 4. The wave equation is infinite-time exactly observable on ω(·), i.e., (6) is
satisfied for T = +∞.

Determining which domains Ω satisfy (GRC) seems to be a difficult question in general.
In Section 1.2 we give some examples of domains Ω for which (GRC) is verified.

Remark 2. Remark that a given geodesic t 7→ y(t) verifies (GRC) if and only if for any
s ∈ R, the geodesic t 7→ y(t+s) satisfies (GRC): the fact that (GRC) is verified depends only
the trace of the geodesic since it is invariant by translations in time. We note that our proof
of Theorem 1 can easily be extended to the case where all traces of geodesics but a countable
number satisfy (GRC). For the sake of simplicity, we did not include this extension in the
statement of the theorem.

1.2 Comments on (GRC)

We first give some examples of bounded domains Ω for which all geodesics satisfy (GRC), so
that Theorem 1 applies. Then, we show that (GRC) is not always satisfied, by constructing
an explicit counterexample. Of course, this does not mean that on this domain the wave
equation cannot be observed in infinite-time on any moving domain, but only that our
construction does not cover this case.

1.2.1 Examples of domains Ω satisfying (GRC)

We start by presenting a class of domains Ω for which (GRC) is satisfied.

6



Definition 5. A bounded domain (Ω, g) satisfies the dichotomy property is each of its
geodesics is either periodic or uniformly distributed, meaning that for every open set ω ⊂ Ω,

lim
T→+∞

|{t ∈ [0, T ], y(t) ∈ ω}|
T

=
volg(ω)

volg(Ω)
.

Typical examples are the square and the rectangles with the flat metric. More generally,
any polygon that tiles the plane by reflection has the dichotomy property. In fact, this
property is satisfied by all the ”lattice examples” (see [Smi00]).

Proposition 1. If (Ω, g) satisfies the dichotomy property, then all its geodesics satisfy
(GRC).

If (Ω, g) satisfies a weaker property, namely that each geodesic is either periodic or uni-
formly distributed in some open subset Ω′ ⊂ Ω, the same proof shows that each geodesic of
Ω also satisfies (GRC), so that Theorem 1 also applies. With the same argument, we can
prove the following proposition.

Proposition 2. Any geodesic of the two-dimensional disk satisfies (GRC) but the two-
dimensional disk with flat metric does not satisfy the dichotomy property.

1.2.2 (GRC) is not always verified

A natural question is to wonder whether (GRC) is always verified. We will see that it is
not the case : using ideas coming from the Birkhoff-Smale homoclinic theorem, we construct
an example in which an uncountable number of geodesics do not satisfy this condition. We
start by giving a property which is always satisfied and which is somewhat weaker than
(GRC) (although not exactly because the parameter ε is fixed in (GRC) and arbitrary in
Proposition 3).

Proposition 3. For any geodesic t 7→ y(t) and any ε > 0, there exists a ball B ⊂ Ω of
radius ε and an increasing sequence of times (Tn)n∈N∗ tending to +∞ such that

lim inf
n→+∞

|{t ∈ [0, Tn], y(t) ∈ B ∩ Ω}|
Tn

> 0.

This proposition roughly means that (GRC) is verified up to a subsequence. However,
the following proposition shows that (GRC) is not always satisfied.

Proposition 4. There exist ε > 0 and a bounded open subset Ω of R2 with smooth boundary
∂Ω such that an uncountable number of its geodesics do not satisfy (GRC).

Note that, since (GRC) in Theorem 1 is only a sufficient condition for infinite-time
observability of the wave equation on a time-varying domain, Proposition 4 does not mean
that the wave equation in a domain Ω satisfying Proposition 4 is not observable on any
ball-shaped moving domain ω(t).

To sum up, (GRC) fails for some domains, and in this case it does not seem easy to
construct a moving domain ω(t) on which the wave equation is observable. We are not able
to use a weaker property than (GRC) (like Proposition 3) to adapt the proof of Theorem 1
to a larger context.

1.3 Comments on infinite-time observability

We now comment on the notion of infinite-time observability used in Theorem 1, which is
equivalent to the strict positivity of the Gramian matrix. This notion appears for example
in [TW09, Section 6.5] (see also [TW09, Section 5.1]), with the following statement:

For an exponentially stable semigroup S, infinite-time observability is equivalent
to exact observability in finite time. But this equivalence fails in general when the
semigroup is not exponentially stable.
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What is meant in this context by exponentially stable semigroup is that S = (St)t>0 is a
strongly continuous semigroup with growth bound ω0(S) = inft∈(0,∞)

1
t log ‖St‖ < 0.

The semigroup associated to the wave equation is clearly not exponentially stable, and
therefore the above statement does not apply. We conjecture that in the case of the wave
equation, infinite-time observability is not equivalent to finite-time observability.

Conjecture 1. There exists a compact two-dimensional manifold with smooth boundary Ω
and a (time-independent) open subset ω ⊂ Ω such that the wave equation in Ω is exactly
observable in infinite time on ω but not exactly observable on ω in time T for any finite
T > 0.

More precisely, let Ω be the Sinai billiard, that is, a torus with a circular obstacle at its
center (see Figure 1 below). We consider two vertical lines in Ω, the first one being the trace
of a periodic geodesic γ in Ω and the second one (at its right on Figure 1) being close to it.
We consider a domain of observation ω (depicted by the region with red lines on Figure 1)
delimited by these two vertical lines. It is easy to see that there exists a geodesic γ′ in Ω
which does not meet ω for any positive time T , and that the periodic geodesic γ is asymptotic
to γ′. From that, one can deduce that the wave equation in Ω is not observable on ω in any
finite time T > 0. However since γ′ comes closer and closer to ω as time goes to +∞, we
conjecture that the wave equation in Ω is observable in infinite time on ω.

Figure 1: The conjectured domain of observation ω in the Sinai billiard

Conjecture 1, if true, would mean in particular that we cannot reduce easily the infinite
time needed for observability in Theorem 1 to a finite-time observability result.

Remark 3. Note that there are other possible definitions of infinite-time observability, such
as time-asymptotic observability (see [PTZ16]).

1.4 Exact observability in finite time

As already said, an example of a manifold Ω such that the wave equation is not observable
on any ball of sufficiently small radius ε is the two-dimensional torus Ω = T2. In Theorem
1, we proved that if we allow the small ball to move, it is possible to construct such a
moving domain on which the wave equation is observable in infinite time. In the following
theorem, we improve Theorem 1 by proving finite time observability for two different (types
of) Riemannian manifolds Ω (namely the 2-dimensional torus and the Zoll manifolds). It
means that we construct a domain moving in Ω with finite speed such that the wave equation
is exactly observable in finite time. We recall that a Zoll manifold is a manifold all of which
geodesics are periodic.
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Theorem 2. Let ε > 0 and v > 0 be arbitrary and let (Ω, g) be either a Zoll manifold or the
2-dimensional torus T2 with the flat metric. Then there exist a time T > 0 and a C1 path
x : [0, T ]→ Ω with speed at most v (i.e., ∀t > 0, |ẋ(t)| 6 v) such that the moving domain ω(t)
defined by ω(t) = B(x(t), ε) satisfies the t-GCC for t = T , meaning that the wave equation
is observable on ω(t) (in finite time T ).

1.5 Spectral observability

Let Ω be a bounded open connected subset of M , with a smooth boundary if ∂Ω 6= ∅. Let
(φj)j∈N be an orthonormal basis of normalized eigenfunctions of the opposite of the laplacian
−4g on Ω, associated to the eigenvalues 0 6 λ1 6 λ2 6 .... For a measurable domain of
observation ω ⊂ Ω, the quantity

CT,spec(ω) = inf
j∈N∗

∫ T

0

∫
ω

φj(x)2dxdt = T inf
j∈N∗

∫
ω

φj(x)2dx (8)

is a spectral analog of the observability constant.
For a moving domain ω(t), we define analogously

CT,spec(ω(t)) = inf
j∈N∗

∫ T

0

∫
ω(t)

φj(x)2dxdt. (9)

The constants defined in (8) and (9) are called spectral observability constants of ω and
ω(t) respectively.

Remark 4. The constant (8) is a well-known quantity (up to a factor T ), see [BZ04] and
[HHM09] for example. It measures the concentration of eigenfunctions on ω. In the work
[PTZ16] reviewed in [Tré18] it was interpreted as a ”randomized observability constant”
since it naturally appears when one randomizes the initial datum of the wave equation.

Our goal is to prove for these spectral constants results of the same kind as the ones
proved in paragraphs 1.1 and 1.4. Again, we will only consider ball-shaped domains of
observation ω (or more precisely balls intersected with Ω) and for ω(t), we require them to
satisfy definition 2, which means that the ω(t)’s are moving balls (again intersected with Ω).

From now, we fix a (small) ε > 0 and a bounded domain Ω ⊂ Rn with smooth boundary.
We need the following definitions.

Definition 6. For T > 0 and v > 0, we set

Afix = {ω ⊂ Ω | ∃x ∈ Ω, ω = B(x, ε) ∩ Ω}

and

AT,vmov =
{
ω(t) ⊂ Ω | ∃x : [0, T ]→ Ω a C1 path of speed |ẋ(t)| 6 v, ω(t) = B(x(t), ε) ∩ Ω

}
.

We want to know whether the observation on a well-chosen moving domain can be better
than the observation on any fixed domain. Therefore, according to (8) and (9), if we fix
T > 0 and v > 0, we want to compare

CTfix = sup
ω∈Afix

inf
j∈N∗

T

∫
ω

φj(x)2dx (10)

and

CT,vmov = sup
ω(t)∈AT,v

mov

inf
j∈N∗

∫ T

0

∫
ω(t)

φj(x)2dxdt. (11)

The inequality CTfix 6 CT,vmov is obvious. Our goal is in some sense to understand in which

cases CTfix < CT,vmov.
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Proposition 5. The supremum in ω (resp. ω(t)) in (10) (resp. in (11)) is reached, but the
infima in j in (10) and (11) may not be reached.

Our main result in this section is that for T sufficiently large compared to v, the constant
CT,vmov is strictly positive, although the constant CTfix may be equal to 0.

Theorem 3. There exists a compact Riemannian manifold Ω such that for any sufficiently
small ε > 0 and any T > 0, we have CTfix = 0. Moreover, there also exists a compact
Riemannian manifold Ω verifying that for any sufficiently small ε > 0, there exists D > 0
such that if vT 6 D, we have CT,vmov = CTfix. Lastly, for any Riemannian manifold (M, g),
any bounded open connected subset Ω of M with a smooth boundary if ∂Ω 6= ∅, and for any
ε > 0, there exists C > 0 such that if vT > C, then CT,vmov > 0.

2 Proofs

2.1 Proof of Theorem 1

Let ε > 0 and v > 0. We consider a dense sequence of points (xi)i∈N∗ in Ω, we set Bi =
B(xi, ε) for i ∈ N∗ and we define Ai = Bi ∩ Ω for i ∈ N∗. Then we construct x : R+ → Ω
a map of speed |ẋ(t)| 6 v in the following way. The point x(t) will successively stay on the
points xi in the following order (we will precise the time it stays on each point later):

x1, x2, x1, x2, x3, x4, x1, x2, ..., x8, x1, x2, ..., x16, ..., x1, ..., x2n , x1, ...

and this sequence continues until infinity. We call each of these positions a ”step”: for
example, at step 1, x(t) = x1, at step 2, x(t) = x2, at step 3, x(t) = x1, etc. Of course,
between two steps, there is a smooth transition: the point x(t) goes from one xi to the
following. Then we have to specify how much time x(t) stays on each xj (i.e., the time
duration of each step): we require that if x(t) arrives at step j at time t, then step j lasts
t2j seconds (much more time than all the time already passed). Lastly, we take ω(t) =
B(x(t), ε)∩Ω. This construction implies that for each i ∈ N∗, the following assertion is true:

(B) : For every constant 0 < K < 1 and every T > 0, there exist T ′′ > T ′ > T

such that T ′′−T ′
T ′′ > K and x(t) = xi for t ∈ [T ′, T ′′].

Now consider a geodesic t 7→ y(t) in Ω. We will show that there exists t > 0 such that
y(t) ∈ ω(t). Let ω satisfy (GRC) for the trajectory t 7→ y(t). Since ω is contained in a ball
of radius < ε, there exists j ∈ N∗ such that ω ⊂ Bj = B(xj , ε) with the above notations.
(GRC) implies that

liminf
T→+∞

|{t ∈ [0, T ], y(t) ∈ Bj}|
T

> 3C > 0

for some C > 0. This means that the trajectory y(t) spends at least a fraction 3C of time
in Bj when time goes to infinity. Let T be such that

∀t > T,
|{s ∈ [0, t], y(s) ∈ Bj}|

t
> 2C. (12)

By assertion (B) for K = 1− C, there exist T ′′ > T ′ > T such that

(T ′′ − T ′)/T ′′ > 1− C and x(t) = xj for t ∈ [T ′, T ′′]. (13)

If we take t = T ′′ in (12), we get

|{s ∈ [0, T ′′], y(s) ∈ Bj = B(xj , ε)}|
T ′′

> 2C. (14)

Combining (13) et (14) we see that there exists a time t 6 T ′′ such that y(t) ∈ ω(t).
Therefore, any trajectory meets ω(t) when time goes to infinity and t-GCC is verified in
infinite time.
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2.2 Proof of Proposition 1

We first note that all closed geodesics in Ω satisfy (GRC). To see it, just fix a periodic
geodesic t 7→ y(t), let T1 > 0 be its minimal period and set ω = B(y(0), ε/2) ∩ Ω. Then
the liminf appearing in (7) is > 1/T1 and hence is positive. Secondly, for the uniformly
distributed geodesics, any open set ω ⊂ Ω can be used in (GRC). This concludes the proof
of Proposition 1.

2.3 Proof of Proposition 2

Let D be an open two-dimensional disk. If we take a sufficiently short chord of the disk which
intercepts an angle α which is not commensurable to π, then the geodesic which follows this
chord is not periodic (since α

π /∈ Q) and it is not uniformly distributed (since it does not
meet a small disk with the same center as D if the chord is sufficiently short).

However, it is possible to verify that any geodesic of D is either periodic or there exists
0 < r < 1 (depending on the geodesic) such that any open subset ω of the annulus D\rD
satisfies (GRC). To see it, take a geodesic t 7→ y(t), t > 0 in D which is not periodic. Its trace
on ∂D is a sequence of points x1, x2, ... which are always separated by the same distance. If
one sees ∂D as the quotient R/πZ, then the points xi form an arithmetic sequence which is
dense in R/πZ. Moreover, since the oriented angle α made by the forward trajectory t 7→ y(t)
at each xi with the tangent to ∂D is always the same, it is straightforward to see that there
exists 0 < r < 1 such that Ω′ = D\rD is the closure of the trajectory t 7→ y(t). This oriented
angle α also determines, for each point x ∈ D, a unique point πα(x) on ∂D which is the
only point for which the segment with ends πα(x) and x makes an oriented angle α with the
tangent at πα(x). Let ω be a small ball in Ω′ and let π−1

α (ω) be its preimage by πα. It is an
interval on the boundary ∂D. It means that if xi ∈ π−1

α (ω), the trajectory t 7→ y(t) falls in
ω while running from xi to xi+1. Proposition 2 then follows from the uniform distribution
of the sequence (xi)i∈N∗ in ∂D, which is due to α

π /∈ Q.

2.4 Proof of Proposition 3

Let t 7→ y(t) be a (generalized) geodesic in Ω (or in Ω if Ω has a boundary). For the sake of
simplicity, we assume in what follows that Ω has no boundary, but the proof also works in
the case with boundary. We set, for n ∈ N,

µn =
1

n

n∑
i=1

δy(i)

where δx is the Dirac measure in Ω located at x. The measure µn is a probability measure on
Ω. By Prokhorov’s theorem, there exists a subsequence (nk)k∈N and a probability measure
µ on Ω such that µnk

⇀ µ in the weak-* topology of measures. There exists ω1 an open ball
of radius ε/4 such that µ(ω1) > 0. We denote by ω2 the ball of radius ε/2 with the same
center as ω1. Let f : Ω → [0, 1] be a continuous function equal to 1 on ω1 and to 0 outside
of ω2. Then ∫

Ω

fdµnk
→
∫

Ω

fdµ > 0

as k → +∞. But µnk
(ω2) >

∫
ω2
fdµnk

=
∫

Ω
fdµnk

since f vanishes outside of ω2. Therefore

lim inf
k→+∞

µnk
(ω2) > 0. (15)

Note that if y(i) ∈ ω2, then y(t) ∈ ω for any t satisfying |t − i| 6 ε/2, where ω denotes the
ball with the same center as ω1 and ω2. Combining this remark with (15), we get

lim inf
k→+∞

|{t ∈ [0, nk], y(t) ∈ ω}|
nk

> 0,

which finishes the proof of Proposition 3.
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2.5 Proof of Proposition 4

We consider three circles C0, C1 and C2 of the same radius in the plane, whose centers form an
equilateral triangle ∆ and which do not intersect. These circles will be part of the boundary
∂Ω of the domain Ω. More precisely, we take Ω to be a domain with smooth boundary
∂Ω = C0 ∪ C1 ∪ C2 ∪ Γ where Γ is a smooth curve which encloses the three circles. Ω is
therefore connected but ∂Ω has four connected components. The precise form of Γ does not
matter at all since the geodesic trajectories we will construct only bounce on the obstacles
C0, C1 and C2. The billiard Ω is shown in Figure 2 below.

On each side of ∆, there is a periodic trajectory which bounces only on two of the circles
C0, C1 and C2. We denote by p the trajectory which bounces only on C0 and C1, and by q
the trajectory which only bounces on C0 and C2. Let finally A be the point located in the
middle of the small arc of C0 whose extremities are the feet of p and q on C0 (see Figure 2).

We will show that there exist ε > 0 and an uncountable number of geodesics of Ω which
do not satisfy (GRC). Recall that in our terminology, a geodesic is uniquely determined by
a given point x ∈ Ω and a given direction v ∈ S1. Such a datum uniquely determines a
geodesic γ : [0,+∞)→ Ω with γ(0) = x.

In our proof, we only consider geodesics starting at A, that is γ(0) = A. For such a
geodesic, we can encode its trajectory by a sequence (an)n∈N on the alphabet {0, 1, 2} in an
obvious manner, with a0 = 0 since γ(0) = A ∈ C0. If the i-th circle hit by γ(t) is Cj , then
we set ai = j.

From now on, we only consider geodesics whose encoding sequence in the {0, 1, 2} alphabet
described above verifies ∀n ∈ N, a2n = 0. It corresponds to geodesics which hit the circle C0

alternatively with circles C1 and C2. For all these geodesics, we can forget the 0’s and just
write their coding in the {1, 2} alphabet. Said differently, to any such sequence (an)n∈N, we
associate the sequence (bn) ∈ {1, 2}N defined by bn = a2n+1.

The key point of our proof, which uses this new coding, is the following fact.

Fact 1. For any sequence (bn) ∈ {1, 2}N, there exists a geodesic whose coding is (bn).

We postpone the proof of Fact 1 to the end of this section. Let us first show how this
result can be used in order to prove Proposition 4.

Let γ be a given geodesic which has a coding sequence (bn)n∈N in the {1, 2} alphabet.
We can associate to it a sequence (cn)n∈N which counts the number of consecutive 1’s at
the beginning of (bn) (which means that bk = 1 for 0 6 k 6 c0 − 1), then the number of
consecutive 2’s which follow (which means that bk = 2 for c0 6 k 6 c0 + c1 − 1), then the
number of consecutive 1’s which follow (meaning that bk = 1 for c0+c1 6 k 6 c0+c1+c2−1),
etc.

Definition 7. We call ”alternating geodesic” any geodesic γ for which the sequence (cn)n∈N
verifies

lim
n→+∞

c2n
c0 + c1 + ...+ c2n

= lim
n→+∞

c2n+1

c0 + c1 + ...+ c2n+1
= 1. (16)

We denote by A the set of all alternating geodesics.

Under Fact 1, we have:

Lemma 6. A is uncountable.

Proof. Thanks to Fact 1, we forget about geodesics and just think in terms of encoding
sequences (bn). Let us denote by D the set of all increasing sequences (dn) ∈ NN. The set
D is uncountable. We show that there exists a one-to-one function from D to A, which
will prove Lemma 6. Let (dn) ∈ D. We associate to it an element (bn)n∈N ∈ A (which we

describe via its coding in the {1, 2} alphabet) in the following way. We set the first 1010d0

elements b0, ..., b1010d0−1
to be equal to 1, then the next 1010d1

to be equal to 2, then the

next 1010d2
are equal to 1, and so on we alternate between a very long sequence of 1’s and an

even longer sequence of 2’s until infinity. One can easily verify that the obtained sequence
(bn) is in A.
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Lemma 7. There exists ε > 0 such that (GRC) fails for any alternating geodesic.

Proof. Let us first fix the dimensions of the billiard Ω we consider. These dimensions will
determine the (maximal) size of ε. We assume that the equilateral triangle ∆ has side-length
1 and that the three circles C0, C1 and C2 have radius 1/4. Let γ ∈ A and denote by ωε ⊂ Ω
an open set contained in a ball of radius ε = 1/100. We prove that

liminf
T→+∞

|{t ∈ [0, T ], γ(t) ∈ ωε}|
T

= 0, (17)

which in turn immediately implies Lemma 7.
We split Ω into three parts. Let B1 be a thin strip joining C0 and C1, with one side being

the periodic trajectory p and the other one being parallel to p and on the right of p. Similarly
let B2 be a thin strip joining C0 and C2, with one side being the periodic trajectory q and the
other one being parallel to q and on the left of q. We choose them sufficiently thin so that
the distance between them is strictly greater than 1/100. Finally, we set B = Ω\(B1 ∪B2).
Figure 2 below summarizes the notations.

Figure 2: The billiard Ω in which (GRC) breaks down

The key point is the following. If the encoding sequence (bn) has a very long sequence of
m consecutive ones (resp. twos), this means that γ spends a long time interval, which lasts
l seconds, in B1 (resp. B2). Moreover, since the lengths of p and q are 1/2, one can check
that the difference |l −m| is bounded above by a constant C in the limit m→ +∞.

Since γ is alternating, it spends a big amount of time in B1 (which differs from the
constant c0 of Definition 7 at most by C), then an even bigger amount of time in B2 (which
differs from c1 at most by C), then back to B1 (which differs from c2 at most by C), etc,
and the transition time where γ ∈ B between two of these is bounded above. Hence, if ωε
is fully contained in B, then (17) is satisfied. If ωε intersects B1, then it does not intersect
B2 since B1 and B2 were chosen sufficiently thin. The equalities (16) imply that after every
period where γ spent a big amount of time in B2, the ratio |{t ∈ [0, T ], γ(t) ∈ ωε}|/T is
becoming smaller and goes to 0 when time goes to infinity. Note that this ratio may become
again greater when γ returns to B1, but this does not matter since we consider the lim inf
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in (17). A similar reasoning using now the long periods of time that γ spends in B1 proves
that if ωε intersects B2, (17) also holds. This finishes the proof of Lemma 7.

Lemmas 6 and 7 imply Proposition 4: there exists an uncountable number of alternating
geodesics, and for any of them, (GRC) breaks down.

Lastly, it remains to prove Fact 1.

Proof of Fact 1. This proof is strongly inspired by the ideas underlying the Smale-Birkhoff
homoclinic theorem [KH95, Theorem 6.5.5]. However, in order to keep the paper as readable
as possible, we decided to build a fully elementary proof of Fact 1 which does not require this
theorem. We include nonetheless in Remark 5 explanations on how our particular billiard Ω
enters the more general setting given by the Smale-Birkhoff homoclinic theorem.

We now start the proof, during which we will refer constantly to Figure 2. Let (bn) ∈
{1, 2}N. Recall that we only consider geodesics starting at A. Our goal is to find an initial
angle θ such that the coding sequence of the geodesic starting at time 0 at A and making
an initial angle θ with the horizontal axis is (bn). Intuitively, this will be done step by step,
trying to progressively adjust θ so that the geodesic first hits Cb0 (which is the case for plenty
of geodesics starting at A), then restricting this set of geodesics to those then hitting C0 and
Cb1 , etc. At each step, the set of possible directions is nonempty, closed and contained in the
preceding one. The desired geodesic will then be picked in the intersection of this infinite
number of nested sets. In the following paragraphs, we make this intuition precise.

The set of admissible initial velocities (i.e., pointing outwards C0) is a connected subset
of S1. In the sequel, the set of velocities S1 will be identified to [0, 2π), where all angles
considered are taken with respect to the horizontal axis. In particular, the set of admissible
initial velocities is of the form [α, β] ⊂ [0, 2π). Given η ∈ [α, β], we denote by γη the geodesic
starting at A with initial angle η.

For i > 0, we set Ab0b1...bi ⊂ [0, 2π) the set of all angles η such that the encoding sequence
of γη starts with b0, b1, ..., bi. Our goal is to prove that⋂

i>0

Ab0b1...bi 6= ∅ (18)

since the encoding sequence of any geodesic in this set is (bn)n∈N.
When η runs over [α, β], we see by continuity of the flow that there exists a non-empty set

[α0, β0] ⊂ [α, β] such that η ∈ [α0, β0] if and only if the encoding sequence of γη starts with
b0. The set [α0, β0] is what we called Ab0 and we now know that it is non-empty. Moreover,
remark that γα0

hits Cb0 tangently on its left and γβ0
hits Cb0 tangently on its right.

When η now runs over [α0, β0], because of this last remark, by continuity of the flow,
there exists [α1, β1] ⊂ [α0, β0] such that η ∈ [α1, β1] if and only if γη hits successively Cb0 , C0

and Cb1 . The set [α1, β1] is what we called Ab0b1 and we now know that it is non-empty.
Moreover, remark again that γα2

necessarily hits Cb1 tangently on its left and γβ2
necessarily

hits Cb1 tangently on its right.
Iterating this construction, we define successively the closed sets Ab0b1...bi for i > 0 and

we remark that
∀i > 0, Ab0b1...bi 6= ∅, Ab0b1...bibi+1

⊂ Ab0b1...bi . (19)

At step i, for each η ∈ Ab0...bi , we know that the geodesic γη hits successively Cb0 , C0,
Cb1 , C0, ... until Cbi . Moreover, we know that the ”extreme” geodesic γαi (resp., γβi) hits
Cbi tangently on its left (resp., on its right). For each η ∈ [αi, βi], we can look at γη at
the moment just after it hits Cbi . It defines a point xiη on Cbi and a velocity viη pointing

outwards Cbi . The key point which makes the argument work is that xiαi
is on the left of Cbi

and viαi
points towards left, whereas xiβi

is on the right of Cbi and viβi
points towards right.

The set {(xiη, viη), η ∈ [αi, βi]} defines a connected submanifold of dimension 1 of the phase

space with footpoint in Cbi . Therefore, by continuity of the flow, when η runs over [αi, βi],
it is necessary that there exists [αi+1, βi+1] ⊂ [αi, βi] such that for any η ∈ [αi+1, βi+1], the
couple (xiη, v

i
η) defines a geodesic which continues its path by hitting C0 and Cbi+1 .

Using (19), we immediately get (18), which concludes the proof of Fact 1.
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Remark 5. In this remark, we explain the links of our proof with the Smale-Birkhoff
homoclinic theorem [KH95, Theorem 6.5.5]. For any geodesic γ with an infinite encoding
sequence (bn)n∈N and for any n ∈ N, we define xn and vn to be respectively the point of Cbn
and the velocity in S1 (pointing outwards Cbn) at the moment when γ hits Cbn . We define
the function f by f(xn, vn) = (xn+1, vn+1).

Recalling that p and q are periodic trajectories (see Figure 2), we denote by W s(p) (resp.
Wu(p)) the stable (resp. unstable) manifold of p, and we define similarly W s(q) and Wu(q).
It is not difficult to prove that W s(p) and Wu(q) intersect transversely at (A, θ1) in the
phase space for a well-chosen θ1 and that W s(q) and Wu(p) intersect transversely at (A, θ2)
in the phase space for a well-chosen θ2. Therefore, by [KH95, Theorem 6.5.5], there is a
horseshoe map hidden in Figure 2. Said precisely, there exists an integer m > 0 such that
fm has an hyperbolic invariant set on which fm is topologically conjugated to the shift on
two symbols. It nearly means that for any sequence (bn) ∈ {1, 2}N, it is possible to find a
geodesic γ with encoding sequence (bn). It would exactly mean so if we were able to prove
that m = 1, but we did not find any easy proof of this fact.

Lastly, remark that the family of sets Ab0b1...bi where (bi) runs over all sequences {1, 2}N
defines a Cantor structure similar to those appearing in the construction of the horseshoe
map [KH95, Section 2.5].

Remark 6. The billiard Ω described above is not the only one for which there exist geodesics
not satisfying (GRC). For example, it is possible to construct such a billiard with three
obstacles which are circles whose centers form an isosceles right-angled triangle, instead
of an equilateral triangle. Then, folding it into a torus, we see that in the Sinai billiard
(described in Section 1.3), there also exist geodesics not satisfying (GRC). This remark is
related to Conjecture 1.

2.6 Proof of Theorem 2

Zoll manifolds. We start with the proof for Zoll manifolds. Assume that Ω is a Zoll manifold.
By a result due to Wadsley (see [Bes12]) all closed geodesics share a least common period
T1 > 0. Let x1, ..., xn be points in Ω such that ∪iB(xi, ε) = Ω. Then we take 0 < T < +∞
and x : [0, T ]→ Ω a C1 path of speed at most v which spends a time at least T1 on each xi.
We define as usual ω(t) = B(x(t), ε) ∩ Ω. It is immediate to verify that each geodesic of Ω
hits ω(t) during the interval [0, T ]. Therefore, t-GCC is verified in time T < +∞.

The 2d torus. The proof for the 2-dimensional torus is quite technical. We represent
the 2-dimensional torus as the square [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ] of side length 1 with opposite edges

identified one to another. We will describe the motion of the moving point x(t) (which is
the center of ω(t) = B(x(t), ε)) step by step. Remark that each geodesic (traveling at speed
1) in the torus can be described by its coordinates y(t) = (y1(t), y2(t)) with y1, y2 ∈ [− 1

2 ,
1
2 ].

Note also that, because of the particular structure of the torus, each of these geodesics is:

• either ”mostly horizontal”, meaning that for almost every t ∈ R we have |ẏ1(t)| >
√

2/2,
in which case the geodesic cuts the axis y1 = 0 very regularly, at least every

√
2 period

of time;

• or ”mostly vertical”, meaning that for almost every t ∈ R we have |ẏ2(t)| >
√

2/2, in
which case it is mostly vertical and the geodesic cuts the axis y2 = 0 very regularly, at
least every

√
2 period of time.

We will use this splitting to first catch all the ”mostly vertical” geodesics with a domain
centered on a point x(t) moving only on the horizontal axis (which is regularly cut by the
mostly vertical geodesics) and then we catch all the ”mostly horizontal” geodesics by making
x(t) move only along the vertical axis. In fact, by symmetry of the situation, we see that it
is sufficient to catch with ω(t) all the geodesics which are ”mostly vertical”. With a similar
argument of symmetry, we can even restrict to the case of ”mostly vertical” geodesics which
travel from left to right, that is ẏ1(t) > 0. To catch them with ω(t), we use a center x(t)
moving only on the x-axis from left to right. Then, to catch the ”mostly vertical” geodesics
which travel from right to left (meaning that ẏ1(t) 6 0), we do the same by making x(t)

15



move only on the x-axis from right to left. To sum up, we are now reduced to showing that
it is possible to choose a finite-time trajectory t 7→ x(t) on the x-axis such that the ball
B(x(t), ε) meets all ”mostly vertical” geodesics which travel from left to right. We denote
by Gv this set of geodesics. In the sequel, we assume that ε 6 v and that ε < 1/10. We do
not lose any generality by making this assumption since reducing ε makes the construction
of the moving domain ω even harder.

We now construct the trajectory t 7→ x(t). We set x(0) = 0. We will construct times
t2 > t1 > 0 and a C1 path x : [0, t2] → Ω such that |ẋ(t)| = 0 between times 0 and t1 and
0 6 |ẋ(t)| < v for almost every time t between t1 and t2. We also require that x(t) is a C1

path. First of all, we set t1 = 2ε−5, which means that x(t) stays at first during a time 2ε−5

at 0. Then, it moves along the x-axis at speed at most v in the following way. Fix z1, ..., zm
points on the x-axis such that for every point z on the x-axis, there exists 1 6 i 6 m verifying
|z − zi| < ε/2 (in the distance of the torus). We can choose m 6 3/ε. We require for x(t)
to spend a large time on each zi between times t1 and t2. More precisely, we construct x(t)
for t ∈ [t1, t2] a C1 path of speed at most v which spends, for each 1 6 i 6 m, a time-
interval of length at least 2ε−1 on zi. Clearly, it is possible for some finite time t2 verifying
t2 − t1 < 6ε−2 + 1

εv 6 7ε−2 since ε 6 v.
We now prove that such a moving ball ω(t) = B(x(t), ε) meets all geodesics between

times 0 and t2.
Fix t 7→ y(t) ∈ T2 a geodesic in Gv. We have to show that there exists t ∈ [0, t2]

such that (in the distance of the torus) |y(t) − x(t)| < ε. Since y(t) is mostly vertical, it
crosses periodically the x-axis at most every

√
2 period of time. We consider the trace of

this geodesic y(t) on the x-axis. By the pigeonhole principle, in the time interval [0, 2/ε],
there are two points of this trace which are separated by a distance < ε. Let us call them
y(s1) and y(s2) with 0 6 s1 < s2 6 2/ε. Then for every k ∈ N, we have y(s1 + k(s2− s1)) =
y(s1) + k(y(s2)− y(s1)) in the torus, and the sequence (y(s1 + k(s2 − s1)))k∈N describes an
arithmetic sequence on the x-axis of the torus with step < ε.

If ε > |y(s1) − y(s2)| > ε5, then this step is large enough to reach a neighborhood of 0
before time t1. More precisely, there exists t ∈ [0, t1] such that y2(t) = 0 and |y1(t)| < ε, so
that |y(t)− x(t)| < ε.

Otherwise, 0 6 |y(s1) − y(s2)| < ε5. Then, in a way, y(t) is ”very close” to a periodic
geodesic of period at most 2/ε. We will prove that each periodic geodesic of period at most
2/ε comes very close to x(t) between times t1 and t2 and deduce from it that it is also the
case for y(t). Since 0 6 |y(s1) − y(s2)| < ε5, there exists a periodic geodesics t 7→ yp(t) of
period at most 2/ε and a time t′1 verifying t1 6 t′1 6 t1 + 2 such that yp(t

′
1) = y(t′1) is on the

x-axis, and for all t ∈ [t1, t2], |y(t) − yp(t)| 6 ε2. Take i 6 m such that |yp(t′1) − zi| 6 ε/2.
By construction, there exist times t3 and t4 satisfying t1 6 t3 6 t4 6 t2, t4 − t3 > 2ε−2 and
x(t) = zi for t ∈ [t3, t4]. Since yp is periodic of period at most 2/ε, we can pick t ∈ [t3, t4]
such that yp(t) = yp(t

′
1). For this time t, we have

|y(t)− x(t)| = |y(t)− zi| 6 |y(t)− yp(t)|+ |yp(t)− zi| 6 ε2 +
ε

2
< ε,

and therefore y(t) ∈ ω(t).
This concludes the proof of Theorem 2.

2.7 Proof of Proposition 5

We recall that ε > 0, T > 0 and v > 0 are fixed once for all. We define f : Afix → R by

f(ω) = inf
j∈N∗

∫
ω

φj(x)2dx

and we will prove that f is upper semi-continuous. Let x ∈ Ω and (xi)i∈N a sequence of
points of Ω which converges to x. We set ω = B(x, ε) and ωi = B(xi, ε). We want to
show that f(ω) > lim supi f(ωi). Assume by contradiction that there exists j ∈ N such that∫
ω
φ2
j (x)dx < lim supi f(ωi). In particular we have

∫
ω
φ2
j (x)dx < lim supi

∫
ωi
φj(x)2dx =
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∫
ω
φj(x)2dx by the regularity properties of the eigenfunction φj . This is a contradiction.

Therefore, f is upper semi-continuous. In particular, since Afix is compact, f reaches its
maximum on it, and the supremum in (10) is in fact a maximum.

Similarly, we can prove that the supremum in (11) is reached by just adapting the above
argument to a time-dependent setting (using the uniform topology on (0, T )×Ω and the fact
that v > 0 is fixed).

Finally, we show that the infimum in j in (10) and (11) is not necessarily reached. We set
Ω = S2 ⊂ R3 the unit sphere of the three-dimensional space. We recall that a quantum limit
is by definition a weak limit of the sequence of measures |φj |2dµ, where µ is the Lebesgue
measure on Ω. It is known that any equator (or great circle) is a quantum limit (see [JZ99])
and, since for any ε < π and any x ∈ S2 it is always possible to find a great circle which does
not intersect B(x, ε) ∩ S2, it follows that CTfix = 0. However, for any j ∈ N and any x ∈ S2,∫
B(x,ε)

φj(x)2dx > 0 since φj is a non-zero analytic function. It means that the infimum in

(10) (and therefore in (11)) is not necessarily reached.

2.8 Proof of Theorem 3

By the proof of Proposition 5, we already know that for Ω = S2, for any sufficiently small
ε > 0 and for any T > 0, we have CTfix = 0. This proves the first point of the theorem.

Since for T > 0 and v > 0, the quantity vT is the maximal distance that a point moving
with speed v in Ω can cover within time T , it is clear that if vT < π− ε, for Ω = S2, we have
CT,vmov = 0, which proves the second point of the theorem.

For the last point of the theorem, fix ε > 0. We show that there exists a C1 path
x : [0, 1]→ Ω and a constant C > 0 such that

∀y ∈ Ω, |{t ∈ [0, 1], y ∈ B(x(t), ε) ∩ Ω}| > C. (20)

We fix a ε/2-net x1, ..., xn in Ω, which means that for any x ∈ Ω, there exists 1 6 j 6 n
such that |x − xj | 6 ε/2 where | · | is the Euclidean distance in Rn. We take a C1 path
x : [0, 1]→ Ω with bounded velocity v1 (which can be very large) which stays at least a time
1/(2n) on each xi. Clearly (20) is satisfied.

Now for T > 0 and t ∈ [0, T ], we set xT (t) = x
(
t
T

)
, and the speed of the C1 path

xT is bounded by v1/T . Moreover, the path xT spends a time at least T/(2n) on each xi.
Therefore

CT,v1/Tmov > inf
j∈N

∫ T

0

∫
B(xT (t),ε)

φj(x)2dxdt > inf
j∈N

T

2n

∫
Ω

φj(x)2dx =
T

2n
> 0.

This inequality proves the last point of the theorem.

A t-GCC in infinite time implies observability

In [LRLTT17], the fact that (Q,T ) verifies t-GCC implies the observability inequality (6) is
proved only for T < +∞. For Theorem 1, we need to establish this implication for T = +∞.

Theorem 4. Let Q be an open subset of R × Ω that satisfies the t-GCC in infinite time.
When ∂Ω 6= ∅, we assume moreover that no generalized bicharacteristic has a contact of
infinite order with (0, T )× ∂Ω, that is, G∞ = ∅. Then the observability inequality (6) holds
for T = +∞.

Proof. The proof follows the same line as the proof of [LRLTT17, Theorem 1.8], and we adopt
in the sequel the same notations. The only point which needs to be adapted is [LRLTT17,
Lemma 2.1], which establishes a weakened observability inequality:

There exists C > 0 such that

C‖(u0, u1)‖2D(A1/2)×X 6 ‖χQ∂tu‖2L2((0,+∞)×Ω) + ‖(u0, u1)‖2X×D(A1/2)′
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for all (u0, u1) ∈ D(A1/2) ×X, where u is the corresponding solution of (4)-(5)
with u|t=0 = u0 and ∂tu|t=0 = u1.

We prove the result by contradiction. We assume that there exists a sequence (u0
n, u

1
n)n∈N

in D(A1/2)×X such that

‖(u0
n, u

1
n)‖D(A1/2)×X = 1 ∀n ∈ N, (21)

‖(u0
n, u

1
n)‖X×D(A1/2)′ → 0 as n→ +∞, (22)

‖χQ∂tun‖L2((0,+∞)×Ω) → 0 as n→ +∞, (23)

where un is the solution of (4)-(5) satisfying un|t=0 = u0
n and ∂tun|t=0 = u1

n. From (21), the

sequence (u0
n, u

1
n)n∈N is bounded in D(A1/2) × X, and using (22) we deduce that the only

possible closure point for the weak topology of D(A1/2)×X is (0, 0). Therefore the sequence
(u0
n, u

1
n) converges to (0, 0) for the weak topology of D(A1/2)×X. By continuity of the flow

with respect ot initial data, it follows that for any 0 < T < +∞, the sequence (un)n∈N of
corresponding solutions converges to 0 for the weak topology of H1((0, T )×Ω); in particular
it is bounded in any of these spaces.

Set Y = R× Ω̄. Let bTY be the fiber bundle of rank dim Y whose sections are the vector
fields which are tangent to ∂Y , and bT ∗Y be its dual fiber bundle (the compressed cotangent
fiber bundle of Melrose). We denote by j the natural projection of T ∗Y on bT ∗Y , by Σ
the image by j of the characteristic manifold of the wave equation (of equation τ2 = |ξ|2),
Σ̂ = Σ ∪ j(T ∗Y|∂Y ) and SΣ̂ = (Σ̂\Y )/R∗+ the quotient space by the natural action of R∗+.

The space SΣ̂ is a locally compact metric space.
According to [Leb96, Section 2.1], there exists an increasing function ϕ : N → N and a

microlocal defect measure µ on SΣ̂ such that for every R ∈ Ψ0
comp(R× Ω̄) (see definition in

[LRLTT17, Appendix A]),

(Ruϕ(n), uϕ(n))→
∫
κ(σ(R))dµ as n→ +∞.

It follows from (23) that µ vanishes in j(T ∗Q) ∩ SΣ̂. It is well-known (see [Leb96]) that
the measure µ is invariant under the compressed generalized bicharacteristic flow. Therefore,
the t-GCC assumption in infinite time implies that µ vanishes identically. Hence, for any
0 < T < +∞, (un)n∈N strongly converges to 0 in H1((0, T )× Ω).

As in [LRLTT17], this last fact contradicts the conservation of energy.

References

[Bes12] Arthur L. Besse. Manifolds all of whose geodesics are closed, volume 93. Springer
Science & Business Media, 2012.

[BLR92] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for
the observation, control, and stabilization of waves from the boundary. SIAM
Journal on Control and Optimization, 30(5):1024–1065, 1992.

[BZ04] Nicolas Burq and Maciej Zworski. Geometric control in the presence of a black
box. Journal of the American Mathematical Society, 17(2):443–471, 2004.

[Cas13] Carlos Castro. Exact controllability of the 1-d wave equation from a mov-
ing interior point. ESAIM: Control, Optimisation and Calculus of variations,
19(1):301–316, 2013.

[CCM14] Carlos Castro, Nicolae Cindea, and Arnaud Münch. Controllability of the linear
one-dimensional wave equation with inner moving forces. SIAM Journal on
Control and Optimization, 52(6):4027–4056, 2014.

[HHM09] Andrew Hassell, Luc Hillairet, and Jeremy Marzuola. Eigenfunction concentra-
tion for polygonal billiards. Communications in Partial Differential Equations,
34(5):475–485, 2009.

18



[HPT] Emmanuel Humbert, Yannick Privat, and Emmanuel Trélat. Observability prop-
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