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Characterization of Bijective Discretized Rotations

Bertrand Nouvel, Eric Rémila

Abstract

A discretized rotation is the composition of an Euclidean rotation with the
rounding operation. For 0 < a < m/4, we prove that the discretized rotation
[7] is bijective if and only if there exists a positive integer k such as

2k +1 2k2 + 2k
2k2 +2k+ 1" 2k2 + 2k + 1

}

{cosa,sina} = {
The proof uses a particular subgroup of the torus (R/Z)2.

Keywords: discrete rotations, pythagorean triple, integer pythagorean triples,bijective
rotations, local description

Résumé

La rotation discrétisée est la composition d’une rotation euclidienne avec ’opé-
ration d’arrondi. Pour 0 < o < 7/2, nous montrons que la rotation discrétisée
est bijective si et seulement il existe entier k tel que les deux ensembles suivants
soit identiques

2k +1 2k2 + 2k
2k2 +2k+ 1" 2k2 + 2k + 1

{cosa,sina} = { }

La preuve exploite un sous groupe particulier du tore (R/Z)?.

Mots-clés: rotations discrétes, triples pythagoriciens, triples pythagoriciens entiers, rotations
bijectives, description locale



1 Introduction

In computer graphics, or in physical modeling, most of the time when a rotation has to be
done, programmers simply use a discretized rotation, i. e. the composition of a classical rotation
with a rounding operation. Unfortunately, this discrete rotation often has regrettable properties
in terms of discrete geometry. Actually, for most angles the discretized rotation (restricted to Z?2)
is not bijective.

Nevertheless, in [5], Marie-Andrée Jacob and Eric Andrés have proved that for a certain subset
of angles (the integer pythagorean angles), the discretized rotation is bijective. The proof relies on
the classical formalism of discrete geometry, and a particular notion of underlying tile. But the
question of the reciprocal was not mentioned and was left open — we did not know if there were
some other bijective angles for discretized rotation.

In this paper, we exhibit an alternative proof to the Andres-Jacob result and we prove that
the reciprocal is actually true : therefore we obtain a very simple characterization of the bijective
angles for the discretized rotation.

In this article, we are going to start out with the minimal definitions we require ; particularly
those of the angles that are concerned by the Andrés-Jacob theorem. We continue by giving a
characterization of surjective rotations : a discretized rotation is surjective if and only if no integer
point has an image by Euclidean rotation and canonical projection to the torus T? = (R/Z)?
that stands inside a certain frame of the torus T2. The equivalence in between surjectivity and
injectivity for the discretized rotation is then proved.

Afterward, to characterize angles that are bijective, we have examined a particular subgroup
of the torus T?. Naturally, it is then described with great accuracy : more precisely we show that
it is possible to identify the smallest vector. This vector can generate the whole studied group.

At the end, all these elements put back together allow us to reprove the Andrés-Jacob theorem
and to prove its reciprocal.

2 Pythagorean Angles and Triples

An angle is a real number of the interval [0...2x[. For sake of simplicity, we will only study
(without loss of generality by symmetry arguments) angles which belong to ]0, Z[.

Definition 1 An angle « is pythagorean if cosa and sina are both rational.

T _

5 — « is pythagorean.

Notice that « is pythagorean if and only if o’ =

Proposition 1 An angle a is pythagorean if and only if there exists a vector v of Z2\ {(0,0)}
such that ro(v) also belongs to Z.>.

Proof: Let a be a pythagorean angle. There exists an integer C' such that C'cos @ and C'sin «

both are integers. This can be interpreted as saying that r, (C, 0) is in Z2. Conversely, let v = (z,y)
and sina = z;’;jr?;;”l This proves that cosa and sin « both are rational. O

Any pair (p,q) of positive integers such that ¢ < p can generate two pythagorean angles a
and o/, such that o + o' = T : the first angle transforms (p,q) into (g, p), and the second one
transforms (g, p) into (—q, p)-

All the pythagorean angles generated as above can be generated with pairs (p,q) such that
gcd(p,q) = 1 (since, for each positive integer h, the angles generated by the pair (hp, hq) are the
same as those generated by (p,q)) and p — ¢ is odd (otherwise the angles generated by the pairs
(p,q) are the same as those generated (%ﬂ, £51)). The proposition below claims that the above
process generates all the pythagorean angles.

be an integer vector such that r, (v) is also in Z2. We state (z',y’) = ro(v). We have cosa =

Proposition 2 An angle a of |0, 5[ is pythagorean if and only if there exists a vector (p,q) of Z*
such that p > q >0, ged(p,q) = 1, p — q is odd and either ro(p,q) = (q,p) or ra(q,p) = (—q,p).



Proof: This is a consequence of classical results related to pythagorean triples (See for example
[4] or [10]). For any triple (a,b,c) of positive integers such that a® + b> = ¢® and ged(a,b,c) = 1,
there exists a unique pair (p, q) of positive integers such that ¢ = p?+¢? and {a, b} = {p*—q?, 2pq}.
Obviously, we necessarily have : p > ¢, gcd(p,q) = 1, and p — ¢ odd. The proposition is just an
application of this result for (a,b, c) such that cosa = a/c and sina = b/c, and ¢ minimal. O

Definition 2 The subset of pythagorean angles consisting in angles generated by pairs (k + 1,k)
of consecutive integers is called the set of integer pythagorean angles.

Notice that the pair (k + 1,k) leads to the following triple : (@ = 2k(k + 1), b = 2k + 1,
c=2k(k+1)+1).

3 Rotation Multiplicities, Holes and Double Points

The rounding function is defined so : for each element z of R, [z] = |z + 3] (the function floor
which is written |z, designates the unique integer such that |z] < z < |z]| + 1). On vectors,
the discretization is applied component by component : for each vector v = (z,y) of R?, we have
[v] = (=], [y])- The set of vectors of the real plane that are discretized to a same vector is called
a cell.

Given an angle a, the discretized rotation [r,] is defined on the set Z? as the composition of
the Euclidean rotation r, and of the rounding function [.].

Let i, and j, be the vectors defined as the rotated images of the vectors of canonical base of
the plane : i, = r4(i) = (cosa, sin ) and jo = 74(j) = (— sina, cos ).

The multiplicity M, (w) maps each vector w of Z?2 to the number of its antecedents by discreti-
zed rotation (notice that M, is a planar configuration which can be obtained by projection (more
exactly by morphism — i. e. cell by cell) of the planar coloration introduced in [7]). Formally, the
application M, is defined by the following equation :

My(w) = CARDW{v € Z* [ra](v) = w})

Each set of three different points of the grid r,(Z?) contains at least two points that are at a
distance of at least v/2, and the ends of a segment of length of at least /2 cannot be in the same
cell, therefore there cannot be three different points inside the same cell, thus the multiplicity M,
of any vector will never exceed 2.

A hole is a vector characterized by the fact that M, (w) = 0 : there is a hole in M, if and only
if [ro] is not surjective. A double point is characterized by the fact that M, (w) = 2 : there is a
double point in M, if and only if [r,] is not injective. The discretized rotation [rq] is bijective if
and only if for each vector w of Z2, M, (w) = 1.

Let Py be the set of vectors of Z?2 such as M (v) = k. Normally, P, is empty if and only if [r]
is surjective and P, is empty if and only if [r,] is injective.

We identify the torus T? = (R/Z)? with the cell [-1,+1[*>. A canonical projection from R?
to T? is provided by the operator {x} = x — [x]. A frame is the cartesian product of non-empty
half-opened intervals [a...b[ on the torus T? = (R/Z)2.

Theorem 1 Let Fyy denote the frame :

3
5’ "% + cosa + sina

We have : Py # 0 if and only if there exists a vector v of Z? such that {r, }(v) € Fp,.
More precisely, with the notations above, we have My ([roJ(v) — ) = 0.

Proof:
First notice that necessarily, for any vector w’ of Z2, there exists a vector v of Z?2 such that
the distance between r,(v) and w' is at most v/2/2. Let w be a hole, 7 be the discretization cell

1 1 1
Fy, = §—s1na,—§+cosa X |—=



associated and Dy, be the closed disk centered in w of radius \/5/ 2. From the remark above, the
set Dw N74(7?) is not empty.

On the other hand, since H is a hole, r,(Z?) does not meet H, and, therefore, 7,(Z?) does
not meet H + t, for any vector t of r,(Z?) (since ro(Z?) + t = ro(Z?)). In particular, we have :
T (Z2) N (Ute7(H +t)) = 0, where T denotes the set T = {t € 7,(Z3?),t = iy + Yja,—1 <z <

Thus 74 (Z?) necessarily meets Dy, \ Uge7(H + t). This set is contained into the union of four
squares (see figure 1) : the square Fy, + w + j and its translated copies by vectors —iy,—jo and
—la — Ja-

Obviously, the fact that one of these squares encounters r, (Z2) implies that each of them meets
7o (Z?). This is especially true for Fy; + w + j thus there exists v of Z? such that {r,}(v) € Fo,.

Conversely, if there exists a vector v of Z? such that {r, }(v) € Fp|, then there exists a vector
w of Z? such that Fy, + w + j contains r,(v). Thus Fy; + w + j and its translated copies by
vectors —iy,—jo and —i, — jo meet 7,(Z?). This yields that w is a hole since each vector of its
discretization cell is at a distance lower than 1 from an element of r, (Z?). g

Theorem 2 Let F, denote the frame :
11 11
F = |:—§, 5 —COSOZ|: X |:—§,§ — SiHOé|:
We have : Py # 0 if and only if there exists a vector v of Z2 such that {ry }(v) € Fs.
More precisely, with the notations above, we have My ([roJ(v)) = 2.

Proof: Since 7,(Z?) is invariant by rotation of angle 7/2, P» # ) if and only if there exists v
such that [rq](v) = [ra](v + 1). This condition trivially gives the result.

0
/
/
? ——
/
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/
/
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FIG. 1 — The main argument for Theorem 1 : The set r,(Z?) meets neither the (big) dashed square
nor H, but meets the closed disk. Thus r,(Z?) meets one of the four remaining small squares.

3.1 The Non Pythagorean Case

Now, we introduce two groups that have a main importance for the study of discrete rotations :

— the subgroup G/, of T2 defined by : G/, = {r. }(Z?) which one may also see as : Z{ia } +Z{jo }

— the subgroup G, of R? defined by : Gy = Zi+ Zj+ Zi + Zja.

At first glance, we notice that a point v of R? belongs to G, if and only if {v} belongs to
G! and, moreover [—1/2,1/2[>’NG, = G!,. We also notice that G, and G!, are both invariant by
rotation of angle /2.

We now focus on non pythagorean angles in order to show that in this case, the discretized
rotation will be neither injective, nor surjective.



Proposition 3 Let a denote a non pythagorean angle; For all € > 0, there ezists a vector e. of
Ga such that 0 < ||e|| < €. Moreover, G, contains the group Ze.+ Zel, with e, = r/3(ec).

Proof: Since « is not pythagorean, the elements of the sequence ({ni,})nen are pairwise
disjoint. Since all of them are in the compact square [—1/2,1/2]?, there exists a subsequence
({nkia})ren which converges. Thus the sequence ({ng4+1ia} — {nrin})ren is a non ultimately
constant sequence which converges to (0,0). Thus, for all € > 0, there exists an integer k such that
0 < |[{nk+1ia} — {nkia}|| < €. This element is in G,, which gives the result (the second part of
the proposition is trivial). O

Corollary 1 Let a denote a non pythagorean angle. The associated discretized rotation [r,] is
neither injective nor surjective.

Proof: Let F be a fixed frame. From the above proposition applied for e sufficiently small,
the group G! has a non empty intersection with F'. In particular, this is true for the frame of
surjectivity Fp, and the frame of injectivity F5. This gives the result, according to Theorem 1 and
Theorem 2. O

4 The Pythagorean Case

We fix a pair (p,q) of positive integers such that p > ¢, ged(p,q) = 1 and p — ¢ is odd. Let «
be the angle such that cosa = a/c and sina = b/c, with a = p> — ¢, b = 2pq and ¢ = p* + ¢>. We
also state : @' = Z — a, the angle defined by the other triple (a’ = 2pq,b' = p* — ¢*,c = p* + ¢*).

For each pair (z,y) of Z? we have [r,](z,y) = (¢',y') if and only if [ro/](y,z) = (v, 2'). Thus
[7o] is bijective (resp. injective/ surjective) if and only if [r,/] is (resp. injective/ surjective).

For the sake of simplicity, we now assume that a is odd (a is the first element of the triple
associated with the angle). There is no loss of generality.

4.1 Reduction to surjectivity

We now prove that, for pythagorean angles, the bijectivity problem is equal to the surjectivity
problem.

Lemma 1 (square lemma) Let S be a half-opened square of the plane such that the vectors
induced by its edges have integer components. The number of integer vectors contained in S is
equal to the area of S.

Proof: (sketch) The idea (see Figure 2) is to divide the square into three parts, two triangles
and another one, and afterward translate the triangles to obtain a polygon with integer sides,
vertical or horizontal, which is the disjoint union of two half opened squares. The main arguments
used are the facts below :

— the lemma above obviously holds for any half-opened square whose (integer) sides are vertical

or horizontal.

— two domains of the plane which can be mutually obtained by integer translation contain the

same number of integer vectors
A precise choice can be made for boundaries, in order to get half opened squares at the end. [

Theorem 3 Let a denote a pythagorean angle. The function [r,] is be one-to-one if and only if
it 1s onto. Thus bijectivity is equivalent to injectivity or surjectivity.

Proof: We have r,((a, —b)) = (¢,0) and r,((b,a)) = (0,c). Thus, for each vector v of Z?, we
have [ro](v + (a,—b)) = [ra](V) + (¢,0) and [ro](v + (b,a)) = [ra](v) + (0,¢). This yields that
for each vector w of Z?, we have M(w + (¢,0)) = M(w + (0,¢)) = M(w). In other words, the
multiplicity is a periodic function.

Consider the real window [—%,—1 + ¢[>. From the periodicity seen above, [ra] is injective if
and only if there exists no integer vector w in [—2, —1 + ¢[? such that M (w) > 2. Similarly, [r.]

is surjective if and only if there exists no integer vector w in [—%, —1 + ¢[2, such that M (w) = 0.



On the other hand, for each vector v of Z?, [ro](v) is element of [- 1, —1 +¢[? if and only if v is
element of r_o ([—1, —1 4 ¢[?). From the square lemma, the square r_o([—3, —% + ¢[?) contains ¢?
integer vectors, as the square [—1, —1 + ¢[?. Thus there exists an integer vector w in [—3, —1 + ¢[?
such that M(w) = 0 if and only if there exists an integer vector w in [—%,—1 + ¢[? such that
M (w) > 2. This achieves the proof. g

Notice, that instead of the square lemma, a corollary of the famous Pick’s Theorem may also
be used !. (Even if the proof of the previous lemma can be a little bit wiser in terms it could

require less constraints.)

T4

T2
Tz

/ T1

Fi1G. 2 — The scheme of the proof of the square lemma. The triangles 77 and 75 are translated, and
two squares are obtained. The dark lines point out the boundaries which are inside the domains.

4.2 Structural Study of G/,

The Theorem 1 will be used to characterize surjective (i.e. bijective) rotations. But, it requires
to know the precise structure of G/, which is {r, }(Z?)

z Y
c’c

), with (x,y) in Z>. There exists an integer

n such that {ni, } = {v} if and only if ©b — ya = det( Zaj Z > =0 [].

Lemma 2 (membership criterion) Let v = (

Proof: There exists an integer n such that {ni,} = {v} if and only if there exists a triple
(n,n',n"") of integers such that : (£ +n', % +n"") = n(%,2) (notice that i, = (£, %))

ThlS is equivalent to the ex1stence of an 1nteger n such that z = na [¢] and y = nb [¢]. And
which is possible if and only if za=' = yb~![c] (the inverses are taken in Z/cZ, the numbers a
and b both are invertible since ¢ and % both are irreducible fractions). The latter equality can be
rewritten : b — ya = 0 [c]. o

Proposition 4 Let m and m' be the vectors defined by m = (£,%) and m' = (=2, ). The group
G' is cyclic, of order c, generated by the vector {m }. The group G, is the subgroup of R?> generated
by Zm+ Zm'.

Proof: We first notice that the set {{in}, {ia}} generates G, and j, = (—2,2). Remark that
—b? — a® = —c2, thus, applying the membership criterion, there exists an integer n such that
{ni,} = {Ja} Thus {1a} generates G, , which, therefore, is cyclic. Moreover, since ged(a,c) =
ged(b, ¢) = 1, it stands that : {ni,} = (0,0) if and only if n = 0[¢]. It proves that the order of G,
is c.

We have : pb — qa = p(2pq) — q(p* — ¢°) = p’q + ¢* = q(»® + ¢°) = qc. Thus, applying
the membership criterion, we obtain that {m} is an element of G/ . Moreover, since ged(p,c) =
ged(q,¢) = 1, {m} is of order ¢ and, therefore, generates G/,.

For the third part of the proposition, remark that G, and Zm + Zm' both are invariant by
integer translation, thus each of these groups is defined by its intersection with the cell [—1, L1[2.

272
Moreover, G, contains Zm + Zm' and G, N[—+, L[? (which is G') contains exactly ¢ elements.

212

Isee for example [10] or [3]
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Fia. 3 — On the left, G, and Fp; for a non integer pythagorean non integer angle. On the right
G!, and Fy; for a non integer an integer pythagorean angle.

Thus, we only have to prove that (Zm+ Zm') N [—%, %[2 also contains ¢ elements. In that aim,
consider the real plane, seen using the basis (m,m’) : vectors of Zm + Zm' are seen as the integer
vectors. We have i = pm — gm’, thus the discretization cell of the origin can be seen as a square
on which the square lemma can be applied. Thus, the discretization cell of the origin contains ¢

elements of Zm + Zm'. This achieves the proof. O

5 Results

5.1 Proof of the Reciprocal of the Andrés Jacob Theorem

We now prove the reciprocal of Andrés-Jacob Theorem. The outline of the proof is structured
as follows : the main idea of the proof is to show that when we are in the non - integer- pythagorean
case it is necessity to have a “hole”. This necessity is due to the density of G! in [—%, %[2 (or the
density of G, in Z2).

Lemma 3 (size lemma) Let [z,z + d[x[y,y + d[ be a square of the real plane, with d > @.
This square has a non-empty intersection with G, .

Proof: We state : (z,y) = zm+ tm’. Up to a translation of |z|m+ [¢]m’, it can be assumed
without loss of generality that 0 < z < 1 and 0 < ¢ < 1, which gives —¢/c¢ < z < p/c and
0 <y < (p+ q)/c. With this hypothesis we have the case by case analysis below (obtained by
cutting the square {v € Z%, v = zm+tm’,0 < z < 1,0 < t < 1} by vertical and horizontal lines) :

— for (z,y) = (0,0), the vector (0,0) is in [z,z + d[x[y,y + d],

— for —q/e <z < (p—q)/cand 0 <y < (p+q)/c, the vector m +m’ is in [z, z +d[x[y,y + d],

—for (p—q)/c<z < (p+q)/cand 0 <y < gq/c, the vector m is in [z,z + d[X[y,y + d],

—for (p—q)/e <z < (p+q)/cand q/c <y < (p+ q)/c, the vector 2m + m’' is in [z,2 +

d[x[y,y +d[.
a

Theorem 4 (Reciprocal of Andrés Jacob Theorem) If the angle « is not an integer pytha-
gorean angle then the discretized rotation [r, ] is not bijective.

Proof: We recall that if the angle o does not belongs to the set of pythagorean angles, then,
from Corollary 1 of Proposition 3, [r.] is not bijective.

For a second time, assume that the angle « is a pythagorean one. With the conventions and
notations used above for pythagorean angles, the length sidefy of the side of the square Fp is

cos(a) + sin(a) — 1 = atb—c — w. In order Py to be empty, it is mandatory that sidefy <

C
(p + q)/c which gives 2¢(p — q) < (p +q).
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We write p = ¢ + e, and thus it is obtained 2ge < 2¢ + e, which may be rewritten as :
(2¢ — 1)e < 2q, or (2¢ — 1)(e — 1) < 1. This is only possible if e = 1; which is equivalent of
saying that (p, q) leads to an integer pythagorean triple. Therefore the discretized rotation cannot
bijective for pythagorean non integer angles. O

5.2 Alternate Proof of the Andrés Jacob Theorem

Theorem 5 (Andrés-Jacob) If the angle of rotation is integer pythagorean, then the discretized
euclidean rotation is bijective.

The original proof directly proves the injectivity, with arithmetical arguments. We provide here
an alternate one that relies on our framework.

Proof: The main idea of the proof aims to show that there is no point of the group G/, that
stands in the “hole frame” Fy . In order to ensure that the frame is avoided, the position of the
points that surround the “hole frame” Fy| has to be stated precisely.

The frame Fp; admits the following coordinates :

Fo, = [(Foy)r, (Foy)r[ % [(Foy)p, (Foy)ul
[ 1 1
= |5~ sin(a), —3 + cos(a) [ X {—5, —g + cos(a) + sin(a) [
_[e=2b 2a-c o —c 2a+2b—3c
N 2¢c ' 2c 2¢’ 2¢
_ [p? — 3¢®> p? —3¢° o 2a + 2b— 3¢
. 2¢ 7 2 2¢’ 2c
_ [ -2k 41 kP4 2k 41T (2K -2k —1 —2k7 42k 1
N 2¢ ’ 2¢ 2¢ ’ 2¢

We have assumed that « is the k-th integer pythagorean angle (i. e. p = k+1 and ¢ = k) ; this
yields to a = p?> —¢®> =2k + 1, b = 2pq = 2k(k + 1) and ¢ = p* + ¢*> = 2k® + 2k + 1.

With this hypothesis, we also have : m = (’”—ﬁl, %) and m' = (’Tk, k—ng) Consider the four
following vectors :

Ca=— (721@22;21@’ 722f2) - (71@?1@, 77192),

—b=a+4+m= (7212ci+2, 72k22€+2k) — (7ki+1, 7ki+k)’

~c=at+m-m' = (—2k2;-62k+2, —21;i—2) — (—kzﬁc-k-i-l, —ki—l)’

~d=a_-m'= (—2252’ —21@22—6216—2) — (—52’ —k2;k—1)
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Fic. 5 — The position of the points a, b, ¢ and d relatively to the hole frame

According to these definitions, we see that these points surround Fp, : a, < (Féi)L’ b, >
(Fo,)u, €z > (Fy)r and dyy < (Fg;)p. Therefore we conclude that Fp is contained in the square
]aza CI[X]dy> by[

On the other hand, a belongs to G,, from the membership criterion :

2 2
e FE ) < HGE )
= —2k*—2k® —k°
= —k(2k* +2k+1)
= —k%
= 0[]

Since a belongs to the G,, this implies that b, ¢ and d also do. Thus Ja,, c;[x]d,, b,[ does
not meet G,, since each element of this square is at distance lower than ||m|| = % to one of the
vectors a, b, ¢, or d. Therefore, the set Fy; NG, is empty, thus Fy, NG, is empty, which gives the
result from theorem 1. 2 0

6 Conclusion

The choice of the rounding operator as the discretization function matters for the result : For
instance, if we would have taken the floor function as discretization operator, there is no hope to
have a bijective rotation : since as long as a > 0, |r4(0,0)| = |ro(1)].

While there exists a span of possible discretization functions in between the floor and the
rounding, it is the rounding discretization that brings the best point-by-point discretization. The
arguments used to prove non-bijectivity hold for any discretization : the only possible bijective
rotations are those associated to integer pythagorean angles.

The characterization of angles such that the discretized rotations is bijective, which are so-
mehow the angles for which the discretized rotations has good properties : everything is finite;
therefore they are suitable for computations. It has lead to scientific knowledge on the way rota-
tions work : we have got a complete description of G/, for pythagorean angles. However, there are
others classes of angles, such as the hinge angles [8] that should be studied, and these angles seem
to be a source of wonderfully challenging problems.

2At the following URL, http ://perso.ens-lyon.fr/bertrand.nouvel /work /proofbij.mupad, a mupad session that
contains all the proof of our work has been saved, and the interested reader may consult it.
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