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Stochastic approximation of quasi-stationary

distributions for diffusion processes in a bounded

domain

Michel Benaïm1, Nicolas Champagnat2,3,4, Denis Villemonais2,3,4

April 17, 2019

Abstract

We study a random process with reinforcement, which evolves follow-

ing the dynamics of a given diffusion process in a bounded domain and is

resampled according to its occupation measure when it reaches the bound-

ary. We show that its occupation measure converges to the unique quasi-

stationary distribution of the diffusion process absorbed at the bound-

ary of the domain. Our proofs use recent results in the theory of quasi-

stationary distributions and stochastic approximation techniques.

Keywords: random processes with reinforcement, stochastic approximation, pseudo-

asymptotic trajectories, quasi-stationary distributions.
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1 Introduction

Let (Ω, (F t )t∈[0,+∞), (Xt )t∈[0,+∞), (Px )x∈E∪{∂}) be a time homogeneous Markov pro-

cess with state space E ∪ {∂}, where E is a measurable space and ∂ 6∈ E is an ab-

sorbing state for the process. This means that Xs = ∂ implies Xt = ∂ for all t ≥ s,

Px -almost surely for all x ∈ E and, in particular,

τ∂ := inf{t ≥ 0, Xt = ∂}
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is a stopping time. We also assume that Px (τ∂ <∞) = 1 and Px (t < τ∂) > 0 for all

t ≥ 0 and ∀x ∈ E .

We consider a random process (Yt )t≥0 with reinforcement, which evolves

following the dynamic of X when it lies in E and which is resampled according

to its occupation measure when it reaches ∂. More precisely, given a probability

measure µ on E , we set

Yt =
∞∑

k=1

1t∈[θk−1,θk ) X (k)
t−θk−1

, ∀t ≥ 0,

where θ0 = 0,

• (X (1)
t , t ≥ 0) is a realization of the process (Xt , t ≥ 0) with X (1)

0 ∼µ (i.e. under

Pµ) and the stopping time θ1 is defined as θ1 = τ(1)
∂

the first hitting time of

∂ by X (1),

• given X (1), (X (2)
t , t ≥ 0) is a realization of the process (Xt , t ≥ 0) with X (2)

0 ∼
µθ1

, where

µθ1
=

1

θ1

∫θ1

0
δYs

d s

and θ2 −θ1 = τ(2)
∂

the first hitting time of ∂ by X (2),

• for all k ≥ 1, given X (1), X (2), . . . , X (k) ,(X (k+1)
t , t ≥ 0) is a realization of the

process (Xt , t ≥ 0) with X (k+1)
0 ∼µθk

, where

µθk
=

1

θk

∫θk

0
δYs

d s

and θk+1 −θk = τ(k+1)
∂

the first hitting time of ∂ by X (k+1).

We also define for all t ≥ 0

µt =
1

t

∫t

0
δYs

d s, i.e. µt ( f )=
1

t

∫t

0
f (Ys )d s, ∀ f ∈Bb(E ).

This process has been studied in several situations, with the main goal of

proving an almost sure convergence result for the occupation measure µt when

t → +∞. In the finite state space case and in a discrete time setting, Aldous,

Flannery and Palacios [1] solved this problem by showing that the proportion of

colours in a Pólya urn type process converges almost surely to the left eigenfunc-

tion of the replacement matrix, which was also identified as the quasi-stationary
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distribution of a corresponding Markov chain (we refer the reader to the sur-

veys [15, 18] and to the book [11] for general references on quasi-stationary dis-

tributions; basic facts and useful results on quasi-stationary distributions are

also reminded in Section 3). Under a similar setting but using stochastic approx-

imation techniques, Benaïm and Cloez [3] and Blanchet, Glynn and Zheng[6]

independently proved the almost sure convergence of the occupation measure

µt toward the quasi-stationary distribution of X . These works have since been

generalized to the compact state space case by Benaïm, Cloez and Panloup [4]

under general criteria for the existence of a quasi-stationary distribution for X .

Continuous time diffusion processes with smooth bounded killing rate on com-

pact Riemanian manifolds have been recently concidered by Wang, Roberts and

Steinsaltz [20], who show that a similar algorithm with weights also converges

toward the quasi-stationary distribution of the underlying diffusion process. Re-

cently, Mailler and Villemonais [14] have proved such a convergence result for

processes with smooth and bounded killing rate evolving in non-compact (more

precisely unbounded) spaces using a measure-valued Pólya process representa-

tion of this reinforced algorithm.

The aim of the present paper is to solve the question of convergence of the

occupation measure toward the quasi-stationary distribution of X when this

process is a uniformly elliptic diffusion evolving in an open bounded connected

open set D with C 2 boundary ∂D, with hard killing when the process hits the

boundary. This answers positively the open problem stated in Section 8 of [4].

Note that the difficulty is twofold: firstly, the state space E = D is an open do-

main in R
d and is thus non-compact; secondly, the absorption occurs through

killing at the boundary, which corresponds to an infinite killing rate.

Our main assumptions concern the C 2 regularity of the domain and of the

parameters of the diffusion X . They are satisfied in particular if the coefficients

of the stochastic differential equation satisfied by X are Hölder continuous. Our

assumptions ensure the existence of unique quasi-stationary distribution α for

X and allows us to prove the almost sure convergence of the occupation mea-

sure (µt )t≥0 toward α. Our proof uses a combination of recent advances in the

theory of quasi-stationary distributions and stochastic approximation techniques.

The paper is organised as follows. In Section 2, we state our main assump-

tions and results. In Section 3, we gather useful general results on quasi-stationary

distributions from [9, 10] and prove new general results on a key operator A,

which has its own interest and should be useful for future adaptation of the

methods developed below. Section 4 is devoted to the proof of our main re-

sult, which consists in checking that the occupation measure of the resampling

points is (up to a time change and linearization) an asymptotic pseudo-trajectory

of a measure-valued dynamical system related to the operator A (we refer the
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reader to [2] for an introduction to asymptotic pseudo-trajectories and their use

in stochastic approximation theory).

2 Main result

From now on, we consider a diffusion process (Xt , t ≥ 0) in a connected bounded

open set D of Rd , d ≥ 2 with C 2 boundary ∂D and absorbed at ∂D. We assume

that X is solution to the SDE

d Xt =σ(Xt )dBt +b(Xt )d t , (2.1)

where (Bt , t ≥ 0) is a r -dimensional Brownian motion, b : D → R
d is bounded

and continuous and σ : D → R
d×r is continuous, σσ∗ is uniformly elliptic and

for all ρ > 0,

sup
x,y∈D, |x−y |=ρ

|σ(x)−σ(y)|2

ρ
≤ g (ρ) (2.2)

for some function g such that
∫1

0 g (r )dr <∞. Note that, in this case, the process

(Yt ,µt )t≥0 described in the introduction is well-defined since one can prove that

θk →+∞ a.s. [4, Lemma 8.1].

In [7, Section 5.3], it was proved that, under the above regularity assump-

tions, the killed diffusion process X admits a unique quasi-stationary distribu-

tion, i.e. a probability measure α on D such that

α=Pα(Xt ∈ · | t < τ∂), ∀t ≥ 0,

where τ∂ denotes the hitting time of ∂D by the process. Moreover, it is well

known that, in this case, there exists a positive constant λ0 such that Pα(t <
τ∂) = exp(−λ0t ) for all t ≥ 0 (see Section 3 for more results on quasi-stationary

distributions).

Remark 1. In fact, the result of [7, Section 5.3] is stronger and entails the expo-

nential convergence in total variation norm of the conditional law of X toward

α, uniformly in the initial distribution. The proof relies on the fact that Condi-

tions (A1) and (A2) as enunciated in the next section are satisfied by the process

X (see Section 3 for details and additional properties).

Remark 2. This last property was also proved to hold true for general one-dimensional

diffusions in D = [a,+∞) or D = [a,b] absorbed at the boundary of D and com-

ing down from infinity in [8] and for diffusion processes X in compact, con-

nected C 2 manifolds M with C 2 boundary ∂M absorbed at ∂M when the in-

finitesimal generator of X is given by L = 1
2
∆+Z , where∆ is the Laplace-Beltrami
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operator and Z is a C 1 vector field in [7]. All the results of this paper, and in par-

ticular the next one, can be extended to these two situations.

The main result of this article is the following one.

Theorem 2.1. For all bounded measurable function f : D →R, one has

µt f −−−−→
t→+∞

α f a.s.

Moreover, θn/n → 1/λ0 almost surely when n →+∞.

3 Properties of the Green operator

The results of Subsection 3 are valid for general absorbed Markov processes, not

only for diffusion processes absorbed at the boundary of a domain. In Sub-

section 3.2, we provide properties on the measure-valued dynamical system in-

duced by the Green operator of the process. Although not specific to diffusion

processes, the later part uses the fact that the semi-group of the underlying pro-

cess is Lipschitz regular.

3.1 General properties

Let us consider in this section a Markov process (Xt , t ≥ 0) on a measurable

space E ∪ {∂}, absorbed in ∂ at time

τ∂ := inf{t ≥ 0, Xt = ∂},

assumed a.s. finite. We also assume that Px (t < τ∂) > 0 for all t ≥ 0 and all x ∈ E .

A probability measure α on E is called a quasi-stationary distribution if

Pα(Xt ∈ · | t < τ∂) =α, ∀t ≥ 0.

It is well known that a probability measure α is a quasi-stationary distribution if

and only if there exists a probability measure µ on E such that

lim
t→+∞

Pµ(Xt ∈ A | t < τ∂) =α(A) (3.1)

for all measurable subsets A of E . The fact that α is a quasi-stationary distribu-

tion also implies the existence of a constant λ0 > 0 such that

Pα(t < τ∂) = e−λ0t . (3.2)
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In [9], the authors provide a necessary and sufficient condition on X for the

existence of a probability measure α on E and constants C ,γ> 0 such that

∥∥Pµ(Xt ∈ · | t < τ∂)−α
∥∥

T V
≤C e−γt , ∀µ ∈M1(E ), t ≥ 0, (3.3)

where M1(E ) is the set of probability measures on E and ‖ · ‖T V is the total

variation norm defined as ‖µ1 −µ2‖T V = sup f ∈Bb (E),‖ f ‖∞≤1 |µ1( f )−µ2( f )| for all

µ1,µ2 ∈ M1(E ), where Bb(E ) is the set of bounded measurable functions on E .

This immediately implies that α is the unique quasi-stationary distribution of X

and that (3.1) holds for any initial probability measure µ.

The necessary and sufficient condition for (3.3) is given by the existence of a

probability measure ν on E and of constants t0,c1,c2 > 0 such that

Px (Xt0
∈ · | t0 < τ∂) ≥ c1ν, ∀x ∈ E (A1)

and

Pν(t < τ∂) ≥ c2Px (t < τ∂), ∀t ≥ 0, x ∈ E . (A2)

Under Conditions (A1) and (A2), it follows from the general results of [9,

Prop. 2.3] that there exists a bounded function η : E → [0,∞) such that α(η) = 1

and, for all x ∈ E and all t ≥ 0,
∣∣∣eλ0t

Px (t < τ∂)−η(x)
∣∣∣≤C ′e−γt . (3.4)

In the case of diffusion processes, η is a nonnegative solution to Lη = −λ0η

where L is the infinitesimal generator of the process X in the set of bounded

measurable functions equiped with the L∞ norm. The constant γ is the same as

in (3.3). In particular, there exists a constant C ′′ such that

Px (t < τ∂)≤C ′′e−λ0t , ∀t ≥ 0, ∀x ∈ E . (3.5)

One can actually obtain a better bound combining Theorem 2.1 and Equation (3.2)

of [10]: there exists a time t1 > 0 and a constant D such that, for all t ≥ t1, all x ∈ E

and all t ≥ t1,
∣∣∣eλ0t

Px (t < τ∂)−η(x)
∣∣∣≤Dη(x)e−γt . (3.6)

We may—and will—assume without loss of generality that De−γt1 ≤ 1/2.

We denote by Pt the (nonconservative) semigroup of the Markov process

(Xt , t ≥ 0), acting on the set Bb(E ) of bounded measurable functions on E and

defined for all such function f by

Pt f (x) = Ex [ f (Xt )1t<τ∂], ∀x ∈ E .
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Note that we made here the slight abuse of notation that f (∂) · 0 = 0. Because

of (3.5), we can define the Green operator A on Bb(E ) as

A f (x) = Ex

[∫τ∂

0
f (Xs )d s

]
=

∫∞

0
Ps f (x)d s (3.7)

and this operator is bounded on Bb(E ) equiped with the L∞ norm. Let M1(E )

be the set of probability measures on E . For all µ ∈ M1(E ), we also define the

notation

µA f =
∫

E
A f (x)µ(d x)= Eµ

[∫τ∂

0
f (Xs )d s

]
=

∫∞

0
µPs f d s,

so that in particular A f (x) = δx A f and αA f =
∫∞

0 e−λ0tα f d t = α f /λ0. Since A

is bounded, the operator e t A is well-defined for all t ≥ 0.

Proposition 3.1. Assume that Conditions (A1) and (A2) are satisfied. Then, for

all µ ∈M1(E ), all f ∈Bb(E ) and all n ≥ 1, we have
∣∣∣∣µAn f −

α( f )µ(η)

λn
0

∣∣∣∣≤
(CC ′′+C ′)‖ f ‖∞

(λ0 +γ)n
, (3.8)

where the constants C ,C ′,C ′′ and γ are those involved in (3.3), (3.4) and (3.5). We

also have for some constant B
∥∥∥∥

µAn

µAn
1

−α

∥∥∥∥
T V

≤
B

µ(η)

(
λ0

λ0 +γ

)n

(3.9)

and for all t ≥ 0, ∥∥∥∥
µe t A

µe t A
1

−α

∥∥∥∥
T V

≤
B

µ(η)
e
−t

γ

λ0(λ0+γ) . (3.10)

Proof. We first check by induction that for all n ≥ 1,

µAn f =
∫∞

0

un−1

(n −1)!
µPu f du. (3.11)

This is of course true for n = 1. Assuming it is true for a given n ≥ 1, we have

µAn+1 f =
∫∞

0
µPs An f d s

=
∫∞

0

∫∞

0

t n−1

(n −1)!
µPs Pt f d t d s

=
∫∞

0
µPu f

∫u

0

t n−1

(n −1)!
d t du

=
∫∞

0

un

n!
µPu f du,
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which concludes the induction. Then, it follows from (3.3), (3.4) and (3.5) that

∣∣∣∣µAn f −
∫∞

0

un−1

(n −1)!
α( f )e−λ0uµ(η)du

∣∣∣∣

≤
∫∞

0

un−1

(n −1)!

∣∣∣µPu f −α( f )e−λ0uµ(η)
∣∣∣ du

≤
∫∞

0

un−1

(n −1)!

[
µPu1

∣∣∣∣
µPu f

µPu1
−α( f )

∣∣∣∣+α( f )
∣∣∣µPu1−e−λ0uµ(η)

∣∣∣
]

du

≤ (CC ′′+C ′)‖ f ‖∞
∫∞

0

un−1

(n −1)!
e−(λ0+γ)u du.

The inequality (3.8) follows.

We then deduce from (3.8) that

∥∥∥∥
µAn

µAn
1

−α

∥∥∥∥
T V

≤
1

µAn
1

[∥∥µAn −µ(η)λ−n
0 α

∥∥
T V +

∣∣µAn
1−µ(η)λ−n

0

∣∣]

≤
2(CC ′′+C ′)

(λ0 +γ)nµAn
1

.

Now, it follows from (3.6) that

µAn
1≥

∫∞

t1

un−1

(n −1)!
µPu1du

≥
µ(η)

2

∫∞

t1

un−1

(n −1)!
e−λ0t1 du

=
µ(η)e−λ0t1

2

(
t n−1

1

λ0(n −1)!
+

t n−2
1

λ2
0(n −2)!

+ . . .+
1

λn
0

)

≥
µ(η)e−λ0t1

2λn
0

. (3.12)

Combining the last two inequalities entails (3.9).

Similarly, for all t ≥ 0, f ∈Bb(E ) and µ ∈M1(E ), we deduce from (3.8) that

∣∣∣∣
µe t A f

µe t A
1

−α( f )

∣∣∣∣

≤
1

µe t A
1

∑

n≥0

t n

n!

[∣∣µAn f −µ(η)λ−n
0 α( f )

∣∣+α( f )
∣∣µ(η)λ−n

0 −µAn
1

∣∣]

≤
2(CC ′′+C ′)‖ f ‖∞

µe t A
1

e
t

λ0+γ .
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Now, it follows from (3.12) that

µe t A
1≥

µ(η)e−λ0t1

2
e
− t

λ0 .

The last two inequalities entail (3.10).

3.2 Properties of a measure-valued dynamical system

We begin with the following proposition, which ensures that A is regularizing.

In particular, for all f ∈Cb(D,R) (which denotes the set of bounded continuous

functions from D to R), x ∈ D 7→ δx A f is in Cb(D,R). This Feller property implies

that ν 7→ νA is continuous with respect to the weak topology on the set M (D)

of non-negative measures with finite mass on D. Similarly, one deduces that

(t ,ν)∈ [0,+∞)×M (D) 7→ νe t A ∈M (D) is continuous.

Proposition 3.2. For all bounded measurable functions f : D → R, the appli-

cation x 7→ δx A f is Lipschitz continuous, with Lipschitz norm proportional to

‖ f ‖∞.

Proof. From Priola and Wang [16], one deduces that there exists a constant CLi p >
0 which does not depend on f such that, for all t > 0 and all x, y ∈ D,

|δx Pt f −δy Pt f | ≤
CLi p

1∧
p

t
‖ f ‖∞.

Applying this inequality to x 7→ δx Pt f at time 1 and using inequality (3.5), one

deduces that

|δx Pt+1 f −δy Pt+1 f | ≤CLi p‖Pt f ‖∞ ≤CLi pC ′′‖ f ‖∞e−λ0t .

As a consequence,

|δx A f −δy A f | ≤ |x − y |
∫1

0

CLi pp
t
‖ f ‖∞d t +|x − y |

∫∞

1
CLi pC ′′‖ f ‖∞e−λ0(t−1) d t ,

which concludes the proof of Proposition 3.2.

The following proposition states the uniqueness of the evolution equation

satisfied by the continuous process (νe t A/νe t A
1D )t≥0.

Proposition 3.3. For each probability measure ν on D, the equation

dϕt

d t
= F (ϕt ), ϕ0 = ν, (3.13)
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where F is a measure valued function defined, for all non-negative finite measures

ν on D by

F (ν)= νA− (νA1D )ν, (3.14)

admits a unique weak solution in C ([0,+∞),M (D)), where M (D) is equiped with

the weak topology, in the sense that, for all bounded continuous function f : D →
R and all t ≥ 0,

ϕt ( f ) =ϕ0( f )+
∫t

0
F (ϕs )( f )d s.

In addition, this unique weak solution takes its values in M1(D) and is given by

ϕt = νe t A/νe t A
1D .

Proof. The fact that (νe t A/νe t A
1D )t≥0 satisfies (3.13) is immediate. Let us check

that there exists a unique solution to this equation. In order to do so, we consider

one of its solutions (ϕt )t≥0 and introduce the measure valued process defined by

ϕ̃t = exp

(∫t

0
ϕs (A1D )d s

)
ϕt , ∀t ≥ 0.

This process is weak solution to the linear evolution equation

∂ϕ̃t

∂t
= ϕ̃t A, ϕ̃0 = ν,

whose unique weak solution is t 7→ νe t A. Indeed, let t 7→ µt ,νt be two weak solu-

tions to the linear equation. Set |µt −νt | = sup f |µt f −νt f | where the supremum

is taken over the set of continuous function f : D 7→R such that ‖ f ‖∞ ≤ 1. Then

t 7→ |µt −νt | is lower semicontinuous, hence measurable, as a supremum of con-

tinuous functions. Thus, by Gronwall’s lemma (measurable version, see [13]),

|µt −νt | ≤ |µ0 −ν0|e‖A‖t . This proves uniqueness.

As a consequence, for all t ≥ 0,

ϕt =
ϕ̃t

ϕ̃t1D
=

νe t A

νe t A
1D

,

which concludes the proof of Proposition 3.3.

4 Proof of Theorem 2.1

The general idea of the proof is inspired from [2] and consists in proving that a

time-change of the sequence of probability measures

ηn =
1

n

n∑

i=1

δZi
, where Zi := Yθi

(4.1)
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is an asymptotic pseudo-trajectory (see [2] for the definition of an asymptotic

pseudo-trajectory) of a measure-valued dynamical system related to the nor-

malized semigroup νe t A

νe t A
1D

. The asymptotic properties given in Proposition 3.1

then allow to deduce that ηn almost surely converges to α. The proof is di-

vided in three steps. First, we prove in Subsection 4.1 tightness properties on

the measure-valued process (µt )t≥0. The convergence of ηn to α is proved in

Subsection 4.2, using a key lemma on asymptotic pseudo-trajectories proper-

ties for ηn , proved in Subsection 4.3. Theorem 2.1 is then be deduced from the

convergence of ηn using martingale arguments in Subsection 4.4.

4.1 Tightness

The following proposition entails that the paths of (µt , t ≥ 0) are a.s. relatively

compact in the set of probability measures on D endowed with the weak topol-

ogy.

Proposition 4.1. For all ε> 0, there exists η> 0 such that, almost surely,

liminf
t→+∞

µt ({x ∈ D : d (x,∂D) < η}) ≤ ε.

Proof. Let φD : D → R+ be the distance to ∂D. There exists a neighborhood N

of ∂D in D where φD is C 2
b

so that we can apply Itô’s formula: for all t ≥ 0 such

that Yt ∈N ,

dφD (Yt ) =
(
σ(Yt )∗∇φD (Yt )

)
·dBt+∇φD (Yt )·b(Yt )d t+

1

2
Tr(σ(Yt )∗D2φD (Yt )σ(Yt ))d t .

We introduce the random time-change τ(t ) such that

∫τ(t )

0

(
1Ys∈N

∥∥σ(Ys )∗∇φD (Ys )
∥∥2

2 +1Ys 6∈N

)
d s = t

and we observe that there exist constants 0 < c0 <C0 <∞ such that c0 ≤ τ′(t ) ≤
C0 for all t ≥ 0. Then, there exists a Brownian motion W such that the process

Zt :=φD (Yτ(t )) satisfies

d Zt = dWt +Ht d t , ∀t s.t. Zt ∈N ,

where the process H is progressively measurable and bounded by a constant

H̄ > 0.

We introduce a > 0 such that {x ∈ D : d (x,∂D) ≤ 2a} ⊂ N and the reflected

drifted Brownian motion (Z̄t , t ≥ 0) solution to

d Z̄t = dWt − H̄d t +dL0
t −dLa

t , ∀t ≥ 0

11



and such that Z̄0 =φD (Y0)∧a, where Lx
t is the local time of Z̄ at x at time t .

Since the jumps of Z̄ are positive, one can prove following [19, Prop. 2.2] that

Z̄t ≤ Zt a.s. for all t ≥ 0. Moreover, the process Z̄ is ergodic and satisfies almost

surely
1

t

∫t

0
δZ̄s

d s −−−−→
t→+∞

m,

where m(d x)=C e−2H̄x
1[0,a](x)d x is the stationary distribution of Z̄ on [0, a].

Now, for all ε > 0, there exists η > 0 such that m(0,η) < ε. Hence, almost

surely for all t large enough

µτ(t )({x ∈ D : d (x,∂D) < η}) ≤
1

τ(t )

∫τ(t )

0
1Z̄τ−1(s)<η

d s ≤
1

τ(t )

∫t

0
1Z̄u<ητ

′(u)du

≤
C0

c0t

∫t

0
1Z̄u<ηdu ≤

C0ε

c0
.

Since τ : R+ → R+ is continuous and τ′(t ) ≥ c0 for all t ≥ 0, this concludes the

proof of Proposition 4.1.

The previous proposition entails that, for all ε > 0, there exists η > 0 such

that, almost surely, θnµθn
({x ∈ D : d (x,∂D) ≥ η}) ≥ (1−2ε)θn for n large enough.

The following proposition is of a slightly different nature and it will be used

later in order to prove that there exists a constant c > 0 such that, almost surely,

θnµθn
({x ∈ D : d (x,∂D) ≥ η}) ≥ cn for n large enough.

Proposition 4.2. For all ε> 0, there exists η> 0 such that, almost surely, one has

liminf
n→+∞

1

n

n∑

i=1

1d(Yθi
,∂D)≥η ≥ 1−2ε (4.2)

and

liminf
n→+∞

θn

n
≥ (1−2ε)c0E(T̄0), (4.3)

where T̄0 = inf{t ≥ 0, Z̄t = 0}, Z̄0 = η and the constant c0 and the process Z̄ were

defined in the proof of Proposition 4.1.

Proof. Fix ε> 0. From Proposition 4.1, there exists η> 0 such that, almost surely,

µθn
({x ∈ D : d (x,∂D) ≥ η}) ≥ 1−2ε for n large enough. For all k ∈N= {1,2, . . .}, we

define the random variable in N∪ {+∞}

υk = inf
{

n ≥ k , µθn
({x ∈ D : d (x,∂D) ≥ η}) < 1−2ε

}
,

12



so that P(∪∞
k=1

{υk =+∞}) = 1. We also define the sequence of points (Z k
n )n≥0 in

D by

Z k
n =

{
Yθn

if n < υk

x0 if n ≥ υk ,

where x0 is an arbirary point in {x ∈ D : d (x,∂D) ≥ η}. Since, conditionally to

(µt )t<θn
and (θ1, . . . ,θn), the law of Yθn

is µθn
and since {n < υk } is measurable

with respect to (µt )t<θn
, one deduces that, for all n ≥ k , (we denote by P

n the

probability conditionnaly to (µt )t<θn
and (θ1, . . . ,θn))

P
n(d (Z k

n ,∂D) ≥ η) =P
n(d (Yθn

,∂D) ≥ η)1n<υk
+1n≤υk

≥µθn
({x ∈ D : d (x,∂D) ≥ η})1n<υk

+1n≤υk
≥ 1−2ε.

Using for example the law of large numbers for submartingales, this implies that,

almost surely and for all k ≥ 1,

liminf
n→+∞

1

n

n∑

i=1

1d(Z k
i

,∂D)≥η ≥ 1−2ε.

Observing that, almost surely, there exists k ≥ 1 such that Z k
n = Yθn

for all n ≥ 1,

this concludes the proof of (4.2).

To prove (4.3), we observe that, due to the coupling argument of the proof of

Proposition 4.1,

θn ≥
n∑

i=1

1d(Z k
i

,∂D)≥ηT̄ (i )
0 ,

where (T̄ (i )
0 )i≥1 are i.i.d. copies of T̄0 such that T̄ (i )

0 is independent of Z k
1 , . . . , Z k

i

for all i ≥ 1. Therefore, we can use the law of large numbers for martingales as

above to conclude the proof of Proposition 4.2.

4.2 Study of the empirical measure of the resampling points

In this subsection, we focus on the behaviour of the random sequence of mea-

sures (ηn)n≥1 defined in (4.1). Our aim is to prove the following proposition us-

ing the theory of pseudo-asymptotic trajectories.

Proposition 4.3. The sequence of probability measures (ηn)n∈N converges almost

surely to α with respect to the weak topology.

Proof. We follow an approach inspired from [2]. Let (τn )n≥1 be defined as τ1 = 0

and τn = γ2 +γ3 +·· ·+γn for n ≥ 2, where

γn+1 =
1

(n +1)ηn A1D
, ∀n ≥ 1.

13



We consider the linearly interpolated version (η̃t )t∈[1,+∞) of (ηn)n∈N defined, for

all n ≥ 0 and all t ∈ [τn ,τn+1], by

η̃t = ηn +
t −τn

τn+1 −τn
(ηn+1 −ηn),

where we define by convention η0 = δx0
for some fixed x0 ∈ D.

Let ( fk )k∈N be a sequence of bounded continuous functions from D to R

such that the metric

d (ν1,ν2)=
∞∑

k=0

|ν1 fk −ν2 fk |
2k‖ fk‖∞

,

metrizes the weak topology on measures on D.

The main point of the proof consists in using [2, Theorem 3.2] to prove that

η̃ is an asymptotic pseudo-trajectory of (3.13). By Proposition 3.3, this means in

our setting that, for all T > 0,

lim
t→+∞

sup
s∈[0,T ]

d

(
η̃t+s ,

η̃t e s A

η̃t e s A
1D

)
= 0. (4.4)

This is stated in the next lemma, proved in the next subsection.

Lemma 4.4. The measure-valued process η̃ is almost surely an asymptotic pseudo-

trajectory for the distance d on the set of probability measures on D of the semi-

flow induced by (3.13) and defined in Proposition 3.3.

Once this is proved, Proposition 4.3 follows easily: indeed (η̃t )t≥0 is almost

surely a relatively compact asymptotic pseudo-trajectory of the semi-flow in-

duced by (3.13) for which {α} is a compact global attractor, which implies the

result (see for instance [4, Corollary 5.3] and [2, 5]).

4.3 Proof of Lemma 4.4

For all n ≥ 1, we have

ηn+1 −ηn =
δZn+1

−ηn

n +1
=γn+1

(
F (ηn)+Un+1

)
,

where, recalling the definition of A in (3.7) and of F in (3.14),

γn+1 =
1

(n +1)ηn A1D
and Un+1 = (ηn A1D )δZn+1

−ηn A.

14



Fix ε ∈ (0,1/4) and η > 0 small enough so that the conclusions of Proposi-

tion 4.2 hold true. Setting c := infx∈D, d(x,∂D)>η
δx A1D

2 ∧ c0ET̄0

2 , which is positive by

Proposition 3.2, we define for all k ≥ 1 the random variable in N∪ {+∞}

σk = {n ≥ k , ηn A1D ≤ c or θn ≤ cn}.

The conclusion of Proposition 4.2 entails that P(∪∞
k=1

{σk =+∞}) = 1.

Following [2], before proving Lemma 4.4, we begin by proving the next lemma.

Lemma 4.5. Almost surely, for all bounded measurable function f : D → R, the

numeric sequence
(∑n

ℓ=1
γℓUℓ f

)
n

admits a finite limit when n →+∞.

Proof. For all ℓ ≥ 0, we introduce Gℓ the σ-field generated by (µt )t<θℓ+1
and

Z1, . . . , Zℓ. Fix k ≥ 1. We start by observing that

{ℓ≤σk } =
{
∀n ∈ {k ,k +1, . . . ,ℓ−1},ηn A1D > c and θn > cn

}
∈Gℓ−1,

so that σk is predictable with respect to the filtration (Gℓ)ℓ≥0.

Following [17, Lemma 1], we define Nℓ = γℓUℓ f and

M (k)
n =

n∧σk∑

ℓ=1

(Nℓ−Eℓ−1Nℓ),

where Eℓ−1 denotes the expectation conditionally to Gℓ−1. Observe M (k)
n is a

martingale with respect to (Gℓ)ℓ≥0 and that

Nℓ =
1

ℓ

(
f (Zℓ)−

ηℓ−1 A f

ηℓ−1 A1D

)
and Eℓ−1Nℓ =

1

ℓ

(
µθℓ f −

ηℓ−1 A f

ηℓ−1 A1D

)
.

We have, for all n ≥ 0

E|M (k)
n |2 =

n∑

ℓ=1

E
[
|Nℓ−Eℓ−1Nℓ|21ℓ≤σk

]
≤ 2

n∑

ℓ=1

E
[
|Nℓ|2 +|Eℓ−1Nℓ|2

]
≤ 4

n∑

ℓ=1

‖ f ‖2
∞

ℓ2
.

As a consequence, the martingale (M (k)
n )n≥0 is uniformly bounded in L2 and

hence converges almost surely. Let us now prove that
∑n∧σk

ℓ=1
Eℓ−1Nℓ converges

almost surely when n →+∞.

We have, for all ℓ≥ 1,

E|Eℓ−1[Nℓ]1ℓ≤σk
| =

1

ℓ
E

∣∣∣∣µθℓ f 1ℓ≤σk
−

ηℓ−1 A f

ηℓ−1 A1D
1ℓ≤σk

∣∣∣∣ .
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For all ℓ < k , this quantity is almost surely bounded by 2‖ f ‖∞/ℓ. For all ℓ ≥ k ,

the definition of σk entails that

E|Eℓ−1[Nℓ]1ℓ≤σk
| ≤

1

ℓ
E

∣∣∣∣
(

1

θℓ
−

1

(ℓ−1)ηℓ−1 A1D

)
θℓµθℓ f 1ℓ≤σk

∣∣∣∣ (4.5)

+
1

cℓ(ℓ−1)
E

[∣∣θℓµθℓ f − (ℓ−1)ηℓ−1 A f
∣∣
1ℓ≤σk

]
. (4.6)

We first consider the term in (4.6). It follows from the fact that (θℓ+1µθℓ+1
f −

ℓηℓA f )ℓ≥0 is a (Gℓ)ℓ≥0-martingale and from Cauchy-Schwarz inequality that

E

[
|θℓµθℓ f − (ℓ−1)ηℓ−1 A f |1ℓ≤σk

]2

≤ E

[∣∣∣θℓµθℓ∧σk
f − (ℓ∧σk −1)ηℓ∧σk−1 A f

∣∣∣
2 ]

=
ℓ∑

i=1

E

[∣∣∣∣∣

∫τ(i )
∂

0
f (X (i )

s )d s −Ei−2

(∫τ(i )
∂

0
f (X (i )

s )

)∣∣∣∣∣

2

1i<σk

]

≤ 2‖ f ‖2
∞

ℓ∑

i=1

E((τ(i )
∂

)2
1i<σk

) ≤ 2‖ f ‖2
∞ℓsup

x∈D
Ex (τ2

∂). (4.7)

Consider now the term in (4.5).

E

∣∣∣∣
(

1

θℓ
−

1

(ℓ−1)ηℓ−1 A1D

)
θℓµθℓ f 1ℓ≤σk

∣∣∣∣
2

≤‖ f ‖2
∞E

∣∣∣∣
(

1−
θℓ

(ℓ−1)ηℓ−1 A1D

)2

1ℓ≤σk

∣∣∣∣

≤
‖ f ‖2

∞
c2(ℓ−1)2

E

∣∣∣
(
ηℓ−1 A1D −θℓ

)2
1ℓ≤σk

∣∣∣

≤
‖ f ‖2

∞
c2(ℓ−1)2

2ℓsup
x∈D

Ex (τ2
∂),

where we used (4.7) with f =1D to obtain the last inequality.

We deduce that E|Eℓ−1(Nℓ1ℓ≤σk
)| is O (ℓ−3/2) (beware that the O may depend

on k), so that E|
∑n∧σk

ℓ=1
Eℓ−1Nℓ| < +∞ and hence that

∑n∧σk

ℓ=1
Eℓ−1Nℓ <∞ almost

surely.

Because of the almost sure convergence of (M (k)
n )n∈N, we conclude that (

∑n∧σk

ℓ=1
Nℓ)n∈N

converges almost surely when n →+∞ for all k ≥ 1. Since, almost surely, there

exists k ≥ 1 such that σk =+∞, this concludes the proof of Lemma 4.5.

Proof of Lemma 4.4. We introduce the time-changed version (η̄t )t∈[1,+∞) of (ηn)n∈N
as η̄t = ηn for all n ≥ 1 and all t ∈ [τn ,τn+1]. We also define Ūt = Un+1 for all

t ∈ [τn ,τn+1].

To apply [2, Theorem 3.2], one needs to prove that (η̃t )t≥0 is almost surely

relatively compact, that it is almost surely uniformly continuous and that all
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limit points of (Θt (η̃))t≥0 in C (R+,M (D)), endowed with the topology of uni-

form convergence for the metric d on compact time inervals, are almost surely

weak solutions of (3.13), where Θt (η̃) := (η̃t+s )s≥0.

The fact that (η̃t )t≥0 is relatively compact is an immediate consequence of

Proposition 4.2 and the almost surely uniform continuity is also immediately

obtained from the construction of η̃, since for all s, t ∈ [τn ,τn+1],

d (η̃s , η̃t ) ≤
∞∑

k=0

|s − t |
2k γn+1 ‖ fk‖∞

∣∣∣∣
fk (Zn+1)

n +1
−

fk (Z1)+ . . .+ fk (Zn)

n(n +1)

∣∣∣∣

≤
4

(n +1)γn+1
|s − t | (4.8)

and since infn≥1(n +1)γn+1 > 0 almost surely by Proposition 4.2.

In order to prove the last point, we adapt the method developed in [2, Propo-

sition 4.1]. Assume that there exists an increasing sequence of positive numbers

(tn)n≥0 converging to +∞ such that (Θtn
(η̃))n≥0 converges to an element η̃∞ in

C (R+,M (D)) with respect to the uniform convergence on compact time inter-

vals. Our aim is to prove that η̃∞ is a weak solution to (3.13).

For all f ∈Cb (D,R+), define L
f

F
: C (R+,M (D)) →R

[0,+∞) by

L
f

F (ν)(t )= ν0 f +
∫t

0
F (νs) f d s, ∀ν ∈C (R+,M (D)),

so that, using the equality
∫t+s

t (F (η̄u )+Ūu )du =−η̃t + η̃t+s ,

Θt (η̃) f = L
f

F

(
Θt (η̃)

)
+ A

f
t +B

f
t , (4.9)

where, for all s ≥ 0,

A
f
t (s) =

∫t+s

t
(F (η̄u ) f −F (η̃u) f )du and B

f
t (s)=

∫t+s

t
Ūu f du.

For all u ∈ [0,+∞), let us denote by nu the unique non-negative integer such

that u ∈ [τnu
,τnu+1). Then, proceeding as in (4.8), one easily checks that

|η̄u g − η̃u g | ≤
2‖g‖∞
nu +1

, ∀g ∈Cb(D,R+).

Since nu →+∞ when u →+∞ and since F (ν) f = νA f − (νA1D )ν f , where A f

and A1D are bounded continuous functions, we deduce that A
f
t (s) converges to

0 when t →∞.
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Also, for all t ∈ [τn ,τn+1) and t + s ∈ [τn+m ,τn+m+1),

|B f
t (s)| ≤ (τn+1 − t )|Un+1 f |+

∣∣∣∣∣
n+m−1∑

ℓ=n+1

γℓ+1Uℓ+1 f

∣∣∣∣∣+ (s −τn+m)|Un+m+1 f |

≤ γn+1|Un+1 f |+

∣∣∣∣∣
n+m−1∑

ℓ=n+1

γℓ+1Uℓ+1 f

∣∣∣∣∣+γn+m+1|Un+m+1 f |.

Hence Lemma 4.5 implies that B
f
t (s) also goes to 0 when t →+∞.

Finally, since L
f

F
is clearly sequentially continuous in C ([0,+∞),M (D)), one

finally deduces that, for all f ∈Cb(D,R+),

η̃∞t f = η̃∞0 f +
∫t

0
F (η̃∞s ) f d s, ∀t ≥ 0,

which means that η̃∞ is a weak solution to (3.13) and hence, by [2, Theorem 3.2],

that η̃ is an asymptotic pseudo-trajectory of the flow induced by (3.13).

4.4 Proof of Theorem 2.1

Fix any bounded measurable functions f : D →R. For all n ≥ 1, we set

Ψn = θ(n+1)µθ(n+1)
f −nηn A f .

The random sequence (Ψn)n≥1 is a (Gℓ)ℓ≥0-martingale and

Ψn =
n∑

i=1

∫τ(i+1)
∂

0
f (X (i+1)

s )d s −δZi
A f .

We have

E
[
|Ψn |2

]

n
≤

1

n

n∑

i=1

E

[∣∣∣∣∣

∫τ(i+1)
∂

0
f (X (i+1)

s )d s −δZi
A f

∣∣∣∣∣

2]

≤ 2‖ f ‖2
∞ sup

x∈D
Ex (τ2

∂).

From [12, Theorem 1.3.17], we deduce that n−1
Ψn goes almost surely to zero

when n goes to infinity, that is

θ(n+1)µθn+1
f

n
−ηn A f

a.s.−−−−−→
n→+∞

0.

Since A f is continuous and bounded for any bounded measurable function f

(see Proposition 3.2), one deduces from Proposition 4.3 that, almost surely,

θnµθn
f

n
−−−−−→
n→+∞

αA f =α f /λ0.
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Applying this result to f = 1D , one deduces that θn/n converges to 1/λ0 al-

most surely and hence that µθn
f converges to α f almost surely. Since, for all

t ∈ [θn ,θn+1),

∣∣µt f −µθn
f
∣∣≤

‖ f ‖∞
t

(t −θn)+
(t −θn)

t θn
θn ‖ f ‖∞ ≤ 2‖ f ‖∞

(
1−

θn

θn+1

)
,

the almost sure convergence of µt to α f when t →+∞ follows from the almost

sure convergence of θn/n to the positive constant 1/λ0.
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