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Stochastic approximation of quasi-stationary
distributions for diffusion processes in a bounded
domain

Michel Benaim!, Nicolas Champagnat®34, Denis Villemonais?3*

April 17,2019

Abstract

We study a random process with reinforcement, which evolves follow-
ing the dynamics of a given diffusion process in a bounded domain and is
resampled according to its occupation measure when it reaches the bound-
ary. We show that its occupation measure converges to the unique quasi-
stationary distribution of the diffusion process absorbed at the bound-
ary of the domain. Our proofs use recent results in the theory of quasi-
stationary distributions and stochastic approximation techniques.

Keywords: random processes with reinforcement, stochastic approximation, pseudo-
asymptotic trajectories, quasi-stationary distributions.
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Secondary: 60]70.

1 Introduction

Let (©, (&) te10,+00)r (Xt) te[0,+00)» ([P)x)eru{a}) beatime homOgeneous Markovpro-
cess with state space E U {0}, where E is a measurable space and 0 ¢ E is an ab-
sorbing state for the process. This means that X; = d implies X; =d forall t = s,
[P,-almost surely for all x € E and, in particular,

75 :=inf{t =0, X; =0}
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is a stopping time. We also assume that P, (75 < 00) = 1 and Py (t < 75) > 0 for all
t=0andVxeE.

We consider a random process (V) >0 with reinforcement, which evolves
following the dynamic of X when it lies in E and which is resampled according
to its occupation measure when it reaches 0. More precisely, given a probability
measure y on E, we set

o)
k
Y; = Z ]_te[gkil,gk)xlg_)ekil, Vi=0,
k=1

where 6y =0,

o (XY, ¢t > 0) is a realization of the process (X;, t > 0) with XO(U ~ u (i.e.under

P,) and the stopping time 0 is defined as 6, = rg) the first hitting time of

aby X1,
« given X, (X?, ¢ > 0) is a realization of the process (X;, ¢ > 0) with X\> ~
Hg,, where
I
Mo, = 5= Oy, ds
1Jo

and 0, -0, =13 the first hitting time of d by X®,

e forall k =1, given XU, X@, .. x® (x**D ¢ > ) is a realization of the

process (X;, ¢ = 0) with X"V ~ g, where
1 (o
Mo, = — Oy, ds
Ok Jo

and 01 — 0k = 7 7V the first hitting time of 8 by X %*1).

We also define forall t =0

1 [t 1
l~lt=;f0 Oy, ds, ie. ﬂt(f)ZEL fY9)ds, VfeRByE).

This process has been studied in several situations, with the main goal of
proving an almost sure convergence result for the occupation measure p; when
t — +oo. In the finite state space case and in a discrete time setting, Aldous,
Flannery and Palacios [1] solved this problem by showing that the proportion of
colours in a Pdlya urn type process converges almost surely to the left eigenfunc-
tion of the replacement matrix, which was also identified as the quasi-stationary



distribution of a corresponding Markov chain (we refer the reader to the sur-
veys [15, 18] and to the book [11] for general references on quasi-stationary dis-
tributions; basic facts and useful results on quasi-stationary distributions are
also reminded in Section 3). Under a similar setting but using stochastic approx-
imation techniques, Benaim and Cloez [3] and Blanchet, Glynn and Zheng(6]
independently proved the almost sure convergence of the occupation measure
1, toward the quasi-stationary distribution of X. These works have since been
generalized to the compact state space case by Benaim, Cloez and Panloup [4]
under general criteria for the existence of a quasi-stationary distribution for X.
Continuous time diffusion processes with smooth bounded killing rate on com-
pact Riemanian manifolds have been recently concidered by Wang, Roberts and
Steinsaltz [20], who show that a similar algorithm with weights also converges
toward the quasi-stationary distribution of the underlying diffusion process. Re-
cently, Mailler and Villemonais [14] have proved such a convergence result for
processes with smooth and bounded killing rate evolving in non-compact (more
precisely unbounded) spaces using a measure-valued P6lya process representa-
tion of this reinforced algorithm.

The aim of the present paper is to solve the question of convergence of the
occupation measure toward the quasi-stationary distribution of X when this
process is a uniformly elliptic diffusion evolving in an open bounded connected
open set D with C? boundary 0D, with hard killing when the process hits the
boundary. This answers positively the open problem stated in Section 8 of [4].
Note that the difficulty is twofold: firstly, the state space E = D is an open do-
main in R and is thus non-compact; secondly, the absorption occurs through
killing at the boundary, which corresponds to an infinite killing rate.

Our main assumptions concern the C? regularity of the domain and of the
parameters of the diffusion X. They are satisfied in particular if the coefficients
of the stochastic differential equation satisfied by X are Hélder continuous. Our
assumptions ensure the existence of unique quasi-stationary distribution « for
X and allows us to prove the almost sure convergence of the occupation mea-
sure (Us) =0 toward a. Our proof uses a combination of recent advances in the
theory of quasi-stationary distributions and stochastic approximation techniques.

The paper is organised as follows. In Section 2, we state our main assump-
tions and results. In Section 3, we gather useful general results on quasi-stationary
distributions from [9, 10] and prove new general results on a key operator A,
which has its own interest and should be useful for future adaptation of the
methods developed below. Section 4 is devoted to the proof of our main re-
sult, which consists in checking that the occupation measure of the resampling
pointsis (up to atime change and linearization) an asymptotic pseudo-trajectory
of a measure-valued dynamical system related to the operator A (we refer the



reader to [2] for an introduction to asymptotic pseudo-trajectories and their use
in stochastic approximation theory).

2 Main result

From now on, we consider a diffusion process (X;, t = 0) in a connected bounded
open set D of R%, d = 2 with C? boundary dD and absorbed at dD. We assume
that X is solution to the SDE

dXt:U(Xt)dBt‘Fb(X[)dt, (21)

where (B;, t = 0) is a r-dimensional Brownian motion, b : D — R? is bounded
and continuous and o : D — R%*" is continuous, oo* is uniformly elliptic and
for all p >0,

_ 2
X,Y€D, |x-y|=p Y

for some function g such that fol g(r)dr < oco. Note that, in this case, the process
(Yz, pt) e=0 described in the introduction is well-defined since one can prove that
0) — +oo a.s. [4, Lemma 8.1].

In [7, Section 5.3], it was proved that, under the above regularity assump-
tions, the killed diffusion process X admits a unique quasi-stationary distribu-
tion, i.e. a probability measure a on D such that

a=P,(X;e-|t<T1y), Vt=0,

where 74 denotes the hitting time of 0D by the process. Moreover, it is well
known that, in this case, there exists a positive constant Ay such that P, (¢ <
T5) = exp(—Ag?) for all £ = 0 (see Section 3 for more results on quasi-stationary
distributions).

Remark 1. In fact, the result of [7, Section 5.3] is stronger and entails the expo-
nential convergence in total variation norm of the conditional law of X toward
a, uniformly in the initial distribution. The proof relies on the fact that Condi-
tions (Al) and (A2) as enunciated in the next section are satisfied by the process
X (see Section 3 for details and additional properties).

Remark 2. Thislast property was also proved to hold true for general one-dimensional
diffusions in D = [a, +o0) or D = [a, b] absorbed at the boundary of D and com-
ing down from infinity in [8] and for diffusion processes X in compact, con-
nected C?> manifolds M with C? boundary M absorbed at dM when the in-
finitesimal generator of X is given by L = %A +Z, where A is the Laplace-Beltrami



operator and Z is a C! vector field in [7]. All the results of this paper, and in par-
ticular the next one, can be extended to these two situations.

The main result of this article is the following one.

Theorem 2.1. For all bounded measurable function f : D — R, one has

pef

a a.s.
t—+oo f

Moreover, 0,/ n — 1/ Ay almost surely when n — +oo.

3 Properties of the Green operator

The results of Subsection 3 are valid for general absorbed Markov processes, not
only for diffusion processes absorbed at the boundary of a domain. In Sub-
section 3.2, we provide properties on the measure-valued dynamical system in-
duced by the Green operator of the process. Although not specific to diffusion
processes, the later part uses the fact that the semi-group of the underlying pro-
cess is Lipschitz regular.

3.1 General properties

Let us consider in this section a Markov process (X, = 0) on a measurable
space E U {0}, absorbed in 0 at time

Ty :=inf{t =0, X; = 0d},

assumed a.s. finite. We also assume that P, (f < 73) >0forall t=0andall x€ E.
A probability measure « on E is called a quasi-stationary distribution if

Py(X;e-lt<ty)=a, Vi=0.

It is well known that a probability measure a is a quasi-stationary distribution if
and only if there exists a probability measure p on E such that

lim Pu(X;€ Al t<75) =a(A) (3.1)
t—+oo

for all measurable subsets A of E. The fact that a is a quasi-stationary distribu-
tion also implies the existence of a constant 1 > 0 such that

P, (t <1y = e M. 3.2)



In [9], the authors provide a necessary and sufficient condition on X for the
existence of a probability measure « on E and constants C,y > 0 such that

[PuXie-1t<T9)—al,, =Ce™, VYuedh(E), t=0, (3.3)

where .4 (E) is the set of probability measures on E and | - ||y is the total
variation norm defined as |1 — 2 ll7v = SUp regg, (), | 101 141 (f) — 2 ()| for all
U1, U2 € M (E), where %, (E) is the set of bounded measurable functions on E.
This immediately implies that a is the unique quasi-stationary distribution of X
and that (3.1) holds for any initial probability measure p.

The necessary and sufficient condition for (3.3) is given by the existence of a
probability measure v on E and of constants f, ¢1, c; > 0 such that

Py(Xp€-1t0<T5) =c1v, Vx€E (A1)

and
P,(t<7y) =Py (t<Ty), V=0, x€E. (A2)

Under Conditions (Al) and (A2), it follows from the general results of [9,
Prop. 2.3] that there exists a bounded function 1 : E — [0,00) such that a(n) =1
and, forall xe Eandall =0,

MNP (t <1y -nx)|<Ce " (3.4)

In the case of diffusion processes, 1 is a nonnegative solution to Ln = —Ayn
where L is the infinitesimal generator of the process X in the set of bounded
measurable functions equiped with the L° norm. The constant y is the same as
in (3.3). In particular, there exists a constant C”’ such that

P.(r<15) <C'e™! Vr>0, VxeE. (3.5)

One can actually obtain a better bound combining Theorem 2.1 and Equation (3.2)
of [10]: there exists a time #; > 0 and a constant D such that, forall t = #;,all x€ E
andall r = 1,

MNP (r <15 -1(x)| < Dn(x)e " (3.6)

We may—and will—assume without loss of generality that De "1 < 1/2.

We denote by P; the (nonconservative) semigroup of the Markov process
(Xy, t = 0), acting on the set %, (E) of bounded measurable functions on E and
defined for all such function f by

Pif(x) =Ex[f (X)) 1i<r,], VX€EE.



Note that we made here the slight abuse of notation that f(0) -0 = 0. Because
of (3.5), we can define the Green operator A on 98;(E) as

f 6f(Xs)ds
0

and this operator is bounded on %, (E) equiped with the L* norm. Let .4 (E)
be the set of probability measures on E. For all u € .4, (E), we also define the
notation

Af(x) =Ex

=f P f(x)ds 3.7
0

f af(Xs)ds] :f uPsfds,
0 0

so that in particular Af(x) =6, Af and aAf = [5° e Mafdt=afl). Since A
is bounded, the operator e* is well-defined for all £ > 0.

,uAf:fEAf(x)u(dx) =k,

Proposition 3.1. Assume that Conditions (Al) and (A2) are satisfied. Then, for
allpe A4 (E), all f € Bp(E) and alln =1, we have

a(Pp) | _ (CC"+C)lflloo

< 3.8
A Ao+ )" 5.8)

‘MA”f—

where the constants C,C',C" andy are those involved in (3.3), (3.4) and (3.5). We
also have for some constant B

pA" B ( A \"
——a < |[— (3.9)
/JA 1 TV ,u(n) /10 +y
and forallt =0,
'uetA B _,_r
— - < ——¢ "M@, (3.10)
’Uet 1 TV l’t(n)

Proof. We first check by induction thatforall n =1,

¢S] n-1
ne u
UA f—fo (n_l)!,uPufdu. 3.11)

This is of course true for n = 1. Assuming it is true for a given n = 1, we have

o0
pA"Lf :f uPsA" fds
0

00 oo tn—l
= — uPsP
fo fo (n—l)!’u P fdtds

u n-1

o0 t
e [ dra
fo HPuf | o At

ooun
:fo E,uPufdu,



which concludes the induction. Then, it follows from (3.3), (3.4) and (3.5) that

’”Anf f 1);“(f)e Mot uen du

_fo (n—-1)! |”P”f a(f)e"l"”p(n)' du

00 n—1
Sf u [/qu]l pPuf
o (n=1! uP,1

—a(f)|+ah) |,uPu]1 _ g~ Aou

" , [e) un—l Lotr)
s(CCcC"+cC ——e gy,
( )||f||oof0 T u
The inequality (3.8) follows.

We then deduce from (3.8) that

i
pHA™L

-a TV<“An1[||uA” pOAG" |y + A" L= pAg"]]

- 2(CC"+Ch
" Mo+ part’

Now, it follows from (3.6) that

00 un—l
,uA"]lzf ——uP,ldu

n (n=1!
>,u(n) o un ! e—Aotl du
- 2 f (l’l—l)'
et (47 67 L
2 Ao(n=1! " AZ(n-2)! Ay
plpeoh
> 3.12
27 (3.12)

Combining the last two inequalities entails (3.9).
Similarly, for all £ =0, f € 98, (E) and u € 4, (E), we deduce from (3.8) that

pe' f
petAl _a(f)’

—1 & n —n -n n
= oL L HA"f —pm A" e+ ath uamAg” - pa™ |

2(cc"+c')||f||oo .
- /.tetA]l




Now, it follows from (3.12) that

“doti
pe'tl = w e M,

The last two inequalities entail (3.10). O

3.2 Properties of a measure-valued dynamical system

We begin with the following proposition, which ensures that A is regularizing.
In particular, for all f € C,(D,R) (which denotes the set of bounded continuous
functions from D to R), x € D — 6 Af isin C,(D,R). This Feller property implies
that v — v A is continuous with respect to the weak topology on the set .4 (D)
of non-negative measures with finite mass on D. Similarly, one deduces that
(t,v) € [0, +00) x 4 (D) — ve' € .4 (D) is continuous.

Proposition 3.2. For all bounded measurable functions f : D — R, the appli-
cation x — 6, Af is Lipschitz continuous, with Lipschitz norm proportional to

I loo-

Proof. From Priolaand Wang [16], one deduces that there exists a constant Cp;j, >
0 which does not depend on f such that, forall £ >0andall x,y € D,

CLip
1AV

Applying this inequality to x — 6P, f at time 1 and using inequality (3.5), one
deduces that

16xPif—6yPifl= I loo-

16 Pes1f =0y Pri1 fI < CLipl Pt flloo < CripC" I fllooe™ "
As a Consequence,

Cri p
Vi

which concludes the proof of Proposition 3.2. O

1 oo
0xAf =0y Afl= Ix—ylf0 Ifloodt+ |x—y|f1 CripC"ll fllooe™ MV dt,

The following proposition states the uniqueness of the evolution equation
satisfied by the continuous process (ve'/ve'1p);so.

Proposition 3.3. For each probability measurev on D, the equation

do;
L = F(p,), =v, 3.13
i1 (@), @o=v ( )



where F is a measure valued function defined, for all non-negative finite measures
v on D by
Fiv)=vA-(vAlp)v, (3.14)

admits a unique weak solution in C([0, +00), # (D)), where 4 (D) is equiped with
the weak topology, in the sense that, for all bounded continuous function f : D —
Randallt=0,

t
¢:(f) =(P0(f)+f0 F(ps)(f)ds.

In addition, this unique weak solution takes its values in (D) and is given by
@ =ve'divetp.

Proof. The fact that (veld/ve'd1 p) 0 satisfies (3.13) is immediate. Let us check
that there exists a unique solution to this equation. In order to do so, we consider
one of its solutions (¢;) ;=0 and introduce the measure valued process defined by

t
(btzexp(f (ps(A]lp)ds)(pt, Vi=0.
0

This process is weak solution to the linear evolution equation

09

—— =@ A» Do = v,

ot PrA, Qo
whose unique weak solution is t — ve'4. Indeed, let t — s Ve be two weak solu-
tions to the linear equation. Set |y ;—v;| = sup f |y f —v . fl where the supremum
is taken over the set of continuous function f: D — R such that || f|loc = 1. Then
t — | —v,| is lower semicontinuous, hence measurable, as a supremum of con-
tinuous functions. Thus, by Gronwall’s lemma (measurable version, see [13]),
lte — vl < |po — vole! 4%, This proves uniqueness.
As a consequence, for all £ =0,

B (Z)t B VetA
$e = (,bt]lD B ve‘A]lD'
which concludes the proof of Proposition 3.3. O

4 Proof of Theorem 2.1

The general idea of the proof is inspired from [2] and consists in proving that a
time-change of the sequence of probability measures

1 n
Mn=—=2 06z, where Zj:=Yp, 4.1)
=

1

10



is an asymptotic pseudo-trajectory (see [2] for the definition of an asymptotic
pseudo-trajectory) of a measure-valued dynamical system related to the nor-
malized semigroup #ﬁfi‘; The asymptotic properties given in Proposition 3.1
then allow to deduce that n,, almost surely converges to a. The proof is di-
vided in three steps. First, we prove in Subsection 4.1 tightness properties on
the measure-valued process (u¢);>0. The convergence of 1, to «a is proved in
Subsection 4.2, using a key lemma on asymptotic pseudo-trajectories proper-
ties for n,,, proved in Subsection 4.3. Theorem 2.1 is then be deduced from the
convergence of 1, using martingale arguments in Subsection 4.4.

4.1 Tightness

The following proposition entails that the paths of (u;, £ = 0) are a.s. relatively
compact in the set of probability measures on D endowed with the weak topol-

ogy.

Proposition 4.1. For alle > 0, there exists1 > 0 such that, almost surely,
liminfu,({xe D:d(x,0D) <n}) <e.
t—+oo

Proof. Let ¢p: D — Ry be the distance to dD. There exists a neighborhood A
of D in D where ¢p is Ci so that we can apply It6’s formula: for all £ = 0 such
that Y; € ¥,

1
d¢p(Yy) = (U(Yt)*V(PD(Yt))'dBt"‘VQbD(Yt)'b(Yt)dt+ETI'(U(Yt)*DZCPD(Yt)U(Yz))dt-

We introduce the random time-change 7(¢) such that

o * 2
fo (]IYSQ/V o (Y5) V¢D(Ys)||2+11nw)ds:t

and we observe that there exist constants 0 < ¢y < Cy < oo such that ¢y < 7/(#) <
Cy for all £ = 0. Then, there exists a Brownian motion W such that the process
Z; = ¢p(Yr(y) satisfies

dZt:th+tht, Vis.t. ZtEJV,

where the process H is progressively measurable and bounded by a constant
H>0.

We introduce a > 0 such that {x € D : d(x,0D) < 2a} c & and the reflected
drifted Brownian motion (Z;, t = 0) solution to

dZ;=dW,-Hdt+dL?-dL?% Vt=0

11



and such that Zy = ¢p(Yp) A a, where L7 is the local time of Z at x at time .

Since the jumps of Z are positive, one can prove following [19, Prop. 2.2] that
Z; < Zy as. for all t = 0. Moreover, the process Z is ergodic and satisfies almost
surely

1 t
—f 05 ds m,
t 0 s t—+o00

where m(dx) = Ce‘ZHx]l[o,a] (x) dx is the stationary distribution of Z on [0, a].
Now;, for all € > 0, there exists n > 0 such that m(0,77) < €. Hence, almost
surely for all ¢ large enough

1 (1) 1 t
proUxeD:d@oD) < s — | = 1z, cpdss mfo 1 7 (wdu
C() t C()E
<=—| 1, _,dus—.
cot Jo Zy<p ¥ Co

Since 7 : Ry — R, is continuous and 7’(¢) = ¢, for all ¢ = 0, this concludes the
proof of Proposition 4.1. O

The previous proposition entails that, for all € > 0, there exists n > 0 such
that, almost surely, 0, g, ({x € D: d(x,0D) = n}) = (1 - 2¢)0,, for n large enough.
The following proposition is of a slightly different nature and it will be used
later in order to prove that there exists a constant ¢ > 0 such that, almost surely,
Onpig, (1x € D:d(x,0D) = n}) = cn for n large enough.

Proposition 4.2. For all e > 0, there existsn > 0 such that, almost surely, one has

N R
lrllr_r}lgf; 1:21 ]ld(ygl_ 0D)=n = 1-2¢ 4.2)
and
.. .On -
liminf — = (1 — 2&) ¢y E(Tp), (4.3)
n—+oo pn

where Ty = inf{t = 0, Z; = 0}, Zy = n and the constant cy and the process Z were
defined in the proof of Proposition 4.1.

Proof. Fix e > 0. From Proposition 4.1, there exists 7 > 0 such that, almost surely,
Hp,{x € D:d(x,0D) =n}) = 1-2¢ for nlarge enough. Forall ke N={1,2,...}, we
define the random variable in N U {+o0}

vg=inf{n =k, g, (xe D:d(x,0D) =) <1-2¢},

12



so that IP(U 2 Uk = +o0}) = 1. We also define the sequence of points (Z Yn=0 in
D by
zk=

n

an if n < Vg
xo ifn=wvy,

where x; is an arbirary point in {x € D : d(x,0D) = n}. Since, conditionally to
(1)<, and (01,...,0,), the law of Yy, is g, and since {n < vy} is measurable
with respect to (1) ;<g,, one deduces that, for all n = k, (we denote by P" the
probability conditionnaly to (u;);<p, and (01,...,0,))

IP"(d(Z,’f,dD) =n) =P"(d(Yp,,0D) 2n) 1<y, + Lp<y,
= up,{x€ D:d(x,0D) 20} 1<y, + Lp<y, =126

Using for example the law of large numbers for submartingales, this implies that,
almost surely and forall k= 1,

>
lr1l111+1§<)‘fn Z Lozt opyzy = 1~ 2€.

Observing that, almost surely, there exists k = 1 such that ZX = Yp, foralln=>1,
this concludes the proof of (4.2).

To prove (4.3), we observe that, due to the coupling argument of the proof of
Proposition 4.1,

n
Z i)
azk 6D)>n ’

where (T, éi)),-z 1 are i.i.d. copies of Ty such that Té’) is independent of Z k. .., Zl.k
for all i = 1. Therefore, we can use the law of large numbers for martingales as

above to conclude the proof of Proposition 4.2. O

4.2 Study of the empirical measure of the resampling points

In this subsection, we focus on the behaviour of the random sequence of mea-
sures (1,) ,=1 defined in (4.1). Our aim is to prove the following proposition us-
ing the theory of pseudo-asymptotic trajectories.

Proposition 4.3. The sequence of probability measures (1)) neny cOnverges almost
surely to a with respect to the weak topology.

Proof. We follow an approach inspired from [2]. Let (t,,)>1 be defined as 7, =0
and 7, =Y2+Yy3+--+7y, for n=2, where

1
- V¥n>1l.
Y DALy

13



We consider the linearly interpolated version (1) re(1,+00) Of (1) nen defined, for
alln=0andall t € [t,,T5+1], by
~ I—Tp
Ne=Nn+——————Mn+1—Mn)s
Tn+1 —Tn

where we define by convention 1y = d x, for some fixed xp € D.

Let (fi)xen be a sequence of bounded continuous functions from D to R
such that the metric

v Vife=vafil

d(vy,v2) =
kgo 2K frelloo
metrizes the weak topology on measures on D.

The main point of the proof consists in using [2, Theorem 3.2] to prove that
7] is an asymptotic pseudo-trajectory of (3.13). By Proposition 3.3, this means in
our setting that, for all T >0,

’

~ _SA
lim sup d(ﬁtﬂ, jhe ):0.

_— (4.4)
[=+00 4c[0,T] niestlp

This is stated in the next lemma, proved in the next subsection.

Lemmad4.4. The measure-valued process] is almost surely an asymptotic pseudo
trajectory for the distance d on the set of probability measures on D of the semi-
flow induced by (3.13) and defined in Proposition 3.3.

Once this is proved, Proposition 4.3 follows easily: indeed (7};) ;>0 is almost
surely a relatively compact asymptotic pseudo-trajectory of the semi-flow in-
duced by (3.13) for which {a} is a compact global attractor, which implies the
result (see for instance [4, Corollary 5.3] and [2, 5]).

o

4.3 ProofofLemma4.4

For all n =1, we have

6Zn+1 - T]n

=t (F @) + Un ),

Nn+l1 —NMn =

where, recalling the definition of A in (3.7) and of F in (3.14),

1

—_ d U = Alp)d —n,A.
(n+ DnAlp an ne1 = MpAlp) Zni1 —Mn

Yn+1 =
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Fix € € (0,1/4) and 1 > 0 small enough so that the conclusions of Proposi-
tion 4.2 hold true. Setting ¢ := infyep, d4(x,0D)> # A @, which is positive by

Proposition 3.2, we define for all k = 1 the random variable in N U {+oc}
or={n=k,n,Alp<corf, <cnj.

The conclusion of Proposition 4.2 entails that P(U}? | {ok = +oo}) = 1.
Following [2], before proving Lemma 4.4, we begin by proving the next lemma.

Lemma 4.5. Almost surely, for all bounded measurable function f : D — R, the
numeric sequence (L]_, y¢U, ), admits a finite limit when n — +oco.

Proof. For all ¢ > 0, we introduce ¥, the o-field generated by (1);<p,,, and
Z1,..., Zp. Fix k = 1. We start by observing that

{<oi}= {Vne {k,k+1,...,¢ -1},n,Alp>cand 6, > cn} €Y1,
so that o is predictable with respect to the filtration (4y) ¢>o.
Following [17, Lemma 1], we define Ny =y, U, f and
nAO

M® = 3 (N, —E¢_1 Np),
/=1

where E,_; denotes the expectation conditionally to %,_;. Observe Mﬁlk) is a
martingale with respect to (¢/) /¢ and that

1 ne-1Af 1 ne-1Af
Ny=-— Zy)—————| and Ey,_{Ny,=- -
(=7 f(Zp) neAlp e-1Ne= 7 ke, f e Alp
We have, forall n =0
®2_ v 2 & 2 2 7 fIIZ,
EIME)| :[Z_I[E[wg-mg_lw ]lesak]SZ[Z_l[E[lNel +[E¢-1Ne| 154;-1 72

As a consequence, the martingale (M%), is uniformly bounded in L? and
hence converges almost surely. Let us now prove that Z;’M" Es—1 Ny converges
almost surely when n — +oco.

We have, forall £ =1,

=1

1
EIE,—1[Nelly<o, | = 7 Eluo, f Lo<o, —
Ne
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For all ¢ < k, this quantity is almost surely bounded by 2|| f|l./¢. For all ¢ = k,
the definition of o entails that

rPo_
9[ ([ — l)T]g_lA]lD

[E[ 6710, f — (€ = D1 Af]| ]lésak]- (4.6)

1
EIE,—1[N¢llo<g, | S?[E‘( (4.5)

)Héﬂegf]lésak

P
cl(C—1)

We first consider the term in (4.6). It follows from the fact that (0¢,1u0,,, f —
InoAf) =0 is a (9y) p=g-martingale and from Cauchy-Schwarz inequality that

2
E|10cpo, f— (l—l)w—1Aflllesak]

2
< [E[ ’Hg,ugmkf— (Unok— 1)T]£Aak—1Af| ]

’ 7 , 7 A\
:Z[E[f f(Xs(l))dS—[E,‘_z(f f(X;l))) ]li<0k]
i=1 0 0
4 .
<2l fI% Y B Lice,) <21 fI50supEL(r)).  (@.7)
i=1 xeD
Consider now the term in (4.5).
1 1 2 6, 2
E||——— 16 lyey.| < 2[E(1——)]1<
’(64 w—l)w_lAJlD) ehocfLesor| =1/l ’ @D Alp) =
1%, 2
SWE’(W—MWD—W) Llo<o,

If1Z, 20 SupE. (12
= -z gt

where we used (4.7) with f = 1p to obtain the last inequality.

We deduce that E|E,_; (Ny1s<y,)| is @(¢~3/2) (beware that the @ may depend
on k), so that E|Y.}"7*E¢_; Ny| < +oo and hence that ¥ ;"7*E,_; Ny < co almost
surely.

Because of the almost sure convergence of (M, ;k) ) nen, We conclude that (Z;@f ¥ No) nen
converges almost surely when n — +oo for all k = 1. Since, almost surely, there
exists k = 1 such that o = +oo, this concludes the proof of Lemma 4.5. O

Proof of Lemma 4.4. We introduce the time-changed version (7 1) te[1,+00) Of (1) nen
asfj; =n, forall n>1andall t € [T,,T,;1]. We also define U; = U, for all
LE[Tn, Tnt1l

To apply [2, Theorem 3.2], one needs to prove that (7)o is almost surely
relatively compact, that it is almost surely uniformly continuous and that all
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limit points of (0;(1)) ;>0 in C(R4,.# (D)), endowed with the topology of uni-
form convergence for the metric d on compact time inervals, are almost surely
weak solutions of (3.13), where O¢(7]) := (1] t+5) s=0-

The fact that (7];) ;>0 is relatively compact is an immediate consequence of
Proposition 4.2 and the almost surely uniform continuity is also immediately
obtained from the construction of 7}, since for all s, t € [T, T 411,

S |s — 1] filZns1)  filZD)+.. + fil(Zy)
d S S —
11 kgozkYrHl filloo! n+1 nn+1)

<—[s— 1] (4.8)
(n+1)yn+1
and since inf,> (17 + 1)y ,+1 > 0 almost surely by Proposition 4.2.

In order to prove the last point, we adapt the method developed in [2, Propo-
sition 4.1]. Assume that there exists an increasing sequence of positive numbers
(tn)n=0 converging to +oo such that (0, (7)) ,=0 converges to an element > in
C(R., 4 (D)) with respect to the uniform convergence on compact time inter-
vals. Our aim is to prove that 77°° is a weak solution to (3.13).

For all f € Cy(D,R,), define L, : C(R,.4 (D)) — R+ by

t
L{:(V)(t)zvof+f F(vy)fds, YveCRy, 4 (D)),
0

t+s

so that, using the equality [, (F(7),) + U,) du=—1; + 7145,
0, f = LL(®,a)+ Al + B/, 4.9)

where, forall s =0,

t+s

t+s
Al(s) = f (F(,)f -F@.)f)du and B!(s)= T, f du.
t t

For all u € [0, +00), let us denote by n, the unique non-negative integer such
thatue€ [1,,,75,+1). Then, proceeding as in (4.8), one easily checks that

) _ 2 glloo
- < , YgeCyD,R,).
Nug—Nugl —— g€ Cy(D,Ry)

u

Since n, — +oo when u — +oo and since F(v) f = vAf — (vAlp)vf, where Af
and Al p are bounded continuous functions, we deduce that A{ (s) converges to
0 when 7 — oo.
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Also, forall t€[1,,Tps1) and t+ SE€ [Thnem Tnamel),

n+m-1
IB{(S)I S @Tne1 = DNUps1 f1+ Z Yes1Urs1 1+ (S = Tnem)Unsms1 f1
f=n+1
n+m-1
S7"n+1|Un+1f| + Z Y€+1U€+1f +7n+m+1|Un+m+1f|-
l=n+1

Hence Lemma 4.5 implies that B{ (s) also goes to 0 when ¢ — +oo.

Finally, since L]; is clearly sequentially continuous in C([0, +o0), # (D)), one
finally deduces that, for all f € C,(D,R,),

t
AR F =TS + fo FE™) fds, ¥t =0,

which means that 7°° is a weak solution to (3.13) and hence, by [2, Theorem 3.2],
that 7] is an asymptotic pseudo-trajectory of the flow induced by (3.13). O

4.4 Proof of Theorem 2.1

Fix any bounded measurable functions f: D — R. For all n = 1, we set

\Pn = 0(n+1)l10(n+1)f_ nnnAf-

The random sequence (V) =1 is a (¢9¢) y»¢-martingale and

T(i+1)

n .
v,=Y 0 T AU ds -6, Af.
i=1

We have
T(i+l] 2

E[1¥,? .
E[VaF] < FXPds -6, Af

1
n ni=1

< 2|l fll5 SUpEx(75).
xeD

From [12, Theorem 1.3.17], we deduce that n~'¥,, goes almost surely to zero
when 7 goes to infinity, that is

a.s.

0
(n+) MO nnAf 0.

n n—+o0o

Since Af is continuous and bounded for any bounded measurable function f
(see Proposition 3.2), one deduces from Proposition 4.3 that, almost surely,

Hn/JH,,f

n n—+00

aAf =aflAy.
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Applying this result to f = 1p, one deduces that 8,/n converges to 1/, al-
most surely and hence that yy, f converges to a f almost surely. Since, for all
re [en»9n+1);

_ Iflloo, (t—6,) ( e )
luef ,LteanS—t (t—0,)+ o 01l flloo <21 flloo [ 1 )

the almost sure convergence of y; to a f when ¢ — +oo follows from the almost
sure convergence of 8,/ n to the positive constant 1/A,.
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