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The quantum Monte Carlo study [1] of few-neutron
resonant states provided results incompatible with rig-
orous few-body calculations [2–4]. In this Comment
we point out serious shortcomings in the framework of
Ref. [1], leading to misinterpretation of unbound few-
body systems.

Study of unbound few-neutron systems [1] followed
quite popular strategy consisting of two steps: (i) make
the system bound with additional attractive potential,
controlled by strength parameter V0; (ii) extrapolate the
resulting binding energy to the physical limit in contin-
uum at V0 = 0. Two different ways for step (i) have been
employed in Ref. [1]: 1) adding an external trap potential
and fixing center-of-mass (c.m) of the system; 2) enhanc-
ing the nn interaction by factor α = 1+ V0. Such proce-
dure is sound if (a) the calculated bound state is phys-
ical and it evolves into resonance, and (b) the analytic
continuation to different Reemann sheet with resonance
is performed correctly, taking into account threshold ef-
fects.

We argue that both these conditions are not satis-
fied in Ref. [1]. For definiteness we consider the four-
neutron (4n) system. Additional attraction may generate
a bound dineutron with energy Ed < 0, which then de-
fines the stability threshold for tetraneutrons: only those
with E4n ≤ Ed in the trap (or those with E4n ≤ 2Ed for
the enhanced force) are stable. Otherwise, even in the
case E4n < 0 they can decay into dineutron plus two in-
finitesimally slow neutrons moving around the common
mass center (trap) or into two dineutrons (produced by
enhanced force).

Our study reveals that a bound dineutron emerges
in trap with radius RWS = 6 fm and potential depth
V0 ≈ −0.09 MeV only, or when the enhancement factor
α in the 1S0 wave exceeds ≈ 1.1 (these values slightly
depend on the underlying nn potential). However, 4n
states declared to be bound tetraneutrons with E4n → 0
in Ref. [1] were found only at significantly larger absolute
values of V0 ≈ −1.2 MeV and α ≈ 1.3. For such Hamil-
tonians the dineutrons are already well bound, thus, the
lowest-energy state of the system is not true (stable)
bound state, but continuum state that asymptotically
looks like dineutron in a trap plus two slow peripheral
neutrons. It appears that Ref. [1] ignored this effect
in the presumed E4n ≈ 0 region, which is decisive for
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FIG. 1. 1
S0 dineutron pole trajectories in Wood-Saxon traps

with given range parameters for realistic (a) and two-Gaussian
(b) potentials.

the extrapolation. The tetraneutron states of Ref. [1]
are above the stability threshold and therefore are not
true bound states but most probably represent some dis-
cretized continuum states that do not evolve into a res-
onance. Extrapolation of their energies does not lead to
proper resonance energy.

Furthermore, a caution is needed in extrapolation pro-
cedure itself if real bound states are calculated, since tra-
jectory of a bound state evolving into continuum state in-
volves branching at each threshold with discontinuity in
the second derivative of energy with respect to strength
parameter [6]. Polynomial extrapolations [1] neglect this
discontinuity and therefore are conceptually incorrect.

We show two examples in Fig. 1 corresponding to the
1S0 virtual state for a realistic potential and to the res-
onance of the two-Gaussian potential [1]. Obtained 1S0

pole trajectories have a typical bending shape, result-
ing −0.12 MeV virtual state energy, in sharp contrast
with the positive 0.1 MeV value of Ref. [1]. The latter
is obtained by a polynomial extrapolation neglecting the
near-threshold bending region. The resonance of the two-
Gaussian potential does not necessarily evolve from the
ground state in the trap. In favorable case a linear ex-
trapolation, avoiding the input from the near-threshold
region, may give a reasonable estimation for the energy
of a narrow resonance. However, presence of a branch-
ing point at the threshold, as shown in Fig. 1 (inset),
produces highly nonlinear effects rendering naive extrap-
olation procedures mathematically unjustified.

http://arxiv.org/abs/1904.00925v1


2

Authors acknowledge discussions with J. Carbonell.
A.D. acknowledges the support by the Alexander von
Humboldt Foundation under Grant No. LTU-1185721-
HFST-E.

∗ arnoldas.deltuva@tfai.vu.lt

[1] S. Gandolfi, H.-W. Hammer, P. Klos, J. E. Lynn, and A.
Schwenk, Phys. Rev. Lett. 118, 232501 (2017).

[2] R. Lazauskas and J. Carbonell, Phys. Rev. C 72, 034003
(2005).

[3] E. Hiyama, R. Lazauskas, J. Carbonell, and M.
Kamimura, Phys. Rev. C 93, 044004 (2016).

[4] A. Deltuva, Phys. Lett. B 782, 238 (2018).
[5] A. Deltuva, Phys. Rev. A 96, 022701 (2017).
[6] V.M. Krasnopolsky and V.I. Kukulin, Phys. Lett. A 69,

251 (1978).

mailto:arnoldas.deltuva@tfai.vu.lt

