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Practical criteria for R-positive recurrence of unbounded

semigroups

Nicolas Champagnat1, Denis Villemonais1

February 15, 2021

Abstract

The goal of this note is to show how recent results on the theory of quasi-stationary dis-

tributions allow us to deduce general criteria for the geometric convergence of normalized

unbounded semigroups.
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1 Introduction

Let E be a measurable space and (Pn ,n ∈ Z+) be a positive semigroup of operators on the space

L∞(ψ1) to itself, where ψ1 : E → (0,+∞) is measurable and L∞(ψ1) is the set of measurable f : E →

R such that | f |/ψ1 is bounded, endowed with the norm ‖ f ‖ψ1
= ‖| f |/ψ1‖∞. We define the dual

action of (Pn ,n ∈Z+) on non-negative measures µ on E such that µ(ψ1) <+∞ as

µPn f =

∫

E
Pn f (x)µ(dx). (1.1)

Our aim is to provide sufficient conditions for the existence of θ0 > 0 such that (θ−n
0 Pn)n∈N con-

verges geometrically toward a non-trivial limit.

In this setting, given c such that P1ψ1 ≤ cψ1, the operators Qn =
Pn(·ψ1)

cnψ1
defines a sub-Markov

semigroup corresponding to a stochastic process with killing. The asymptotic behavior of such

semigroups is the subject of the theory of quasi-stationary distributions based on various tools,

including the theory of R-recurrent Markov chains [31, 29, 28, 17], spectral theoretic results (e.g.

Krein-Rutman theorem [13], spectral theory of symetric operators [8, 24], or other general criteria

of convergence of normalized semigroups such as the work of Birkhoff [7] and its extensions) and

Doeblin’s conditions and Foster-Lyapunov criteria [9, 10]. In this note, we apply the results of [10] to

the semigroup (Qn ,n ∈Z+) to give a necessary and sufficient condition for the existence of a non-

negative eigenfunction η of P1 with eigenvalue θ0 and the geometric convergence of θ−n
0 Pn . We

also extend these results to continuous-time semigroups. In particular, our results provide practi-

cal criteria for the general theory of R-positive recurrence of unbounded semigroups as developed

in [29, Section 6.2] and [28]. The notion of R-positive recurrence has strong implications for the

study of penalized Markov processes [14, 15], of the long time behaviour of Markov branching pro-

cesses (see for instance [20, 21, 22, 6, 23, 11, 5, 3, 4]), of non-conservative PDEs (see e.g. [1, 2] and

references therein) and of measure-valued Pólya processes and reinforced processes [25].
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The recent article [2] proposes similar criteria for R-positive recurrence of continous-time semi-

groups with nice applications to growth-fragmentation equations. The extent of our results and ap-

proaches sensibly differ. Concerning the results, our criteria apply to a larger class of semigroups

including non-irreducible ones (see Remark 2 below). Concerning the approaches, the authors

of [2] make use of tools developed in the proofs of [10] adapted to the semigroup setting. We show

here how these R-positivity criteria can be directly derived as corollaries of the results of [10], ap-

plied to the sub-Markov semigroup (Qn ,n ∈ Z+). This approach also has the advantage to allow

one to deduce with little extra effort sufficient criteria for the convergence of unbounded semi-

groups from the abundant theory of sub-Markov processes (cf. e.g. [13, 12, 32, 18, 24, 19]). Note

that a similar approach has been used in [5] to describe the asymptotic behaviour of the growth-

fragmentation equation using Krein-Rutman theorem and other criteria for R-positivity. Finally,

the authors of [2] also establish a counterpart assuming the existence of a positive eigenfunction of

the semigroup and using the approach of [9]. In Theorem 2.2, we extend this counterpart by allow-

ing the eigenfunction to vanish and exhibit the link with the classical theory of V -ergodicity [27, 16].

Section 2 is devoted to the statement and the proof of our main results. In Section 3, we pro-

vide two applications of these general results to penalized semigroups associated to perturbed

(discrete-time) dynamical systems (Subsection 3.1) and diffusion processes (Subsection 3.2).

2 Main result

We first introduce the assumptions on which our results are based. We state them following the

same structure as Assumption (E) in [10] to emphasize their similarity.

Condition (G). There exist positive real constants θ1,θ2,c1,c2,c3, an integer n1 ≥ 1, two functions

ψ1 : E → (0,+∞), ψ2 : E →R+ and a probability measure ν on a measurable subset K of E such that

(G1) (Local Dobrushin coefficient). ∀x ∈ K and all measurable A ⊂ K ,

Pn1
(ψ11A )(x) ≥ c1ν(A)ψ1(x).

(G2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈K

ψ2(x)/ψ1(x) > 0, sup
x∈E

ψ2(x)/ψ1(x) ≤ 1,

P1ψ1(x) ≤ θ1ψ1(x)+c21K (x)ψ1(x), ∀x ∈ E ,

P1ψ2(x) ≥ θ2ψ2(x), ∀x ∈ E .

(G3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Pnψ1(y)/ψ1(y)

infy∈K Pnψ1(y)/ψ1(y)
≤ c3.

(G4) (Aperiodicity). For all x ∈ K , there exists n4(x) such that for all n ≥ n4(x),

Pn(1K ψ1) > 0.
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Theorem 2.1. Assume that Condition (G) holds true. Then there exist a positive measure νP on

E such that νP (ψ1) = 1 and νP (ψ2) > 0, and two constants C < +∞ and α ∈ (0,1) such that, for

all measurable functions f : E → R satisfying | f | ≤ ψ1 and all positive measures µ on E such that

µ(ψ1)<+∞ and µ(ψ2) > 0,
∣

∣

∣

∣

µPn f

µPnψ1
−νP ( f )

∣

∣

∣

∣

≤Cαn µ(ψ1)

µ(ψ2)
, ∀n ∈Z+. (2.1)

In addition, there exist θ0 > 0 such that νP Pn = θn
0 νP and a function η : E → R+ such that θ−n

0 Pnψ1

converges uniformly and geometrically toward η in L∞(ψ1) and such that P1η = θ0η and νP (η) =

νP (ψ1) = 1. Moreover, there exist two constants C ′ > 0 and β ∈ (0,1) such that, for all measurable

functions f : E →R satisfying | f | ≤ψ1 and all positive measures µ on E such that µ(ψ1) <+∞,
∣

∣θ−n
0 µPn f −µ(η)νP ( f )

∣

∣≤C ′βnµ(ψ1). (2.2)

Remark 1. Note that (G2) implies that Pnψ1 ≤ cPnψ2 on K for all n ≥ 0 and some constant c > 0

(see [10, Lemma 9.6]). Hence we have, for all x ∈ K ,

Pnψ1(x)/ψ1(x) ≤ c Pnψ2(x)/ψ1(x) ≤ c Pnψ2(x)/ψ2(x)

and

Pnψ2(x)/ψ2(x) ≤ Pnψ1(x)/ψ2(x) ≤ sup
K

ψ1

ψ2
Pnψ1(x)/ψ1(x).

Therefore, replacing ψ1 by ψ2 in (G1) and/or (G3) give equivalent versions of Condition (G).

Proof. Assumption (G2) implies that P1ψ1 ≤ (θ1 + c2)ψ1, so that Q1 f :=
P1( f ψ1)

(θ1+c2)ψ1
defines a sub-

markovian kernel generating the semigroup (Qn)n∈N defined by

Qn( f ) =
Pn( f ψ1)

(θ1 +c2)nψ1
, ∀n ≥ 0, ‖ f ‖∞ ≤ 1.

It is straightforward to check that this semigroup satisfies conditions (E1-E4) in [10] with ϕ1 = 1 and

ϕ2 =ψ2/ψ1, using θ1/(θ1 + c2) in place of θ1, θ2/(θ1 + c2) in place of θ2 and c1/(θ1 + c2)n1 in place

of c1. Using Theorem 2.1 in this reference applied to Qn , we deduce that there exist constants C >

0,α ∈ (0,1) and a probability measure νQSD on E such that, for all bounded measurable functions

g : E →R and all probability measures υ such that υ(ϕ2) > 0,
∣

∣

∣

∣

υQn g

υQn1
−νQSD (g )

∣

∣

∣

∣

≤Cαn ‖g‖∞

υ(ϕ2)
.

Setting νP (d x) = 1
ψ1(x)νQSD (d x), µ(d x) = 1

ψ1(x)υ(d x) and f = g ψ1, one obtains (2.1). Similarly,

Theorem 2.5 of [10] for Qn states that there exist θQ > 0 such that νQSDQn = θn
Q
νQSD and a function

ηQ : E → R+ such that θ−n
Q

Qn1 converges uniformly and geometrically toward ηQ in L∞ and such

that Q1ηQ = θQηQ . Setting η= ηQψ1 and θ0 = θQ (θ1+c2) gives the result on geometric convergence

of θ−n
0 Pnψ1 to η in L∞(ψ1).

It remains to prove (2.2). Note that it is sufficient to prove it for any µ = δx . If η(x) = 0, this is

implied by the above geometric convergence. If η(x) > 0, then ηQ (x) > 0 and the convergence of

[10, Theorem 2.7] applied to Qn implies that there exists C ′ < +∞ and α̃ ∈ (0,1) such that, for all

measurable g : E →R satisfying |g | ≤ 1/ηQ ,
∣

∣

∣

∣

θ−n
Q

Qn(gηQ )(x)

ηQ (x)
−νQSD (gηQ )

∣

∣

∣

∣

≤C ′α̃n 1

ηQ (x)
.

Multiplying both sides by ηQ (x)ψ1(x) and setting f = gηQψ1 ends the proof of (2.2).
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Whether Assumption (G) is necessary for (2.1) is still an open problem up to our knowldge.

However, if one assumes that there exists a positive eigenfunction η such that (2.2) holds true,

then one recovers easily Assumption (G) by applying the classical counterpart of Forster-Lyapunov

criteria for conservative semigroups. Here, the conservative semigroup is the one associated to the

h-tranform of Pn defined by Rn f :=
θ−n

0

η Pn(η f ) (which is called Q-process in the sub-Markovian

case, cf. e.g. [26]). The only difficulty in the proof of the following theorem is that η may vanish on

some subset of E .

Theorem 2.2. Assume that there exist a positive function ψ : E → (0,+∞) and a non-negative eigen-

function η ∈ L∞(ψ) of P1 for the eigenvalue θ0 > 0, such that

∣

∣θ−n
0 Pn f (x)−η(x)νP ( f )

∣

∣≤ ζnψ(x) (2.3)

is satisfied for all x ∈ E and all measurable functions f : E → R such that | f | ≤ψ, where (ζn)n≥0 is

some positive sequence converging to 0. Then Assumption (G) is satisfied with ψ2 = η and with some

function ψ1 ∈ L∞(ψ) such that ψ ∈ L∞(ψ1).

Proof. We define E ′ = {x ∈ E , η(x) > 0} and introduce the conservative semigroup R on functions

g : E ′ →R such that |g (x)| ≤ψ(x)/η(x) defined by

Rn g (x) =
θ−n

0

η(x)
Pn(ηg )(x), ∀x ∈ E ′ and n ≥ 0.

Applying (2.3) to f = gη and setting νR (d x) = η(x)νP (d x), we deduce that, for all x ∈ E ′ and all

measurable function g : E ′ →R such that |g | ≤ψ/η

∣

∣Rn g (x)−νR (g )
∣

∣≤ ζn
ψ(x)

η(x)
.

This is the classical V -uniform ergodicity condition (with V =ψ/η), for which necessary and suf-

ficient conditions are well-known. First, it implies V -uniform geometric ergodicity, i.e. one can

replace ζn by C βn for some C > 0,β ∈ (0,1) in the above equation (see for instance Proposition

15.2.3 in [16]). Second, we deduce using for example Theorem 15.2.4(b) in [16] that, for any integer

m such that C 1/mβ< 1 and any λ,ρ such that C 1/mβ≤λ< ρ < 1, there exist d ,CR <+∞ such that

R1V0(x) ≤ρV0(x)+CR1K (x), ∀x ∈ E ′, (2.4)

with

V0 =

m−1
∑

k=0

λ−k Rk

(

ψ

η

)

and K := {ψ/η≤ d }∩E ′ is an accessible small set for R . This last property means that there exists a

probability measure νR on E ′ and a constant cR > 0 such that, for all A ⊂ K measurable,

Rn′
1
1A (x) ≥ cRνR (A), ∀x ∈ K .

for some constant integer n′
1 ≥ 1. Since K is accessible, there exists n′′

1 ≥ 0 such that a := νR Rn′′
1
1K >

0. Setting n1 = n′
1 +n′′

1 , it then follows that

Pn1
(ψ1A )(x) ≥ cRθ

n1

0 η(x)νR Rn′′
1

(

1K 1A
ψ

η

)

, ∀x ∈ K .
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Due to the definition of K , we deduce that (G1) holds true with c1 = acRθ
n1

0 /d and the probability

measure ν(d x) =
ψ(x)
aη(x)1K (x)(νR Rn′′

1
)(d x).

Defining ψ1 = ηV0, we also deduce from (2.4) that,

P1ψ1(x) ≤ θ0ρψ1(x)+CR1K (x)η(x) ≤ θ0ρψ1(x)+
CR

supE |η|/ψ1
1K (x)ψ1(x), ∀x ∈ E ′.

In view of the definition of V0(x) for all x ∈ E ′, we have

ψ1(x) =
m−1
∑

k=0

(λθ0)−k Pkψ(x),

which also makes sense for x ∈ E \E ′. For such an x, we deduce from (2.3) that Pnψ(x) ≤ ζnθ
n
0 ψ(x).

Without loss of generality, increasing m, λ and ρ if necessary, we can assume that ζ1/m
m ≤λ<ρ < 1.

Then,

P1ψ1(x)=λθ0ψ1(x)−λθ0ψ(x)+ (λθ0)1−mPmψ≤λθ0ψ1(x), ∀x ∈ E \ E ′.

Hence, we have checked that P1ψ1 ≤ θ0ρψ1 +c21K ψ1 on E for some constants ρ < 1 and c2 <+∞.

Since P1η = θ0η, the proof of (G2) is completed. Note also that ψ ≤ ψ1 and the fact that ψ1 ∈

L∞(ψ) follows from the inequality Pnψ1 ≤ Anψ1 for some constant An , which is an immediate

consequence of (2.3) and the fact that η ∈ L∞(ψ1).

Thanks to Remark 1, it is sufficient to check (G3) with ψ2 = η instead of ψ1. Since η is an eigen-

function of P1, (G3) is trivial.

Since K ⊂ E ′, it follows from (2.3) that, for all x ∈ K , θ−n
0 Pn(1K ψ1)(x) converges as n →+∞ to

η(x)νP (1K ψ1) > 0. Hence (G4) is clear.

For continuous time semigroups (Pt )t∈[0,+∞), the conclusions of Theorem 2.1 can be easily

deduced from properties on the discrete skeleton (Pnt0
)n∈N (similar properties where already ob-

served in Theorem 5 of [31] and in [10]). In the following result, the function η and the positive

measure νP are the one of Theorem 2.1 applied to the discrete skeleton (Pnt0
)n∈N.

Corollary 2.3. Let (Pt )t∈[0,+∞) be a continuous time semigroup. Assume that there exists t0 > 0

such that (Pnt0
)n∈N satisfies Assumption (G),

(

Ptψ1

ψ1

)

t∈[0,t0]
is upper bounded by a constant c̄ > 0 and

(

Ptψ2

ψ2

)

t∈[0,t0]
is lower bounded by a constant c > 0. Then there exist some constants C ′′ > 0 and γ> 0

such that, for all measurable functions f : E →R satisfying | f | ≤ψ1 and all positive measure µ on E

such that µ(ψ1) <+∞ and µ(ψ2) > 0,

∣

∣

∣

∣

µPt f

µPtψ1
−νP ( f )

∣

∣

∣

∣

≤C ′′e−γt µ(ψ1)

µ(ψ2)
, ∀t ∈ [0,+∞), (2.5)

In addition, there exists λ0 ∈ R such that νP Pt = eλ0tνP for all t ≥ 0, and e−λ0t Ptψ1 converges uni-

formly and exponentially toward η in L∞(ψ1) when t →+∞. Moreover, there exist some constants

C ′′′ > 0 andγ′ > 0 such that, for all measurable functions f : E →R satisfying | f | ≤ψ1 and all positive

measures µ on E such that µ(ψ1) <+∞,

∣

∣

∣e−λ0tµPt f −µ(η)νP ( f )
∣

∣

∣≤C ′′′e−γ′tµ(ψ1), ∀t ∈ [0,+∞). (2.6)
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Remark 2. In [2], a similar result is obtained, but with the additional assumptions that ψ2 > 0 on

E and n1 = 1. In this restricted case, one can check using Remark 1 that their assumptions are

equivalent to ours. The fact that ψ2 can vanish allows to deal with non-irreducible semigroups

(see [10, Section 6]).

Remark 3. The adaptation of the counterpart of Theorem 2.2 to the countinuous-time setting is

straightforward. A similar result was proven in [2], where the authors assume in addition that ζn is

geometrically decreasing and that η is positive.

Proof. Assuming without loss of generality that t0 = 1 and applying (2.1) to µPt , where t ∈ [0,1],

and f such that µ(ψ1) <+∞ and | f | ≤ψ1, one deduces that

∣

∣

∣

∣

µPt+n f

µPt+nψ1
−νP ( f )

∣

∣

∣

∣

≤Cαn µPtψ1

µPtψ2
≤

C c̄

αc
αn+t µ(ψ1)

µ(ψ2)
,

which implies (2.5). Then, applying this inequality to µ= νP and letting n go to infinity shows that

νP Pt f /νP Ptψ1 = νP f for all t ≥ 0. Choosing f = Psψ1 entails νP Pt+sψ1 = νP Ptψ1νP Psψ1 for all

s, t ≥ 0, and hence νP Ptψ1 = eλ0tνPψ1 for all t ≥ 0 for some constant λ0 ∈R (note that θ0 = eλ0 ).

Similarly, inequality (2.2) applied to µ = δx Pt and f =ψ1 on the one hand and to µ = δx and

f = Ptψ1 on the other hand implies that Ptη(x) = η(x)νP (Ptψ1) = eλ0tη(x) for all t ≥ 0. Applying

again (2.2) to µ= δx Pt entails that

∣

∣θ−n
0 Pt+n f (x)−Ptη(x)νP ( f )

∣

∣≤C ′βnPtψ1(x) ≤
C ′c̄

β
βn+tψ1(x).

In particular, for all t ≥ 0,

∣

∣

∣e−λ0t Pt f (x)−η(x)νP ( f )
∣

∣

∣≤
C ′c̄

β
βtψ1(x)

and e−λ0t Ptψ1 converges geometrically to η in L∞(ψ1). This concludes the proof of Corollary 2.3

3 Some applications

Given a positive semigroup P acting on measurable functions on E , one can try to directly check

Assumption (G) by finding appropriate functions ψ1 and ψ2. Another natural and equivalent strat-

egy is to find a function ψ such that the semigroup defined by Qn f =
Pn (ψ f )

cnψ
is sub-Markovian and

check that it satisfies Assumption (E) of [10]. The main advantage of this last approach is that Q has

a probabilistic interpretation as the semigroup of a sub-Markov process. As such, one can apply

all the criteria developed in the above mentioned reference and, more generally, use the intuitions

and toolboxes of the theory of stochastic processes. Since both approaches are equivalent, this is

rather a question of taste.

In Subsection 3.1, we consider the case of a penalized perturbed dynamical system and check

Assumption (G) directly. In subsection 3.2, we consider the case of a penalized diffusion processes

and check Assumption (E).
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3.1 Perturbed dynamical systems

Let F : Rd → R
d be a locally bounded measurable function and consider the perturbed dynamical

system Xn+1 = F (Xn)+ξn with (ξi )i∈Z+
i.i.d. non-degenerate Gaussian random variables. We are

interested in the asymptotic behaviour of the associated Feynman-Kac semigroup

Pn f (x) = Ex

(

n
∏

k=1

G(Xk )1Xk ∈E f (Xn)

)

,

where E is a measurable subset of Rd with positive Lebesgue measure and G : E → (0,+∞) is a

measurable function.

Proposition 3.1. Assume that 1/G is locally bounded, G(x) ≤C exp(|x|) for all x ∈ E and some con-

stant C > 0 and there exists p > 1 such that |x|−p|F (x)| →+∞ when |x| →+∞, then the semigroup

(Pn)n∈N satisfies Assumption (G).

Proof. One easily checks that ψ1(x) = exp(a|x|), where a > 0 is such that 1/a < p −1, satisfies

P1ψ1(x) ≤CE

(

e (1+a)|F (x)+ξ1|
)

≤C ′ψ1(x) exp
(

−a
(

|x|−p|F (x)|
))

, (3.1)

where C ′ =CEe (1+a)|ξ1|. Now, assume without loss of generality that B (0,1)∩E has positive Lebesgue

measure and set θ2 := infx∈B (0,1)∩E P11B (0,1)∩E (x)/2, which is clearly positive. It then follows from

Markov’s property that

θ−n
2 inf

x∈B (0,1)∩E
Pn1B (0,1)∩E (x) ≥ θ−n

2 inf
x∈B (0,1)∩E

Ex

[

n
∏

k=1

G(Xk )1B (0,1)∩E (Xk )

]

≥ 2n
→+∞,

when n →+∞. One easily deduces that, for all R ≥ 1, θ−n
2 infx∈B (0,R)∩E Pn1B (0,1)∩E (x) →+∞, and

hence that θ−n
2 infx∈B (0,R)∩E Pn1B (0,R)∩E (x) →+∞ when n →+∞.

We set θ1 = θ2/2 and fix R ≥ 1 large enough so that C ′e−a(|x|−p|F (x)|) ≤ θ1 for all |x| ≥R . It then fol-

lows from (3.1) that P1ψ1 ≤ θ1ψ1+c21K ψ1, where K := B (0,R)∩E . Settingψ2(x)=
∑n0

k=0
θ−k

2 Pk1K (x),

we deduce that, for all x ∈ E ,

P1ψ2(x)=
n0
∑

k=0

θ−k
2 Pk+11K (x)= θ2ψ2(x)+θ2

[

θ
−(n0+1)
2 Pn0+11K (x)−1K (x)

]

≥ θ2ψ2(x)

for n0 chosen large enough. Since in addition Pk1K ≤ Pkψ1 ≤ (θ1+c2)kψ1, ψ2 ∈ L∞(ψ1) and, for all

x ∈ K , ψ2(x) ≥ 1 ≥ e−aRψ1(x). Hence, dividing ψ2 by ‖ψ2/ψ1‖∞ ends the proof of (G2).

In order to prove (G1), (G3) and (G4), we follow similar arguments as for [10, Prop. 7.2]. Since

the adaptation of these arguments is a bit tricky because the function ψ1 needs to be taken into

account appropriately, we give the details below.

The first step consists in proving that there exists a constant c > 0 such that, for all measurable

A ⊂ K , for all x ∈ E and all y ∈ K ,

P1(ψ11A )(x)

ψ1(x)
≤ c

P1(ψ11A )(y)

ψ1(y)
. (3.2)

This implies easily (G1) for n1 = 1 and (G4) then follows directly from (G1) (since n1 = 1).
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To prove (3.2), we observe that (recall that A ⊂ K = E ∩B (0,R))

P1(ψ11A )(x)

ψ1(x)
≤P1(ψ11A )(x) ≤ sup

|z|≤R
[G(z)ψ1(z)] P(F (x)+ξ1 ∈ E ∩ A∩B (0,R)).

Because ξ1 is a non-degenerate gaussian random variable, it is not hard to check that there exists

a constant CR depending only on R (and not on x ∈ E and y ∈ K ) such that P(F (x)+ξ1 ∈ E ∩ A ∩

B (0,R))≤CRP(F (y)+ξ1 ∈ E ∩ A∩B (0,R)). Therefore,

P1(ψ11A )(x)

ψ1(x)
≤CR

sup|z|≤R G(z)ψ1(z)

inf|z|≤R G(z)
Ey

[

G(X1)ψ1(X1)1X1∈E∩A

]

≤ c
P1(ψ11A )(y)

ψ1(y)
,

where c =CR eaR sup|z|≤R G(z)ψ1(z)/inf|z|≤R G(z). Hence (3.2) is proved.

Next, we observe that the Markov property combined with (G2) implies that, for all x ∈ E and

all n ≥ 1,

Ex

[

n
∏

k=1

G(Xk )1Xk ∈E\Kψ1(Xn)

]

≤ (θ1 +c2)θn−1
1 ψ1(x). (3.3)

We also have the property that there exists a constant c ′ > 0 such that, for all y ∈ K and all 0 ≤ k ≤ n,

Pnψ1(y)

ψ1(y)
≥ c ′θk

2

Pn−kψ1(y)

ψ1(y)
. (3.4)

As observed in Remark 1, since we already proved (G2), the last property is equivalent to the same

one with ψ2 instead of ψ1. Since P1ψ2 ≥ θ2ψ2 on K (3.4) is then clear.

The proof of (G3) can then be done by combining the last inequalities. We first decompose

Pnψ1 depending on the value of the first return time in K : for all x ∈ E ,

Pnψ1(x)= Ex

[

n
∏

k=1

G(Xk )1Xk ∈E\K ψ1(Xn)

]

+

n
∑

ℓ=1

Ex

[

ℓ−1
∏

k=1

G(Xk )1Xk ∈E\K G(Xℓ)1Xℓ∈K Pn−ℓψ1(Xℓ)

]

≤ (θ1 +c2)θn−1
1 ψ1(x)+

n
∑

ℓ=1

Ex

[

ℓ−1
∏

k=1

G(Xk )1Xk ∈E\K EXℓ−1

[

G(X1)1X1∈K Pn−ℓψ1(X1)
]

]

,

where we used (3.3) and Markov’s property in the second line. We then proceed by using (3.2) for

some fixed y ∈ K first, (3.3) next, and finally (3.4) twice:

Pnψ1(x)

ψ1(x)
≤ (θ1 +c2)θn−1

1 +
c

ψ1(x)

n
∑

ℓ=1

Ex

[

ℓ−1
∏

k=1

G(Xk )1Xk ∈E\Kψ1(Xℓ−1)

]

Ey

[

G(X1)1X1∈K Pn−ℓψ1(X1)
]

ψ1(y)

≤
θ1 +c2

θ1
θn

1 +
c(θ1 +c2)

θ1

n
∑

ℓ=1

θℓ−1
1

Pn−ℓ+1ψ1(y)

ψ1(y)

≤

[

θ1 +c2

c ′θ1

(

θ1

θ2

)n

+
c(θ1 +c2)

c ′θ1

n
∑

ℓ=1

(

θ1

θ2

)ℓ−1
]

Pnψ1(y)

ψ1(y)
.

Since the last factor is bounded in n, this ends the proof of Proposition 3.1.
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3.2 Diffusion processes

Let (Xt )t∈[0,+∞) be solution to the SDE

dXt = dBt +b(Xt )dt , X0 ∈ (0,+∞)d , (3.5)

where B = (B (1), . . . ,B (d)) is a standard d-dimensional Brownian motion and b : Rd → R
d is locally

Hölder. Let r : (0,+∞)d → R be locally bounded and consider the semigroup (Pt )t∈[0,+∞) defined

by

Pt f (x) = Ex

(

e
∫t

0 r (Xu )du f (Xt )1Xs ∈(0,+∞)d , ∀s∈[0,t ]

)

. (3.6)

The term 1Xs∈(0,+∞)d , ∀s∈[0,t ] above corresponds to a killing at the boundary of the domain (0,+∞)d .

Note that the solution to (3.5) may explode in finite time if b does not satisfy the linear growth con-

dition. However, we assume by convention that Xt 6∈ (0,+∞)d after the explosion time, so that (3.6)

makes sense. We refer to [10, Sections 4.1 and 12.1] for the precise construction of the process.

One motivation for the study of this semigroup comes from the Feynam-Kac formula. Indeed,

when the coefficients are smooth enough (see for instance [30, Section 1.3.3]), this semigroup is

solution to the Cauchy linear parabolic partial differential equation

r v −
∂v

∂t
+L v = 0, on [0,+∞)× (0,+∞)d

v(0, ·) = f , on (0,+∞)d ,

where L is the differential operator of second order

Lϕ(x) =
1

2
∆ϕ(x)+b(x) ·∇ϕ(x), ∀ϕ ∈C 2(Rd ),

with Dirichlet boundary conditions.

Proposition 3.2. Assume that

r (x)+
d
∑

i=1

bi (x) −−−−−−−−−−−−→
|x|→∞, x∈(0,∞)d

−∞. (3.7)

Then the semigroup (Pt )t∈[0,+∞) satisfies the assumptions of Corollary 2.3.

Proof. We first observe that, setting ψ(x) = exp
(

∑d
i=1

xi

)

and a := d/2+supx∈(0,∞)d r (x)+
∑d

i=1
bi (x),

we have, for all x ∈ (0,+∞),

Qt f (x) := e−at Pt ( f ψ)(x)

ψ(x)
= Ex

(

e−
d
2

t+
∑d

i=1 B (i )
t e

∫t
0

(

r (Xu )+
∑d

i=1 bi (Xu )−a+ d
2

)

du f (Xt )1Xs∈(0,+∞)d , ∀s∈[0,t ]

)

.

Using Girsanov’s theorem, we deduce that

Qt f (x) = Ex

(

e−
∫t

0 κ(X̄u )du f (X̄t )1X̄s ∈(0,+∞)d , ∀s∈[0,t ]

)

.

where κ(y) = a − r (y)− d
2 −

∑d
i=1 bi (y) ≥ 0 and X̄ = (X̄ (1), . . . , X̄ (d)) is solution to the SDE dX̄ (i )

t =

dB (i )
t + (1+bi (X̄t ))dt with X̄ (i )

0 = xi .
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Assumption (3.7) thus implies that the conditions of [10, Theorem 4.5] are satified1 and hence

that Q satisfies Assumption (F) therein, which implies that Assumption (E) is satisfied by the semi-

group Qnt0
for some t0 > 0 and some Lyapunov functions ϕ1 and ϕ2, that

(

Qtϕ1

ϕ1

)

t∈[0,t0]
is uniformly

bounded, and that there exist a positive function ηQ ∈ L∞(ϕ1) and a constant λ0 > 0 such that

QtηQ = e−λ0tηQ for all t ∈ [0,+∞).

To conclude, it remains to observe that the same procedure as the one used in the proof of

Theorem 2.1 above allows to deduce from these properties that (Pnt0
)n≥0 satisfies Assumption (G)

with ψ1 =ψϕ1 and ψ2 =ψηQ . Observing also that ψ2 is the function η of Theorem 2.1, we deduce

that (Pt )t∈[0,+∞) satisfies the assumptions of Corollary 2.3.
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