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Falsification of a Time Operator Model based on
Charge-Conjugation-Parity violation of neutral K-mesons

Thomas Durt1, Antonio Di Domenico2 and Beatrix C. Hiesmayr3

Abstract

The founding fathers of the quantum theory already struggled with the different roles
of space and time in quantum theory. Position is by default represented by an operator,
whereas time is usually treated as a parameter. Time operator models exist, in particular
a certain Time Operator model denoted the Temporal Wave Function (T.W.F.). This
one extends the Born’s rule to the time domain. The statistics of pure exponential decay
does not allow to exclude this Born rule for time. However the tiny violation of the
combined discrete symmetries P (parity) and C (charge conjugation) observed in the K-
meson system allows us, as we prove in this paper, to discriminate between the standard
predictions, made in the framework of the so-called mass-decay matrix formalism, and
the T.W.F. predictions. We also present experimental data of a particular CP violating
decay channel, that is in contrast with the prediction of T.W.F. approach model, resulting
in its falsification.

Keywords: decay time; CP violation, kaon systems; Time Operator.

Introduction.

In the present paper, we investigate fundamental aspects of time, which is still a controversial
issue in the quantum theory (see for example Ref. [1]).

Our main goal is to discriminate the Temporal Wave Function (T.W.F.) approach [2, 3, 4]
from the standard approach applied to decaying meson-systems. The T.W.F. approach is in
the last resort motivated by the idea that, similar to the complementary observables assigned
to the position and momentum of a particle in the non-relativistic formulation of the quantum
theory, there would exist an operator representing time which would be complementary to the
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Hamiltonian. A Time Operator would be the temporal component of a relativistic quadri-
vector containing as spatial components the observables associated with the position of the
particle. As is well known in non-relativistic quantum mechanics, each spatial component is
complementary relatively to the corresponding component of the momentum. We expect thus
that the Time Operator would be complementary to the Hamiltonian, so that ultimately the
quadrivector time-position would be complementary to the quadrivector energy-momentum.
The temporal degree of freedom would no longer be an external, classical, parameter in this
approach, contrarily to the standard approach. In this view the time of occurence of an event,
for instance of the decay of an unstable quantum particle, would become a stochastic variable,
distributed according to a generalized Born rule, in analogy with the position of a quantum
particle in non-relativistic quantum mechanics [2, 3, 4, 5, 6].

Our main result is the following: a precise measurement of the asymmetry of the decay rates of

the two possible strangeness eigenstates K0 and K
0

into pion pairs, A2π(t), makes it possible
to falsify a Time Operator approach, the T.W.F. approach.

The paper is structured as follows.

In the first section, we motivate the Time Operator approach, summarizing (section 1.1) debates
around the status of time that can be traced back to the founding fathers of the quantum theory
(Bohr, von Neumann, Dirac, Heisenberg Schrödinger and Pauli). We also explain briefly why
exponential decay does not make it possible to end the debate (section 1.2) [6]. We also
generalize the reasoning to the most general situation of the exponential decay treated as a
multi-channel process (section 1.3).

In section 2, we briefly recall the phenomenology of unstable neutral kaon particles and their
description in terms of the mass-decay matrix in the standard Weisskopf-Wigner approximation
(WWA) [7, 8, 9].

In section 3 we confront the standard WWA formulation of decay processes to the Time Opera-
tor approach. We show how a certain model of Time Operator, denoted the T.W.F. approach,
can agree with the standard WWA predictions in the neutral kaon system – including the de-
scription of kaon oscillations in semi-leptonic decay– provided we neglect the violation of the
combined parity (P ) and charge conjugation (C) symmetries (from now on CP violations).
Moreover, we show that the precise measurement of the A2π(t) asymmetry at short times per-
formed by the CPLEAR experiment [10, 11] – in perfect agreement with the WWA description
– does not confirm the prediction of our T.W.F. model, which results therefore falsified.

The last section is devoted to discussions and conclusions of the falsification.

Extra-material can be found in appendix, which contains a detailed treatment of the Fermi
golden rule when the decay is a multi-channel process.
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1 Standard and non-standard conceptions of time in quan-

tum mechanics.

1.1 Time in quantum mechanics: is there a problem?

As intensively discussed in the literature, see e.g. Ref. [12], the status of time in the quantum
theory has been in the past, and is still to some extent today, the source of much confusion. Let
us summarize the discussions of [12], inviting the reader to consult this very detailed reference
for more precise explanations and bibliography.

The main source of confusion could be formulated through the question:

...Is time a classical variable (c-number)?...,

by which we mean that time can be treated as an external parameter (similar to time as it
appears in classical, Newtonian, and/or relativistic, Minkowski space-time).

The other alternative can be formulated as follows:

...Is time a quantum quantity (q-number) represented by an operator?...,

by which we mean that it is represented by or associated with an internal parameter (example:
phase) of some quantum system, represented by an operator (similar to position components
x̂, ŷ and ẑ in the non-relativistic quantum theory).

As noted in [12], various answers were given by the founding fathers of the quantum theory
to this deep foundational issue. Bohr, for instance, treated time as a c-number and concluded
that there is no problem in doing so, which is close to the mainstream view of contemporary
physicists on the subject. Von Neumann acknowledged that time is treated as a c-number in
the first quantized, non-relativistic, quantum theory but at the same time he considered that
this is a source of problems, mainly for the following reasons:

-The coordinates x, y, z are described by operators (in the non-relativistic quantum theory),
and Lorentz transformation treats space and time on the same footing (see [13] for a fresh view
on this subject) so that time ought to be treated as a q-number, and, consequently, represented
by an operator. Let us e.g. reconsider the usual quantization rule that associates the energy
E with i~ ∂

∂t
, px to ~ ∂

i∂x
, py to ~ ∂

i∂y
, and pz to ~ ∂

i∂z
. It obviously possesses a strong relativistic

flavour, which suggests that time ought to be represented by an operator conjugate to the
Hamiltonian.

Dirac also felt strongly concerned by this question and, as noted in [12], he wrote his famous
equation in order to formulate a Lorentz covariant quantum theory (of the electron), where
space and time would be treated on the same footing. Finally, Pauli remarked that when
an Hamiltonian possesses a continuous bounded spectrum, it is not possible to construct an
operator T such that [Ĥ, T̂ ] = i~Î. In other words, it is not always possible to treat a quantum
system as a clock.

As it was noted by J. Hilgevoord [12], many discussions about the status of time focused on
Pauli’s former objection that was since then interpreted as a no-go theorem about the existence
of a Time Operator. In the meanwhile, the question of the existence of a Time Operator
somewhat lost interest [1], and we can claim without risk that the main opinion today is that
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the time that appears in Schrödinger equation IS a classical variable (c-number), and can thus be
considered as an external parameter (universal or general time). Several theoretical arguments
invite us indeed to orient the debate to this conclusion, and it is commonly accepted nowadays
that in quantum field theory time and even space [14] correspond to classical parameters (the
spacetime “arena”). Despite of these theoretical arguments, some confusion remains concerning
these questions [1] and there were several attempts to associate with time an operator [1, 15]
or a positive-operator valued measure (POVM) [16, 17] (or Superoperator [18, 19]) in order to
deal with arrival times and/or decaying processes4 (photon in a cavity, particle tunneling from
a trap, decaying radio-active particle and so on).

1.2 Two approaches to exponential decay.

In the non-standard approach (Time Operator and/or Superoperator approaches), the time
of decay of an individual quantum unstable system is considered to be a quantum quantity
(q-number), an internal parameter, represented by an operator or a Superoperator. The Time
Super Operator approach of Misra, Prigogine and Courbage et al. [18, 19]), makes it for instance
possible to associate a generalized Time Operator (Super Operator) with any Hamiltonian pro-
vided its spectrum is not bounded by above. It has been applied to kaon phenomenology in
the past [5]. In this paper we shall consider a simpler model, which fits into the Time Operator
approach, through which we associate with the statistical distribution of decay processes a tem-
poral wave function (T.W.F. [2, 3, 4, 5, 6]). This model is for instance very natural and straight-
forward in the case of exponential decay [3], in which case it is common, following Gamow, to

associate with the unstable system a wave function of the form ΨS(t) = ΨS(0)exp−i(
mc2

~ −i
Γ
2

)·t

which is interpreted as the amplitude of a complex energy state.

According to the standard interpretation, |ΨS(t)|2
|ΨS(0)|2 is interpreted to be equal to the survival

probability Ps(t) up to time t (0 ≤ t).

Alternatively, let us define the Temporal Wave Function Ψ̃T.W.F.(t) through5

Ψ̃T.W.F.(t) = Ψ̃T.W.F.(0)exp−i(
mc2

~ −i
Γ
2

)·t, (1)

with Ψ̃T.W.F.(0) =
√

Γ. It is straightforward to check that

−dPs(t)
dt

= |Ψ̃T.W.F.(t)|2. (2)

The choice Ψ̃T.W.F.(0) =
√

Γ also ensures that the survival probability decreases from its initial
value (1) at time t = 0 to its final value (0), when t goes to +∞.

As we see, by a formal renormalisation, we can define a temporal wave function Ψ̃T.W.F.(t)
(T.W.F.), normalised to unity over time in the interval [0,∞], such that the probability of

4Decay processes are appealing candidates for a Time Operator approach because to the contrary of stable
systems, the probability of decay by unit of time (probability density function) of such systems is normalised
to unity.

5From now on the upperly tilded quantities will always refer to quantities derived in the framework of the
T.W.F. approach.
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decay by unit of time (probability density function) is equal to its modulus squared, in full
analogy with the usual Schrödinger wave function in position representation. Considered so,
the T.W.F. provides a time representation assigned to the distribution of decay times of an
unstable quantum system.

It is worth noting that this is not only a formal trick, but that this procedure resists to ex-
perimental falsification in the case of purely exponential decay. Indeed, lifetimes of particles
are often measured indirectly in particle physics, by fitting the energy distribution of decay
products with a Breit-Wigner (Lorentzian) distribution. Also in this case the standard and
Time Operator approaches cannot be distinguished [6]. Roughly summarized, the argument
goes as follows:

-Suppose that the Hamiltonian is time-independent and that at time t = 0 the amplitude of
probability that the particle energy is E equals ψE(E). Then, developing the wave function
in the energy eigenbasis it is straightforward to show that Ps(t) = | < ψ(0), ψ(t) > |2 =

|
∫ Emax.
Emin.

dEe−i
Et
~ |ψE(E)|2|2, where the spectrum of the Hamiltonian runs from Emin. to Emax..

When the spectrum of the Hamiltonian is large enough |
∫ Emax.
Emin.

dEe−i
Et
~ |ψE(E)|2| is close to

|
∫ +∞
−∞ dEe−i

Et
~ |ψE(E)|2| and the survival probability is equal to the squared modulus of the

Fourier transform of the energy distribution. Now, the characteristic function (Fourier trans-

form) of the Breit-Wigner distribution is equal to C · e−i(mt− i
2

Γ|t|).

Thus fitting with a Breit-Wigner distribution is consistent with the “standard” recipe: Ps(t) =
| < ψ(0), ψ(t) > |2 (disregarding negative times).

-Assume that the decay probability density function is associated with a “temporal wave func-
tion”: −dPs(t)

dt
= Γθ(t)e−Γt=|Ψ̃T.W.F.(t)|2 with |Ψ̃T.W.F.(t)|2=|

√
Γθ(t)e−i(m− i

2
Γ)t)|2 (where θ(t) is

the Heaviside function). Then, |Ψ̃T.W.F.(t)|2=|
∫ +∞
−∞ dEe+iEt~

ˆ̃ΨT.W.F.(E)|2,

with ˆ̃ψT.W.F.(E)= 1
2π

∫ +∞
−∞ dte−i

Et
~ Ψ̃T.W.F.(t)=−i

√
Γ
2π

1
(E−(m− i

2
Γ))

. The modulus squared of ˆ̃ψT.W.F.(E)

is precisely equal to the Breit-Wigner distribution:

| ˆ̃ψT.W.F.(E)|2=N. 1
(E−m)2+(Γ/2)2 with N a normalisation factor. To fit with a Breit-Wigner distri-

bution is thus also consistent with the “non-standard” recipe: −dPs(t)
dt

= Γθ(t)e−Γt=|Ψ̃T.W.F.(t)|2.

It is worth noting that in the previous paragraph we performed two different Fourier transforms:
in one case we transformed amplitudes, in the other case we transformed the modulus square
of these amplitudes. By chance, in the case of exponential decay, both approaches lead to the
same prediction. In order to study more in depth the two approaches, it is thus necessary
to investigate more complex decay processes which exhibit a non-exponential statistics. This
motivates our choice to consider neutral kaons which show also subtle non trivial effects due to
CP violation.

In order to tackle these more sophisticated decay processes, we shall have to generalize the
T.W.F. model described here in the case of exponential decay. This model will be outlined in
section 3.1, on the basis of kaon phenomenology that we outline in section 2.

Before doing that we will show in the next paragraph how the T.W.F. approach can be applied
in the case where several decay channels are present, a situation that has not been investigated
in previous literature. In particular we show how the summation rule of the partial decay
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widths Γi assigned to various decay channels can be accomodated in the framework of the
T.W.F. approach.

1.3 Multi-channel exponential decay processes.

1.3.1 Multi-mode exponential decay processes in the standard approach.

In the standard approach, a Γ factor is associated with each outgoing mode (decay prod-
uct) through the Fermi golden rule. As it is shown in appendix, in the case of multi-channel
exponential decay processes, each individual decay mode contributes to the decay of the sur-
vival probability by a factor which can be shown, at the first order of perturbation theory,
to increase proportionally to |Gi,λ|2t2 sinc2

(
(ωi,λ − ωin) t

2

)
, where Gi,λ represents the coupling

constant with the mode labelled by λ of the ith decay species. Summing over internal degrees
of freedom λ of different decay products i and also over the energies ω, which is taken into
account through the introduction of the D.O.S. (density of states) factor aimed at converting
the discrete sum into an integral, via the prescription D.O.S.(ωin, i, λ)δω=number of modes
labelled by i and λ with an energy comprised between ~(ωin − δω/2) and ~(ωin + δω/2), and
making use of the property [20]

lim
t→+∞

(t sinc2

[
δω

t

2

]
) = 2πδDirac(δω). (3)

We find, after integrating over a continuum of frequencies centered around ωin,

∑
i,λ,ω

|ci,λ (t) |2 = lim
t→+∞

∑
i,λ

∫ +∞

−∞
dωD.O.S.(ω, i, λ)|Gi,λ(ω)|2t2 sinc2

[
(ωin − ω)

t

2

]
= ...

=
∑
i

Γit = Γt. (4)

We observe that
∑

i,λ,ω |ci,λ (t) |2 increases linearily with time. In other words the amplitude

that a decay occurs increases with
√
t which is the essence of the Fermi Golden Rule.

The important lesson that must be retained from (4) is that the resulting Γ factor is the sum
of the contributions of all individual modes (integrated over species and internal degrees of
freedom). In particular, Γ =

∑
i Γi where i labels the different species of decay products (for

instance for the decay process of a kaon distinct values of i are assigned e.g. to π+π−, π0π0,
π`ν, 3π0, π+π−π0, ... decay products. Γi in turn obeys Γi =

∑
λD.O.S.(ωin, i, λ)2π|Gi,λ(ωin)|2,

where λ does label the internal degrees of freedom of the species under concern, in agreement
with the Fermi Golden Rule.

1.3.2 Multi-channel exponential decay processes in the T.W.F. approach.

As it is shown in appendix, the multi-mode exponential decay process does not fundamentally
differ from a single mode process, being given that only one outgoing mode (|eff. >) is ef-
fectively coupled to the ingoing mode. Of course, this effective mode is in general a coherent
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superposition of modes of different species, which will never interfere in practice, so that in
practice we can as well consider that the sum over the different possible outgoing channels is
incoherent.

Then, when the Fermi golden rule applies, it is straightforward to interpret a generation of
decay products labelled by the index i at a rate Γi dt either in the standard approach where
this rate is equal to |

√
Γi
√
dt|2 in agreement with Fermi Golden Rule, or in the T.W.F. approach

where this rate is seen to be equal to |
√

Γi|2 dt. The so-called sum rule for the Γi factors is seen
here to derive from (4).

2 Single kaons and CP-violation in the standard ap-

proach.

2.1 Short overview of kaon phenomenology.

Neutral Kaons are bosons that were discovered in the forties during the study of cosmic rays.

They are constituted by a quark-antiquark pair, K0 (= ds̄) with strangeness S = +1, and K
0

(= d̄s) with strangeness S = −1. They are usually produced in processes dominated by strong
interactions, while weak interactions – which do not conserve strangeness – are responsible for
their decay or induce oscillations through transitions with an intermediate virtual state of the

type K0 ↔ ππ ↔ K
0
.

In absence of CP -violation, the following combinations

|K1〉 =
1√
2

(
|K0〉 − |K0〉

)
, |K2〉 =

1√
2

(
|K0〉+ |K0〉

)
, (5)

which are eigenstates of the CP operator, are also eigenstates of the total Hamiltonian of the
system.

In 1964 Christenson et al. discovered [21] that the CP symmetry is slightly violated (by a
factor of O(10−3) ) in the neutral kaon system, so that the CP eigenstates K1 and K2 do not
exactly coincide with the eigenstates of the Hamiltonian. In fact these contain a small CP
impurity and can be expressed as coherent superpositions of the K1 and K2 states6:

|KS〉 =
1√

1 + |ε|2
[
|K1〉+ ε |K2〉

]
, (6)

|KL〉 =
1√

1 + |ε|2
[
ε |K1〉+ |K2〉

]
, (7)

where ε is a complex CP -violation parameter [23],

|ε| = (2.228± 0.011)× 10−3, arg(ε) = (43.5± 0.5)◦. (8)

6At this level, CPT invariance will be assumed according to the CPT theorem [22].
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KS state and KL are the short- and long-lived states, with quite different lifetimes, τS ≈
8.92× 10−11s and τL ≈ 5.17× 10−8s, respectively.

Direct CP violation in the decay is negligible [23, 24], therefore one can distinguish the K1

state, which cannot decay into 3π0, a pure CP = −1 final state, from the K2 one, which cannot
decay into ππ (π+π− or π0π0), a pure CP = +1 final state. Moreover, the sign of the lepton

(or of the pion) in semileptonic decays, π−`+ν or π+`−ν̄, exclusively identifies a K0 or a K
0

state, respectively, assuming the validity of the ∆S = ∆Q rule.

Inverting equations (6,7) in the basis |K0〉 and |K0〉, we get

|K0〉 =

√
1 + |ε|2√
2(1 + ε)

[
|KS〉+ |KL〉

]
, (9)

|K0〉 =

√
1 + |ε|2√
2(1− ε)

[
|KS〉 − |KL〉

]
. (10)

2.2 Mass-decay matrix.

In the WWA mass-decay formalism, it is assumed that the evolution law describing the surviving
kaon can be cast in Schrödinger form [7]

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (11)

where H, the effective, not hermitian, Hamiltonian, can be written as a mass-decay matrix [8, 9]

which has the following form (for instance in the basis |K0〉 and |K0〉, taking here ~ = c = 1):

H = M − i

2
Γ ≡

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)
(12)

where M and Γ are individually Hermitian. Γ incorporates contributions from all possible
decay channels. For instance, the decay of a |K1〉 (|K2〉) state into ππ (3π0) contributes to the
mass-decay matrix by a factor ΓK1→ππ|K1〉〈K1| (ΓK2→π0π0π0|K2〉〈K2|). In principle all Γ factors
associated with the various decay channels can be computed thanks to the Fermi Golden Rule.

The Γ matrix can then be expressed by summing the contributions from all possible decay
channels:

Γ =
∑
i

Γ|Ki〉→i|Ki〉〈Ki| (13)

For instance, we find, writing explicitly some of the decay products:

Γ =
∑
i

Γ|Ki〉→i|Ki〉〈Ki|

≈ Γ|K1〉→2π|K1〉〈K1|+ Γ|K2〉→3π|K2〉〈K2|
+ Γ|K0〉→π−`+ν |K0〉〈K0|+ Γ|K̄0〉→π+`−ν̄ |K̄0〉〈K̄0|
+ ...

8



If for instance we have to compute the decay rate that a prepared K2 state decays into a `+

through a semi-leptonic decay process, we find:

Γ|K2〉→π−`+ν = 〈K2|Γ|K2〉π−`+ν = Γ|K0〉→π−`+ν · 〈K2|K0〉〈K0|K2〉

KL and KS are the eigenstates of H. The eigenvalues of the mass-decay matrix corresponding
to the long and short states are equal to

EL = mL −
i

2
ΓL, and ES = mS −

i

2
ΓS. (14)

Reintroducing dimensional factors we get

EL = mLc
2 − i

2
~ΓL, and ES = mSc

2 − i

2
~ΓS. (15)

These features are taken into account by noting that when a |K0〉 state is prepared at time
t = 0, the state of the kaon at time t is, in virtue of equations (11,6,7,9), equal to

|K0(t)〉 =

√
1 + |ε|2√
2(1 + ε)

(exp−iESt/~|KS〉+ exp−iELt/~|KL〉) (16)

Accordingly, in the WWA standard approach, the probability per unit of time that at time t the
kaon particle decays say in the CP=+1 sector by emission of a pair of pions can be computed
by estimating the corresponding contribution to the decay matrix which is, in virtue of (14),
equal to ΓK1→ππ · |〈K1|K0(t)〉|2 where ΓK1→ππ is the probability of transition per unit of time
(or production rate) between a K1 state and a pair of pions.

Thus we find:

PK0(0)→2π(t) =
ΓK1→ππ

2|1 + ε|2
|exp−iESt/~ + εexp−iELt/~|2, (17)

where 2π(t) denotes the production rate at time t of a pair of pions (for instance 2π = π0π0 ,
π+π−).

Anagously for the CP = −1 decay into 3π0 we get:

PK0(0)→3π(t) =
ΓK2→π0π0π0

2|1 + ε|2
|exp−iELt/~ + εexp−iESt/~|2. (18)

The production rates of all possible species of decay products can be in principle computed in
a similar fashion.

3 Experimental proposal: falsifying the Time Operator

approach in presence of CP violation related effects.

3.1 Time Operator Approach: a binary model.

Let us now stick to the Time Operator approach, in order to investigate whether or not the
statistical distribution of decay times exhibited by a neutral kaon might be derived from a
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“temporal wave function”. This T.W.F. would constitute a generalisation in the time domain
of Born’s interpretation of the quantum wave function as representing an amplitude of prob-
ability of “spatial position”. According to the Born rule, the probability that at a given time
a particle is located around a given position is supposed to be proportional to the modulus
squared of a complex field, the so-called quantum wave function. In the temporal wave func-
tion approach the probability that a “click” occurs at a given time in a given detector is also
supposed to be linked to a complex field, the Temporal Wave Function, and we shall propose
in the next section an experiment aimed at challenging/falsifying this hypothesis. Before we do
so, let us develop a Time Operator formalism aimed at modeling neutral kaon phenomenology.
Our model which has been developed elsewhere [2, 3, 4] is directly inspired from the spin 1/2
formalism, in particular from the non-relativistic spinorial wave function approach developed
by Pauli. In this approach, the wave function of a spin 1/2 particle splits into two components,
the spin “up” component Ψ+(x, y, z, t) and the spin “down” component Ψ−(x, y, z, t), relatively
to an a priori defined axis of reference. Both components depend on space and time, and ac-
cording to the standard interpretation, the probability that at time t and location (x, y, z) a
measurement of the spin projection along the axis of reference (traditionally denoted the z axis)
provides the result spin up (down) is equal to |Ψ+(x, y, z, t)|2/(|Ψ+(x, y, z, t)|2 +|Ψ−(x, y, z, t)|2)
(|Ψ−(x, y, z, t)|2/(|Ψ+(x, y, z, t)|2 + |Ψ−(x, y, z, t)|2)). Besides, the probability that the par-
ticle is present in a neighbourhood dxdydz around (x, y, z) is equal to (|Ψ+(x, y, z, t)|2 +
|Ψ−(x, y, z, t)|2)dxdydz.

The Temporal Wave Function differs from the standard spin 1/2 wave function considered
above in the following sense: the binary value taken by the spin projection along an axis of
reference (±~/2) is in our case replaced by the CP eigenvalue (±1), while space is replaced by
time. Accordingly, instead of dealing with probabilities to observe spin up or spin down we
are now considering the probabilities that a single kaon decays in the CP=+1 or -1 sectors.
We assume thus in the T.W.F. approach that there exists a two-components temporal wave
function (Ψ̃T.W.F.

+ (t), Ψ̃T.W.F.
− (t)) such that the probability that the kaon decays by emitting a

CP=+1 (-1) labelled decay product in the time interval [t, t + dt] (where t ≥ 0 and dt > 0) is
equal to |Ψ̃T.W.F.

+ (t)|2dt (|Ψ̃T.W.F.
− (t)|2dt). This binary model is somewhat reductionist because it

implicitly assumes that only CP labelled decay products are emitted during the decay process
of a kaon. A priori, this is a very crude assumption, because it is known for intance that a KL

decays 67 % of the times into semileptonic decays with undefined CP value, and only 20 % of
the times in 3π0, and 12 % of the times into π+π−π0 which both have a well-defined CP-value.

As we shall discuss now, even semi-leptonic decay can be accomodated in the framework of the
T.W.F. model, so that our reductionist hypothesis is fully justified as far as we may consistently
neglect CP violation.

Without CP violation. If there were no CP violation (ε = 0), then, in the standard WWA
approach, the mass matrix and the decay matrix as well would both be diagonal in the CP
eigen-basis (|K1〉, |K2〉): |KS〉 = |K1〉, |KL〉 = |K2〉 and only CP-labelled decay products would
be emitted during the decay process, for instance CP=+1 π0π0, π+π− states and CP=-1 π0π0π0

states, but also 1√
2
· (|π−`+ν〉+ |π+`−ν̄〉) and 1√

2
· (|π−`+ν〉−|π+`−ν̄〉), which are CP=±1 decay

products.

In the case of the semileptonic decay this approach is not conventional, but in practice it is
equivalent to the usual approach, for several reasons.
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The first reason is that, resulting from the fact that semileptonic decay is a CP respecting
process,

Γ|K0〉→π−`+ν = Γ|K̄0〉→π+`−ν̄

so that

Γ|K0〉→π−`+ν |K0〉〈K0|+ Γ|K̄0〉→π+`−ν̄ |K̄0〉〈K̄0| = Γ|K0〉→π−`+ν(|K1〉〈K1|+ |K2〉〈K2|).

The second reason is that, making use of the linearity of Schrödinger equation, it is equivalent
to describe a decay process of the type |K0〉 → |π−`+ν〉 (|K̄0〉 → |π+`−ν̄〉) as a symmetric
(antisymmetric) fifty fifty coherent superposition of the process |K1〉 → (1/

√
2)(|π−`+ν〉 +

|π+`−ν̄〉) with the process |K2〉 → (1/
√

2)(|π−`+ν〉 − |π+`−ν̄〉).
Finally, it is worth noting that detectors are not sensitive to the phase between π−`+ν and
π+`−ν̄ decay products, which are experimentally detected in different outgoing channels, as
already emphasised in the section 1.3.2, where we showed that in last resort decay products are
actually coherent superpositions of distinct decay species. Taken all together, these features
make it possible to properly reproduce strangeness oscillations during the semileptonic decay in
the framework of the T.W.F. approach which is in a sense remarkable for such a crude model.

From now on, we shall only be concerned with the 2π production rate, due to the fact that this
quantity has been measured with very high accuracy. This does not mean that we fully neglect
other decay channels. Actually they are still implicitly present through the normalisation which
imposes the following conditions:∑

i=allpossibleCP+1decayproducts ΓK1→i = ΓS = Γ1∑
j=allpossibleCP−1decayproducts ΓK2→j = ΓL = Γ2

In absence of CP violation, the expression of the CP=±1 components of the temporal wave
function in terms of complex energies ES(L) would in turn be extremely simple:

(Ψ̃T.W.F.ε=0
+ (t), Ψ̃T.W.F.ε=0

− (t)) = (α
√

ΓSexp
−iESt/~, β

√
ΓLexp

−iELt/~), (19)

where α and β are two complex amplitudes of which the value is fixed by the preparation of
the kaon at time t = 0.

For instance, whenever a source produces |K0〉 states at time t = 0, which are fifty-fifty
superpositions of CP=+1 and -1 states, (see e.g. equations (5,6,16,17,18)), we would have
α = β =

√
1/2.

The tilded expressions7 differ from the non-tilded ones by the normalisation factors
√

ΓS and√
ΓL:

(α, β) = (Ψ+(t = 0),Ψ−(t = 0)) = (Ψ̃T.W.F.ε=0
+ (t = 0)/

√
ΓS, Ψ̃

T.W.F.ε=0
− (t = 0)/

√
ΓL).

It is easy to check that the moduli squared of the components of (Ψ̃T.W.F.ε=0
+ (t), Ψ̃T.W.F.ε=0

− (t))
correctly reproduce [3] the standard predictions concerning decays in the CP=±1 sectors (17,18)

7We remind the reader that in the following, tilded quantities are evaluated within the T.W.F. approach,
while non-tilded ones denote standard WWA expressions.
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in the case ε = 0, for instance we get

P ε=0
K0(0)→ππ(t) =

ΓK1→ππ

2
|exp−iESt/~|2 = |

√
ΓK1→ππ

ΓS
Ψ̃T.W.F.ε=0

+ (t)|2 = P̃ ε=0
K0(0)→ππ(t), (20)

where we dropped the T.W.F. subscripts but kept the “tilded” notations for the production
rates in the CP=+1 and -1 sectors derived in the T.W.F. approach, in order to differentiate
them from the “non-tilded” predictions of the standard WWA approach (17,18)). We made
use here of the results of section 1.3.2 according to which the T.W.F. amplitude of a particular
species of decay products (i) is equal to

√
Γi. In the next section we shall show that in the case

of departure from exponential decay due to CP violation, the standard and “tilded” predictions
made in the framework of the binary T.W.F. model presented in the previous section differ so
that a discrimination is possible.

With CP violation.

If now we wish to incorporate CP related effects into our T.W.F. model, we are forced to
introduce a short-lived and a long-lived T.W.F.:

|K̃S〉 =
1√

1 + |ε̃S|2
[
|K1〉+ ε̃S |K2〉

]
; |K̃L〉 =

1√
1 + |ε̃L|2

[
ε̃L |K1〉+ |K2〉

]
, (21)

It is worth noting that we can express the short-lived and long-lived states in this way without
losing generality, because the four amplitudes 〈K̃S|K1〉, 〈K̃S|K2〉, 〈K̃L|K1〉, and 〈K̃L|K2〉 obvi-
ously differ from zero. Expressed in matricial form, the corresponding pseudo-spinorial T.W.F.
explicitly depend on time through

(Ψ̃T.W.F.
+S (t), Ψ̃T.W.F.

−S (t)) =
1√

1 + |ε̃S|2
√

ΓSexp
−iESt/~(1, ε̃S), (22)

(Ψ̃T.W.F.
+L (t), Ψ̃T.W.F.

−L (t)) =
1√

1 + |ε̃L|2
√

ΓLexp
−iELt/~(ε̃L, 1), (23)

where the indices + and - refer to the CP=+1 and -1 sectors respectively. ε̃S and ε̃L are complex
CP -violation parameters. According to the well-established kaon phenomenology, CP violation
is small so that they are supposedly small parameters. Otherwise, we do not assume anything
about their (complex) value8.

Consequently, we shall consider in the following temporal wave functions of the form

(Ψ̃T.W.F.
+ (t), Ψ̃T.W.F.

− (t)) =

(α
√

ΓSexp
−iESt/~ + βε̃L

√
ΓLexp

−iELt/~, β
√

ΓLexp
−iELt/~ + αε̃S

√
ΓSexp

−iESt/~), (24)

where α and β are fixed by the initial preparation process.

8In previous works [2, 4, 5], we sticked to the particular choice ε̃S = ε̃L = ε̃ but here we do no want to
diminish the level of generality of the T.W.F. model that we consider.

12



3.2 Experimental discrimination between the WWA and T.W.F.
predictions.

3.2.1 Binary T.W.F. predictions in presence of CP-violation.

Having in mind that CP-violation is small, it is temptating to generalize our binary T.W.F.
model in presence of CP violation to a binary model where all decay products would have a
clear CP signature.

In the binary T.W.F. approach, we assume that the probability that a CP=+1 (-1) decay
product is produced between time t and time t + dt is equal (in very good approximation) to
the decrease of the CP=+1 (-1) component during that period. In particular, when a short
(long) state is prepared at time t = 0, the decay is purely exponential and the production rates
of CP=+1 ππ decay products are predicted to be equal to :

P̃KS(0)→2π(t) = |
√

ΓK1→ππ
ΓS
|2(1/(1 + |ε̃S|2))ΓSexp

−ΓStdt

(P̃KL(0)→2π(t) = |
√

ΓK1→ππ
ΓS
|2(|ε̃L|2/(1 + |ε̃L|2))ΓLexp

−ΓLtdt).

This is an assumption motivated by the fact that most often the decay process is CP-respecting,
which justifies to ”import” here an equation (20) valid in the ε = 0 limit. From this point of
view the binary T.W.F. model is a minimal extension of the ε = 0 case9.

It is instructive to compare these prediction with the standard WWA ones. For instance, when
a short (long) state is prepared at time t = 0, the production rate of a ππ pair between time t
and time t+ dt is: (11,6,7),

PKS(0)→2π(t) = |
√

ΓK1→ππ
ΓS
|2(1/(1 + |ε|2))ΓSexp

−ΓSdt

(PKL(0)→2π(t) = |
√

ΓK1→ππ
ΓS
|2(|ε|2/(1 + |ε|2))ΓSexp

−ΓLdt).

It is already obvious at this level that the standard predictions a priori differ from those made
in the binary T.W.F. model. Considering e.g. that ε, ε̃L and ε̃S are small parameters, we notice
that discrepancies occur between the expression of PKL(0)→2π(t) and of its tilded counterpart
which is of the order of (

√
ΓS/
√

ΓL)2, which is not a small parameter. Discarding all contri-
butions quartic in ε, εS and εL which are supposedly small parameters (see also appendix for a
more detailed discussion), the contradiction is avoided at first sight provided we assume that

ε̃L = ε

√
ΓS
ΓL

(25)

However, it is possible in principle to discriminate experimentally the standard predictions from
those derived in the binary T.W.F. approach modulo equation (25), as we shall show now.

3.2.2 Incompatibility between T.W.F. and WWA approaches.

In agreement with previous notations, let us denote PX(0)→Y (t) the production rate at time t
of a specific decay product denoted Y (in what follows, Ymost often represents a pair of pions

9It is exactly at this level that the binary T.W.F. model departs from the WWA mass-decay formalism.
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(ππ)), obtained after preparing a kaon in the X (X=K0 or K
0
) state at time t = 0, evaluated in

the standard WWA approach. Let us denote P̃X(0)→Y (t) the same rate derived in the framework
of the T.W.F. approach.

The initial preparation fixes the coefficients α and β in expression (24), making use of the
identities

(1, 1) = 1
1−ε̃S ε̃L

[(1− ε̃L)(1, ε̃S) + (1− ε̃S)(ε̃L, 1)] and

(1,−1) = 1
1−ε̃S ε̃L

[(1 + ε̃L)(1, ε̃S)− (1 + ε̃S)(ε̃L, 1)],

which is the non-standard counterpart of the standard expressions (9,10) which can be rewritten
in a similar fashion as:

(1, 1) = 1
1+ε

[(1, ε) + (ε, 1)] and

(1,−1) = 1
1−ε [(1, ε)− (ε, 1)].

Straightforward computations similar to those of the previous section show that, in the case
that a K0 state is prepared at time t = 0, the tilded quantities are:

P̃K0(0)→2π(t) =
ΓK1→ππ

2|1− ε̃S ε̃L|2
|(1− ε̃L)exp−iESt/~ + (1− ε̃S)ε̃L

√
ΓL
ΓS
exp−iELt/~|2, (26)

to compare with the standard WWA relation (17) that we reproduce below

PK0(0)→2π(t) =
ΓK1→ππ

2|1 + ε|2
|exp−iESt/~ + εexp−iELt/~|2,

In the case that a K
0

state is prepared at time t = 0 we get:

P̃
K

0
(0)→2π(t)

=
ΓK1→ππ

2|1− ε̃S ε̃L|2
|(1 + ε̃L)exp−iESt/~ − (1 + ε̃S)ε̃L

√
ΓL
ΓS
exp−iELt/~|2, (27)

to compare with its standard counterpart

P
K

0
(0)→2π(t)

=
ΓK1→ππ

2|1− ε|2
|exp−iESt/~ − εexp−iELt/~|2, (28)

In order to discriminate the T.W.F. approach from the WWA approach on the basis of experi-
mental data, let us now consider the asymmetry in the production rates of pion pairs, denoted
Aππ(t) and defined as follows:

Aππ(t) =
P
K

0
(0)→2π(t)

− PK0(0)→2π(t)

PK0(0)→2π(t) + P
K

0
(0)→2π(t)

(29)

In the standard WWA approach, making use10 of equations (17,28), it is easy to show that the
asymmetry vanishes when t goes to 0:

lim
t→0

Aππ(t) = 0 (30)

10 We are neglecting here the tiny contribution O(10−6) to the Aππ(t) given by direct CP violation [23, 24].
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On the contrary, if we use equations (26,27) in order to evaluate the same limit in the T.W.F.

approach, adopting the value ε̃L =
√

ΓS
ΓL
ε in accordance with equation (25), we find instead

that

lim
t→0

Ãππ(t) =

≈ 2Re.((1−
√

ΓL
ΓS

) · ε̃L) ≈ 2Re(ε̃L) ≈ 8% 6= 0 (31)

The discrepancy between the predictions (30) and (31) shows the possibility to experimentally
discriminate between the standard and T.W.F. approaches.

3.2.3 Experimental falsification of the T.W.F. model.

The transition probabilities assigned to various CP-labelling processes (for instance |K0(t =

0)〉 → |ππ(t)〉, |K0
(t = 0)〉 → |ππ〉) are well-documented.

In particular, the asymmetry Aππ(t) has been measured by the CPLEAR experiment [10, 11]
in the range 1 < t < 20 τS . Figure 1 shows two plots of the asymmetry as a function of t
computed in the standard WWA approach (solid curve) and in the T.W.F. approach (dotted

curve). The left plot corresponds to the values ε̃L = ε
√

ΓS
ΓL

and ε̃S = ε; the right was obtained

after imposing ε̃L = ε
√

ΓS
ΓL

and ε̃S = ε
√

ΓL
Γs

(see appendix for more explanation). In each figure,

the discrepancy between the two curves is very evident in the range 1 < t < 10 τS. Even a
simple visual inspection of the CPLEAR measurement in this region (Fig.14b of Ref. [10]) shows
that it is in perfect agreement with the WWA prediction and some tens of standard deviations
away from the T.W.A. prediction. Therefore we can conclude that the T.W.F. model prediction
is falsified at a very high degree of confidence level.

4 Conclusions and discussions

Neutral kaons constitute a unique physical system where a variety of spectacular phenomena
at the root of Quantum Mechanics and Particle Physics show-up [10, 11, 25, 26, 27, 28, 29, 30].
If there were no CP-violation (ε = 0), it would be impossible to discriminate the T.W.F. model
from the standard WWA model.

In the present work, we have shown that CP violation (the discovery was awarded in 1980 with
the Nobel Prize) makes instead possible to discriminate the standard approach in which Time
is treated as an external, classical, parameter from the Time Operator (in particular T.W.F.)
approach in which, in analogy with the spin 1

2
theory, the time of occurrence of decay processes

in the CP=±1 sectors would obey a generalized Born rule (as explained in section 3.1). Indeed,
as we have shown (in section 3.2), accurate experimental measurements of neutral kaon decay
rates into two pions and of the asymmetry A2π(t) showing evidence of CP violation [10, 11],
allow us to falsify a model based on this Time Operator approach, which constitutes the main
result of our paper.
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Figure 1: Asymmetry A2π(t) as a function of t in units of τS: standard WWA (solid curve)

and T.W.F model predictions (dotted curve). The left top plot corresponds to ε̃S = ε
√

ΓL
ΓS

and

the right top plot to ε̃S = ε. The significance of these values is discussed in appendix. The

same plots with a zoomed vertical scale and in the region 10 < t < 40 τS with ε̃S = ε
√

ΓL
ΓS

(left

bottom plot) and with ε̃S = ε (right bottom plot) show better the difference between WWA
and T.W.F. model predictions in the two cases in this region.
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Ultimately, our analysis allows us to bring to the realm of experiments an old debate that can
be traced back to the original developments of the quantum theory concerning the role and
status of Time. Here CP violation turned out to be an essential ingredient of our derivation.
Despite CP violation is tiny, the measurements of its manifestations are so accurate [10] that
neutral kaons provide a successful candidate for implementing our ideas. Trapped ions also
offer promising perspectives [6] to test other fundamental ideas concerning the status of time
in the quantum theory [31].

Actually our analysis is also valid when one considers other models as for instance the Time
Super-Operator proposed by Misra Prigogine and Courbage [19]. Here Time is a quantized
variable (a q-number) [12]. This Time Super-Operator has been recently also applied to kaon
phenomenology [5]. Even in that case structural discrepancies can be found and, in principle,
it should be possible to discriminate these Super-Operator models from the standard theory.
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Appendix.

Appendix 1: Fermi Golden Rule and multi-channel decay.

Let us describe the decay process by the system of coupled equations

iḋin (t) = ωindin (t) +
∑
i,λ

G∗i,λ di,λ (t) , (32a)

iḋi,λ (t) = ωi,λdi,λ (t) +Gi,λ din (t) , (32b)

where we denoted ωin and din the energy and amplitude of the ingoing mode (e.g. a kaon
produced in a particle accelerator) while the indices i and λ are respectively assigned to different
species of decay products (e.g. pion pairs and pion triplets) and to their internal degrees of
freedom (energy, direction and so on).
It is convenient to introduce cin = dineiωint and ci,λ = di,λe

iωi,λt, so that we can cast (32) in the
form

ċin (t) =
∑
i,λ

G∗i,λ ci,λ (t) e−i(ωi,λ−ωin)t, (33a)

ċi,λ (t) = Gi,λ cin (t) ei(ωi,λ−ωin)t, (33b)

In a perturbative approach, it is standard to impose that, at short time, cin(t) = cin(t = 0) = 1
in first approximation so that we get after a straightforward integration:

ci,λ (t) = t · ei(ωi,λ−ωin)t/2Gi,λsinc((ωi,λ − ωin) t/2), from which we derive all results of section 1.3
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concerning the Fermi Golden Rule.
Let us now define [32] the state
|eff.(ω) > through |eff.(ω) >= 1√∑

i,λ,ωi,λ=ω |Gi,λ|2
∑

i,λ,ωi,λ=ω Gi,λ|i, λ, ω >.

It is easy to check that, in each energy sector characterized by an energy ω, all superpositions
of modes orthogonal to |eff.(ω) > are decoupled from the decay process, so that in practice
everything happens as if there was only one decay product, |eff.(ω) >, which is a coherent
superposition of different decay products, and is coupled to the ingoing mode with the effective

coupling constant Geff.(ω) =
√∑

i,λ,ωi,λ=ω |Gi,λ|2.

The Fermi Golden Rule treatment can also be applied in this case, and we find, following
the computation sketched in section 1.3.2, that the decay into this effective single mode is
characterized by an effective Gamma factor Γeff. which obeys
Γeff. =

∑
i

∑
λD.O.S.(ωin, i, λ)2π|Gi,λ(ωin)|2 =

∑
i Γi, where Γi is the Gamma factor associated

to a particular species of decay product, in agreement with section 1.3.2.

Appendix 2: constraints on ε̃S.

Due to the fact that CP-violation is small, we expect that ε̃S is a small parameter. It can be
shown that if we impose that the theoretical prediction of PKS(0)→3π(t), made in the standard

WWA approach, is the same as the corresponding prediction, P̃KS(0)→3π(t), made in the T.W.F.
approach, we find, after computations similar to those that led to the prediction (25), the
constraint

ε̃S = ε

√
ΓL
ΓS

according to which ε̃S is a very small parameter (of the order of 10−6). This constraint however
is not based on experimental data because no precise measure of the 3π production rate has
been realized up to now [33].
The measure of the asymmetry parameter provides instead another constraint on ε̃S.
Indeed, it can be shown by straightforward computation that in the limit t� τS

Aππ(t� τS) ' 2<(ε) ' 3.3× 10−3

Ãππ(t� τS) ' 2<(ε̃S) (34)

If now we impose to get identical results in both approaches, we find

2<(ε̃S) = 2<(ε) ' 3.3× 10−3,

which is satisfied if ε = ε̃S.
Obviously, the above result would not be true in the case ε̃S 6= ε.

The two predictions made above (ε̃S=ε
√

ΓL
ΓS

and ε̃S = ε) are plotted in figure 1. Without

zooming (bottom plots), the difference between the two top plots is nearly imperceptible with
the naked eye, but this does not really matter: what is important is the constraints derived from
observations on ε̃L alone, and those constraints suffice to discriminate the T.W.F. approach as
we have shown in the paper.
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