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Abstract
We propose and analyze StoROO, an algorithm for risk optimization on stochastic black-
box functions derived from StoOO. Motivated by risk-averse decision making fields like
agriculture, medicine, biology or finance, we do not focus on the mean payoff but on generic
functionals of the return distribution. We provide a generic regret analysis of StoROO and
illustrate its applicability with two examples: the optimization of quantiles and CVaR.
Inspired by the bandit literature and black-box mean optimizers, StoROO relies on the
possibility to construct confidence intervals for the targeted functional based on random-
size samples. We detail their construction in the case of quantiles, providing tight bounds
based on Kullback-Leibler divergence. We finally present numerical experiments that show
a dramatic impact of tight bounds for the optimization of quantiles and CVaR.
Keywords: Optimistic optimization; Risk-averse solutions; Quantile optimization; CVaR
optimization

1. Introduction

We consider an unknown function Φ : X × Ω → [0, 1] ⊂ R, where X ⊂ [0, 1]D and Ω
denotes the probability space representing some uncontrollable variables. For any fixed
x ∈ X , Yx = Φ(x, ·) is a random variable of distribution Px and we consider g(x) = ψ(Px)
with ψ a real-valued functional defined on probability measures. We assume that there exists
at least one x∗ ∈ X such that g(x∗) = supx∈X g(x). Using a set of sequential observations
(Φ(x1, ω1), · · · ,Φ(xT , ωT )), our goal is to minimizing the simple regret rT = g(x∗)− g(xT ),
with xT the value returned after using a budget T .

Different families of algorithms have been developed to treat this problem. Some are for
example of Bayesian flavor (see Shahriari et al., 2016, for instance), some are inspired by
the bandit literature. Here we focus our interest on the bandit framework.

In the classical X -armed bandit problem, a forecaster selects repeatedly a point x in the
input space X ∈ [0, 1]D and receives a reward distributed according to an unknown distri-
bution Px. Historically, the main goal was to minimizing the cumulative regret, i.e. the sum
of the difference between his collected rewards and the ones that would have been brought
by optimal actions. In the last decade, other works focused on the simple regret. These
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can be divided in two: algorithms that optimize an unknown function with the knowledge
of the smoothness, for example StoOO (Munos et al., 2014), HOO (Bubeck et al., 2011)
or Zooming (Kleinberg et al., 2008) and others focusing on the optimization of unknown
functions without the knowledge of the smoothness, such as POO (Grill et al., 2015), Stro-
quOOL (Bartlett et al., 2018), GPO (Xuedong et al., 2019), StoSOO (Valko et al., 2013) or
Locatelli and Carpentier (2018).

Those algorithms focus on the optimization of the conditional expectation of Px. This
choice is questionable in some situations. For example if the shape and variance of the
reward distribution depend on the input, a forecaster may be interested in different aspects
of the unknown distribution in order to modulate its risk exposure. In the literature, some
measures of risk have been proposed to replace the expectation: for instance quantiles (also
referred to as Value-at-Risk, see Artzner et al., 1999), the Conditional Value-at-Risk (CVaR
also referred as Superquantile or Expected Shortfall, Rockafellar et al., 2000) or expectiles
(Bellini and Di Bernardino, 2017). The purpose of this paper is to present a risk optimization
framework of an unknown stochastic function with the knowledge of the smoothness using
only pointwise sequential observations and a finite budget T .
X -armed bandit algorithms rely on optimistic strategies that associate with each point

of the space an upper confidence bound (UCB), that is, an optimistic prediction of the
outcome. Adapting the classical setting to the optimization of risk measures implies being
able to create high-probability confidence bounds for that particular measure. This problem
has been tackled in the multi-armed bandit setting (i.e. when the input space is discrete
and finite). For instance, Audibert et al. (2009); Sani et al. (2012) focused on the empirical
variance, Galichet et al. (2013); Kolla et al. (2019); Hepworth (2017) on the CVaR while
in David and Shimkin (2016); Szorenyi et al. (2015) the authors based their policies on the
quantile. However, the literature is scarce in the continuous input space case.

In this paper we provide a new version of the Stochastic Optimistic Optimization (StoOO)
algorithm (Munos et al., 2014), named StoROO (Stochastic Risk Optimistic Optimization),
which is designed to handle any functional ψ. In a first part, we provide an analysis of the
simple regret from a generic point of view. We then particularize our analysis in two impor-
tant illustrative cases: conditional quantiles and CVaR. In the case of quantiles, assuming
that the output distribution has a continuous, strictly increasing cumulative distribution
function, we first propose an upper bound on the simple regret using Hoeffding’s inequality,
then, we derive tighter confidence intervals that take into account the order of the quantile
respectively based on Bernstein’s and Chernoff’s inequalities. In the case of the CVaR, we
first derive an upper bound on the regret using the deviation inequality of Brown (2007),
then using the work of Thomas and Learned-Miller (2019) we derived tighter confidence
bounds. Finally, we present numerical experiments that illustrate the ability of our method
to optimize conditional quantiles and CVaR of a black-box function and the relevance of
using tight deviation bounds.

2. Problem setup

2.1. Hierarchical partitioning

The upper confidence bounds on which optimistic algorithms are based are surrogate func-
tions U : X → R larger than the objective (in a sense detailed below) with high probability.
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At each round t, the point X(t) having the highest UCB is sampled and a reward YX(t) is
collected.

In the classical multi-armed bandit problem, computing and sorting the UCB can be
done without major issues. But dealing with continuous input spaces implies maximizing
a UCB function over a continuous space, which can be both computational intensive and
algorithmically challenging. For example, Piyavskii’s algorithm (see Bouttier, 2017, and
references therein) defines U using a global Lipschitz assumption on the targeted function.
Because of the Lipschitz hypothesis, the UCB maximizer is at an intersection of hyperplanes,
i.e. where the UCB is non-differentiable. Thus a gradient-based algorithm cannot be used,
implying that finding the point with the highest UCB is a very hard problem to solve.

To overcome the computational difficulties, a popular alternative is to rely on hierarchical
partitions (see Bubeck et al. (2011); Munos et al. (2014) for instance), P = {Ph,j}h,j of X
such that

P0,1 = X , Ph,j =

K−1⋃
i=0

Ph+1,Kj−i ,

with K the number of sub-regions obtained after expanding a cell and Ph,j the j-th cell at
depth h. In the following we assume that:

Assumption 1: There exists a decreasing sequence δ(h), such that for any h ≥ 0 and
for any cell Ph,j , supx∈Ph,j ‖x− xh,j‖∞ ≤ δ(h), with xh,j the center of Ph,j .

Assumption 2: There exists ν > 0 such that every cell of depth h contains a ball of
radius νδ(h).

Starting with P0,1 and following an optimistic strategy, at time t the algorithm has
expanded some cells and the result is a tree Tt that is a subset of P and a partition of X .
In this setting U is taken as a piecewise constant function. Indeed for any (Ph,j)h,j∈Tt we
define Ūh,j such that for all x ∈ Ph,j , U(x) = Ūh,j .

In the literature of X -armed bandits there are two ways to select a cell of Tt at each
round. In Bubeck et al. (2011), the algorithm follows an optimistic path from the root to
the leaves. In Munos et al. (2014), StoOO selects the cell having the highest UCB among
all the cells of Tt that have not been expanded, i.e. the set Lt of leaves of Tt. We consider
here this second alternative. Hence, to find the maximizer of U at time t, we only need to
evaluate and sort a finite number of values (Ūh,j)(h,j)∈Lt .

2.2. Regularity assumptions, noise and bias

Even in the absence of noise, optimization from finite samples requires some regularity of
the objective. Following Munos et al. (2014), we assume the following smoothness property:

∀x ∈ X , g(x) ≥ g(x∗)− β||x− x∗||γ with γ, β > 0 . (1)

Note that this condition is less restrictive than a global Hölder condition. In particular, the
objective may be very irregular (even possibly discontinuous) except in the neighborhood of
global maxima.

At first glance, in our stochastic setting, it may not be easy to asses that g satisfies
(1). Sufficient conditions can be derived from the continuity of the conditional distribution
Px with respect to x. The relevant metric on the space of distributions actually depends
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on the chosen risk. For conditional quantiles, the natural assumption is that x 7→ F−1x (τ)
satisfies (1), and a sufficient condition is that ‖F−1x − F−1y ‖∞ ≤ β‖x − y‖γ . In the case
of the the conditional expectation and for the CVaR (or more generally for a large class of
Optimized Certainty Equivalent Ben-Tal and Teboulle (2007)), the natural metric involved
is the Wasserstein distance W1, as explained in Section A.1.

To create confidence bounds for (Ph,j)(h,j)∈Lt , StoOO samples the leafs at their centers
(xh,j)(h,j)∈Lt . Then using that all observed values are independent, deviation inequalities
are used to create (Uh,j)(h,j)∈Lt , a UCB for (g(xh,j))(h,j)∈Lt . Finally to create (Ūh,j)(h,j)∈Lt ,
a UCB over the cells, a bias term is added that takes into account how g can potentially
increase from the center of the cell to its edges. Because the convergence of StoOO (and
StoROO) only needs Ūh,j to be a UCB of maxx∈Ph,j g(x) for the cell containing x∗ (see the
proof of Proposition 2 (see also Munos et al. (2014)), it is enough to use the condition (1)
to define a UCB as

Ūh,j = Uh,j +Bh,j , with Bh,j = β̂δ(h)γ̂ ,

and β ≤ β̂, γ ≥ γ̂. The algorithm also needs a quantity that bounds g from below in order
to provide guaranties on the value of g over each cell. We thus construct a lower confidence
bound, termed Lh,j , for g(xh,j), and use it as a LCB for the maximum of g on Ph,j . In
particular, on the cell Ph∗,j∗ containing the optimum x∗, it holds that

Lh∗,j∗ ≤ g(x∗) ≤ Uh∗,j∗ + β̂δ(h∗)γ̂

with high probability. To summarize, the estimation of g(x∗) is altered by two sources of
error: the local estimation error Eh∗,j∗ = Uh∗,j∗ − Lh∗,j∗ made at the center of the cell,
and the bias term Bh∗,j∗ . Balancing those two terms naturally provides a trade-off between
exploration and exploitation.

3. Stochastic Risk Optimistic Optimization

3.1. The StoROO algorithm

StoROO starts by sampling one time each K sub-region of the root node. Then, at each
time 1 ≤ t ≤ T the algorithm selects Pht,jt ∈ (Ph,j)(h,j)∈Lt having the highest UCB. To
reduce the estimation error, StoROO can either get more samples from Pht,jt (to reduce the
variance), or split the cell in order to reduce its diameter (to reduce the bias). The good
balance between these two options is found by dividing a cell as soon as the local estimation
error is smaller than the bias, that is when

Uht,jt − Lht,jt ≤ β̂δ(ht)γ̂ . (2)

If Condition (2) is satisfied, StoROO expands Pht,jt and requires a new sample at the center
of each sub-region. If Condition (2) is not satisfied, then StoROO requires a new sample at
the center xht,jt which is used to update Uht,jt and Lht,jt .

When the budget is exhausted, several choices are possible for the return value: they
have the same theoretical guarantees. Following Munos et al. (2014), one can return the
deepest node among those that have been expanded. Here we propose a different, more
conservative choice. Denoting by LT the set of nodes having the highest LCB among those
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that have been expanded after a budget T , StoROO returns the node with the highest value
ĝ (an estimator of g) among the deepest nodes of LT . The pseudo-code of the full algorithm
is given in Algorithm 1. It requires the parameters β̂ and γ̂ that satisfy Condition (1), but
of course the inequality do not have to be tight.

Algorithm 1 StoROO
Input: error probability η > 0; number of children K; time horizon T ; β̂ > 0; γ̂ > 0;
Define: UCB and LCB
Initialization n = 1; t = 1;
Expand into K sub-regions the root node (0, 0) and sample one time each child
while n ≤ T do

foreach (h, j) ∈ Lt do
compute Ūh,j(t)

end
Select (h̃, j̃) = arg max(h,j)∈Lt Ūh,j(t)
Compute the LCB Lh̃,j̃(t)

if Uh̃,j̃(t)− Lh̃,j̃(t) ≤ β̂δ(h)γ̂ then
expand the node, remove (h̃, j̃) from Lt, add to Lt the K sub-cells of Ph̃,j̃ and sample
each new node once,
n = n+K, t = t+ 1

else
Sample the state xt = xh̃,j̃ and collect the observation Yxht,jt , n = n+K, t = t+ 1

end
end
Return the node according to the returning rule.

3.2. Analysis of the algorithm

In this section we provide a theoretical analysis of StoROO. It is inspired by Munos et al.
(2014), but differs most notably by the fact that the analysis is suited for any g and not
only for the conditional expectation. The analysis relies on the possibility to construct, for
any η > 0, upper- and lower-confidence bounds Uηh,j(t) and Lηh,j(t) such that the event

Aη =
⋂

T≥t≥1

⋂
Ph,j∈Tt

{
Uηh,j(t) ≥ g(xh,j), L

η
h,j(t) ≤ g(xh,j)

}
has probability P(Aη) at least 1 − η. We defer to Section 4 their specific expression for
the cases of the quantile and CVaR. Especially Section 4 shows that in our setting the size
of the confidence interval associated to each node is not always explicit, by opposition of
the classical case. We thus need to introduce the following definition to quantify how many
times a node needs to be sampled before satisfying the expansion condition (Eq. 2).

Definition 1 Let mη,h(θ, κ, α) = log(θT 2/η)

(
κ

β̂δ(h)γ̂

)α
and Nh,j(t) =

∑t
s=1 1X(s)∈Ph,j ,

a vector of safe constants v = (θ, κ, α) is composed of constants θ > 0, κ > 0, and α > 0
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such that the event

Bη =
⋂

T≥t≥1

⋂
Nh,j≥mη,h(θ,κ,α)

⋂
Ph,j∈Tt

{
Uηh,j(t)− L

η
h,j(t) ≤ β̂δ(h)γ̂

}
has probability at least 1− η.

For example, in the case of the conditional expectation a direct consequence of Hoeffding’s
inequality provides θ = 2, α = 2 and κ =

√
1/2 (see Munos et al. (2014)).

To ensure the convergence of StoROO, we first prove (Proposition 2) that any point at
the center of an expanded cell of depth h belongs to

Jh = { xh,j such that g(xh,j) + 2β̂δ(h)γ̂ ≥ g∗} . (3)

Next, Proposition 3 shows that using a budget T , the tree TT reaches at least a depth H∗η (T ).
This implies the point returned by the algorithm belongs to JH∗η (T ) (Proposition 4). Finally,
using an assumption on the size of Jh that can be formalized by the so-call near-optimality
dimension, we provide an upper bound on the regret (Theorem 7).

Proposition 2 Conditionally on Aη, StoROO only expands cells Ph,j such that xh,j ∈ Jh.

Given the safe constants v and the total budget T , the deeper the algorithm builds the
tree, the better are the guarantees on the final point returned. So the goal of the following
proposition is to provide a lower bound on the depth of TT .

Proposition 3 Define nη,h = mη,h(v) and define Hη the largest h ∈ N such that

Sh = K
∑
h′≤h

nη,h′+1|Jh′ | ≤ T, with |Jh′ |the cardinal of Jh′ .

The deepest node H∗η expanded by StoROO is such that H∗η ≥ Hη.

Intuitively, Sh is the budget needed to expand all the nodes in Jh for all h′ ≤ h. It may be
that some of this nodes will not be visited, but in the worst case they are and they need
to be considered in order to obtain a valid bound. Putting Propositions 2 and 3 together,
yields a first upper bound on the simple regret:

Proposition 4 Running StoROO with budget T , with probability P(Aη ∩ Bη) the regret is
bounded as

rT ≤ 2β̂δ
(
H∗η (T )

)γ̂
.

A more explicit bound for the regret can be obtained by quantifying the volume of
Xε = {x ∈ X , g(x) ≤ g∗ − ε} for small values of ε. Introducing the Holderian semi-metric
`β,γ(x, x′) = β ‖x− x′‖γ , that is associated with its regularity constants β and γ, the near-
optimality dimension of the function is defined as follows, (see Munos et al. (2014); Bubeck
et al. (2011) for more details).

Definition 5 The ν-near optimality dimension is the smallest d ≥ 0 such that for all ε ≥ 0,
there exists C ≥ 0 such that the maximal number of disjoint `β̂,γ̂-balls of radius νε with
center in Xε is less than Cε−d.
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In order to evaluate H∗η , we need to bound |Jh| for all h ≥ 0. The following proposition
makes the link between the near optimality dimension and |Jh|.

Proposition 6 Let d be the νγ̂

2 -near-optimality dimension, and C the corresponding con-
stant. Then

|Jh| ≤
C(

2β̂δ(h)γ̂
)d .

Finally, combining Propositions 4 and 6 with an hypothesis on the decreasing sequence δ(h),
it is possible to provide the speed of convergence of rT .

Theorem 7 Assume that δ(h) = cρh for some c ≥ 0 and ρ < 1, and assume that v = (θ, κ, α).
Thus with probability P(Aη ∩ Bη), the regret of StoOO is bounded as

rT ≤ c1
[ log(θT 2/η)

T

] 1
d+α with c1 = 2β̂

[
KCκα[2β̂]−d

(1− ρdγ̂+γ̂α)

] 1
d+α

,

where d is the near optimality dimension and C the corresponding near optimality constant.

If g is the conditional expectation, a vector of safe constants is (θ = 2, α = 2, κ =
√

1/2)
(based on Hoeffding’s inequality). Thus if we plug it into the quantity defined in Theorem
7 we obtain

rT ≤ c1
[ log(2T 2/η)

T

] 1
d+2 with c1 = 2β̂

[
KC[2β̂]−d

2(1− ρdγ̂+γ̂α)

] 1
d+2

,

that is equivalent to what it is obtained in Munos et al. (2014).
Remark: In the particular case where each cell is a hypercube and the sub-regions are
created by the division of the parent-cell intoK = 2D sub-regions of equal size, thenK = 2D,
c is equal to

√
D and ρ is equal to 1

2 .

4. Optimizing quantiles

In this section, we focus on the optimization of quantiles, which are well-established tools
in (risk-averse) decision theory (see Rostek, 2010, for instance). In particular, they benefit
from interesting robustness properties, with respect to outliers or heavy tails. Let

g(x) = qx(τ) = inf
{
q ∈ R : Fx(q) ≥ τ

}
,

be the τ -quantile of Yx, where Fx is the cumulative distribution function (CDF) of Px. Here
we detail how to construct the UCB and LCB for quantiles. First, we provide bounds based
on Hoeffding’s inequality and we use them to adapt the regret bounds of Theorem 7. Then
we provide two more refined bounds that take into account the order τ of the quantile based
respectively on the Bernstein’s inequality and on the Kullback-Leibler divergence.

Let us first introduce some notations. For all 1 ≤ t ≤ T , 1 ≤ h ≤ t, 1 ≤ j ≤ Kh and
q ∈ R we denote

F̂ th,j(q) =

∑t
s=1 1Y (s)≤q1X(s)∈Ph,j

Nh,j(t)
,

7
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the empirical CDF of the reward inside the cell Ph,j , where Nh,j(t) is the (random) number
of times the cell was sampled up to time t (see Definition 1). The generalized inverse F̂ t −h,j
of the piecewise constant function F̂ th,j is defined as q̂h,j(τ) = inf

{
q ∈ R : F̂ th,j(q) ≥ τ

}
,

that is the dNh,j(t)× τe order statistic of the sample that has been collected from the node
xh,j until time t.

To define confidence bounds on the conditional quantile we proceed in two steps. First
we propose confidence bounds on F̂h,j(qτ ). To do so, we simply use deviation bounds for
Bernoulli distributions, since for all x ∈ X , for all 1 ≤ n ≤ T , the random variables(
1Yx(ξs)≤qx(τ)

)
s=1,··· ,n are independent and identically distributed with a Bernoulli law of

parameter τ , if ξs denotes the time when the node x has been sampled for the s-th time.
Then we use the properties

∀ ε > 0 such that τ + ε < 1, F̂ th,j
(
qh,j(τ)

)
≥ τ + ε ⇔ qh,j(τ) ≥ F̂ t −h,j (τ + ε) , (4)

∀ ε > 0 such that τ + ε > 0, F̂ th,j
(
qh,j(τ)

)
< τ − ε ⇔ qh,j(τ) ≤ F̂ t −h,j (τ − ε) , (5)

to create confidence bounds on qh,j(τ) using bounds on F̂ th,j(qτ ). Note that here we just
assume that the output distribution has a continuous, striclty increasing cumulative distri-
bution function. It is not necessary to assume something else, such as bounded support or
bounded moments because here we refer to Bernouilli distributions. The first equivalence in
illustrated on Figure 1.

Empirical CDF
CDF

qτ

τ
τ+

ε

q̂τ+ε

F̂
(q

τ)

Figure 1: Illustration of the equivalence (4).

4.1. Hoeffding’s bound and regret analysis

Let εη,TNh,j(t) =

√
log(2T 2/η)

2Nh,j(t)
, and let

Uηh,j(t) =

{
min

{
q, F̂ th,j(q) ≥ τ + εη,TNh,j(t)

}
if τ + εη,TNh,j(t) < 1

+∞ otherwise,
(6)

8
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Lηh,j(t) =

{
max

{
q, F̂ th,j(q) ≤ τ − ε

η,T
Nh,j(t)

}
if τ − εη,TNh,j(t) > 0

−∞ otherwise.
(7)

The next proposition motivates the choice of the above quantities as a UCB and a LCB for
the quantile of order τ at the points (xh,j)(h,j)∈Tt .

Proposition 8 Assume that for all x ∈ X , Px has a continuous, striclty increasing cumu-
lative distribution function then for any η > 0, for all h ≥ 0, for all 0 ≤ j ≤ Kh and for all
1 ≤ t ≤ T , if Lηh,j(t) and Uηh,j(t) are defined according to (7) and (6), respectively, then the
event Aη has probability at least 1− η.

Now, analyzing the regret requires a high probability bound on the number of time a node
is sampled before being expanded:

Proposition 9 Under the conditions required by Proposition 8, define fx as the density of
Px and define f̄(x) = min

τ ′∈[τ−2εη,TMτ ,τ+2εη,TMτ ]
fx ◦ F−1x (τ ′) with Mτ = 2m−2τ log(2T 2/η) and

mτ = min(τ, 1− τ). If Uηh,j(t) and Lηh,j(t) are defined according to (6) and (7), respectively,
then for any η > 0, P(Aη ∩ Bη) ≥ 1− η and a vector of safe constants is given as

v =

2,

√
8m2

τ + 4
(
β̂ diam(X )γ̂ minx∈X f̄(x)

)2
mτ minx∈X f̄(x)

, 2

 .

According to the previous proposition, if we have sampled a node at depth h more than

nη,h = log(2T 2/η)

(
8m2

τ + 4
(
β̂ diam(X )γ̂ minx∈X f̄(x)

)2(
minx∈X f̄(x)mτ β̂δ(h)γ̂

)2 )
(8)

times, then with probability 1− η, Condition (2) is satisfied and thus the node is expanded.
Equality (8) reflects two dependencies. The smaller the minimum of the density over a

neighborhood of the quantile and the closer τ from 0 or 1, the larger the upper bound on
the number of samples needed before being expanded. Indeed a small density value in a
neighborhood of the targeted quantile will produce samples with few observations close to the
quantile, hence the estimation error will be large. In addition from Proposition (8), to obtain
non trivial UCB and LCB, the value Nh,j has to be large enough to ensure τ ± εη,TNh,j ∈ [0, 1]
and this value increases as τ comes close from 0 or 1. Thus a more precise way to understand
the behaviour of StoROO is that the number of time a node needs to be sampled before
expansion depends on the pdf value in a neighborhood (of decreasing size with Nh,j) of the
targeted quantile.

To obtain an upper bound on the simple regret, we now just need to combine Theorem 7
with Proposition 9 so as to obtain the following theorem.

Theorem 10 Under the conditions required by Proposition 8 and 9, if δ(h) = cρh for some
c ≥ 0 and ρ < 1, then with probability 1 − η, the regret of StoROO for maximizing the
quantile is bounded as

rT ≤ c2
[ log(2T 2/η)

T

] 1
d+2 with cd+2

2 = KCβ̂2
16m2

τ + 8
(
β̂ diam(X )γ̂ minx∈X f̄(x)

)2(
mτ minx∈X f̄(x)

)2
(1− ρdγ̂+γ̂α)

,

with d the near-optimality dimension and C the near-optimality corresponding constant.
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Note that the speed of convergence is the same as the one obtained in the conditional
expectation optimization setting; only the constant varies.

4.2. Tighter bounds

Using Hoeffding’s inequality is convenient because it leads to explicit lower and upper confi-
dence bounds, which simplifies the deriviation of bounds on the regret. However, it implicitly
upper-bounds the variance of all [0, 1]-valued random variables by 1/4, which is overly pes-
simistic when the inequality is applied to variables whose expectations are far from 1/2.
This is in particular the case for quantile estimation, when the quantile is of order close to
0 or 1. To take into account the order of the quantile, following David and Shimkin (2016),
a first possibility is to derive confidence intervals from Bernstein’s inequality as presented
in the following proposition.

Proposition 11 For any η > 0, for all 1 ≤ t ≤ T , 1 ≤ h ≤ t and 1 ≤ j ≤ Kh, define

Uηh,j(t) =

{
min

{
q, F̂ th,j(q) ≥ τ + εη,TNh,j(t)

}
if τ + εη,TNh,j(t) < 1

+∞ otherwise,

and

Lηh,j(t) =

{
max

{
q, F̂ th,j(q) ≥ τ − ε

η,T
Nh,j(t)

}
if τ − εη,TNh,j(t) > 0

−∞ otherwise,

with

εη,TNh,j(t) =
log(2T 2/η)

3Nh,j(t)

(
1 +

√
1 +

18Nh,j(t)τ(1− τ)

log(2T 2/η)

)
.

If g is the conditional quantile of order τ then the event Aη has probability at least 1− η.

Although Bernstein’s inequality takes into account the order of the quantile, it is possible
to do something better. In order to create tighter confidence bounds, we thus go back to
Chernoff’s inequality and derive less explicit, but more accurate upper- and lower- confidence
bounds on the τ -quantiles. We follow here Garivier and Cappé (2011), but a close inspection
at the proofs shows however a difference in the order of the marginals of the KL functions.
Recall that the binary relative entropy is defined for (p, q) ∈ [0, 1]2 as:

kl(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

,

with by convention, 0 log 0 = 0, log 0/0 = 0 and x log x/0 = +∞ for x > 0.

Proposition 12 For any η > 0, for all 1 ≤ t ≤ T , 1 ≤ h ≤ t and 1 ≤ j ≤ Kh, define

Uηh,j(t) = min
{
q, F̂nh,j(q) ≥ τ and kl(F̂ th,j(q), τ) ≥ log(2T 2/η)

Nh,j(t)

}
if kl(1, τ) >

log(2T 2/η)

Nh,j(t)

and +∞ otherwise. Define

Lηh,j(t) = max
{
q, F̂ th,j(q) ≤ τ and kl(F̂ th,j(q), τ) ≥ log(2T 2/η)

Nh,j(t)

}
if kl(0, τ) >

log(2T 2/η)

Nh,j(t)

and −∞ otherwise. Then the event Aη has probability at least 1− η.

10



Stochastic Risk Optimistic Optimization

Contrary to Bernstein’s inequality, Chernoff’s bound is always tighter than Hoeffding’s in-
equality, which follows from Pinsker’s inequality (see e.g. Garivier et al., 2018). It follows
in particular that the regret of StoROO using confidence bounds derived from Chernoff’s
inequality has, at least, the guarantees presented in Theorem 10.

The online setting we consider in this article induces that, after t steps, the set of nodes
and the number of observations in each node are random. To cope with this, we thus need
deviation bounds for random size samples. The most simple way to obtain such inequalities
is to use a union bound on the possible number of observations in each node, as presented
above. Tighter results can be obtained from a more thorough analysis (sometimes called
peeling trick): this is what is presented below.

Proposition 13 For any η ∈ (0, 1) let δη(T ) = inf
{
δ > 0 : Tedδ log(T )e exp(−δ) ≤ η/2

}
,

and define

Uηh,j(t) = min
{
q, F̂nh,j(q) ≥ τ and Nh,j(t) kl(F̂ th,j(q), τ) ≥ δη(T )

}
if kl(1, τ) >

δη(T )

Nh,j(t)

and +∞ otherwise. Define

Lηh,j(t) = max
{
q, F̂ th,j(q) ≤ τ and Nh,j(t) kl(F̂nh,j(q), τ) ≥ δη(T )

}
if kl(0, τ) >

δη(T )

Nh,j(t)

and −∞ otherwise. Then the event Aη has probability at least 1− η.

Note that for every 0 < δ ≤ log(2/η), dδ log(T )e ≥ 1 and thus Tedδ log(T )e exp(−δ) > η/2;
hence, δη(T ) > log(2/η).

5. Optimizing CVaR

We now detail how StoROO can be applied to the optimization of another important notion
of risk: the CVaR. CVaR has raised a great interest in recent years, notably because it is
a coherent risk indicator (see Ben-Tal and Teboulle (2007) for instance). For τ ∈ [0, 1) the
condition value at risk at level τ of a continuous random variable Y is defined as

CVaRτ (Y ) = inf
z∈R

{
z +

1

(1− τ)
E[(Y − z)+]

}
= E

(
Y |Y ≥ q(τ)

)
,

with (z)+ = max(0, z). Following Brown (2007), it can be estimated by

ĈVaRτ
n

= inf
z∈R

{
z +

1

(1− τ)n

n∑
i=1

(Yi − z)+
}

= Y(bnτc) +
1

(1− τ)n

n∑
i=1

(Yi − Y(bnτc))+ .

Since Y often stands for a loss, the CVaR is usually to be minimized. In order to stay
consistent with the rest of the paper, we choose in the following to maximizing g = −CVaRτ .

Assuming the random variables are bounded in an interval [a, b], the next proposition
adapts the deviation inequalities presented in Brown (2007) to our sequential setting.

11
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Proposition 14 For any η > 0, for all h ≥ 0, for all 0 ≤ j ≤ Kh and for all 1 ≤ t ≤ T ,
define

Uηh,j(t) = −ĈVaRτ
t
(h, j) +

b− a
1− τ

√
log(2T 2/η)

2Nh,j(t)
,

Lηh,j(t) = −ĈVaRτ
t
(h, j)− (b− a)

√
5 log(6T 2/η)

(1− τ)Nh,j(t)
,

with

ĈVaRτ
t
(h, j) = Y h,j

(bNh,j(t)τc) +
1

(1− τ)Nh,j(t)

t∑
i=1

1X(i)∈Ph,j (Yi − Y
h,j
(bNh,j(t)τc))

+,

where Y h,j
(k) represents the value of Y(k) for the node (h, j). If the random variables Yx are

bounded in [a, b] for all x ∈ X and have continuous distribution functions, then the event
Aη has probability at least 1− η.

Note that deviation inequalities can be established for CVaR in sub-Gaussian or light-tailed
cases (see Kolla et al. (2019) for instance) but an assumption has to be made on the value
of the pdf in a neighborhood of the τ -quantile.

From Proposition (14), one can see that whenever a node has been played more than

mη,h = log(6T 2/η)(b− a)2
(

1 +
√

10(1− τ)
√

2(1− τ)β̂δ(h)γ̂

)2

times, it has been expanded. Thus a possi-

ble associated vector of safe constants is v =

(
6, (b− a)

(1 +
√

10(1− τ)
√

2(1− τ)β̂δγ̂

)
, 2

)
. Combining

v with Theorem 7 provides the following upper bound on the regret.

Theorem 15 Under the conditions required by Proposition 14, if δ(h) = cρh for some c ≥ 0
and ρ < 1, then with probability 1−η, the regret of StoROO for minimizing CVaRτ is bounded
as

rT ≤ c3
[ log(6T 2/η)

T

] 1
d+2 with c3 = 2β̂

[(
1 +

√
10(1− τ)

)2
KC(b− a)2[2β̂]−d

2(1− τ)2(1− ρdγ̂+γ̂α)

] 1
d+2

,

with d the near-optimality dimension and C the near-optimality corresponding constant.

The inequalities obtained in Proposition 14 are convenient because they lead to explicit
lower and upper confidence bounds, which simplifies the derivation of bounds on the regret.
However, as they are based on Hoeffding’s inequality, they can be over-conservative. To ob-
tain better bounds, Thomas and Learned-Miller (2019) propose data-dependent inequalities
derived from the Dvoretzky-Kiefer-Wolfowitz inequality. The following proposition provides
the UCB and LCB based on these inequalities.

Proposition 16 Assume for all x ∈ X , Yx is bounded by (a, b) ∈ R2. For any η ∈ (0, 0.5],
for all 1 ≤ t ≤ T , 1 ≤ h ≤ t and 1 ≤ j ≤ Kh, define

Lηh,j(t) =
1

1− τ

Nh,j(t)∑
i=1

(Y h,j
i+1 − Y

h,j
i )

( i

Nh,j(t)
−

√
log(2T 2/η)

2Nh,j(t)
− τ
)+
− Y h,j

T+1

12
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and

Uηh,j(t) =
1

1− τ

Nh,j(t)−1∑
i=0

(Y h,j
i+1 − Y

h,j
i )

(
min

{
1,

i

Nh,j(t)
+

√
log(2T 2/η)

2Nh,j(t)

}
− τ
)+
− Y h,j

Nh,j(t)
,

with Y h,j
0 = a and Y h,j

T+1 = b. Then if g = −CVaRτ , the event Aη has probability at least
1− η.

Although we do not propose an analysis of the regret based on this bounds, it is immediate
to state that the upper bound on the regret is always smaller than the bound obtained in
Theorem 15 because these inequalities are strictly tighter than Brown’s inequalities. In the
following section, we numerically highlight the relevance of using these tight bounds.

6. Experiments

We empirically highlight the capacity of StoROO to optimize the conditional quantile and
CVaR of a black-box function. Four versions of StoROO are compared for both cases.

For the conditional quantile we compare StoROO using confidence bounds repectively
derived from Hoeffding’s, Bernstein’s, Chernoff’s inequalities (resp. denoted StoROOH,
StoROOB and StoROOkl) and Chernoff’s inequality and the peeling trick (StoROOkl-p).

For the optimization of the conditional CVaR, we compare the use of confidence bounds
derived from Brown’s inequality and from Thomas and Learned-Miller (2019). To use these
inequalities we have to provide (a, b) ∈ R2 that bound the output. Hence, we compare two
cases: one where we provide conservative bounds for (a, b) (here (a, b) = (0, 1)), and one
where we provide their actual values (ax = min supp(Yx) and bx = max supp(Yx), i.e. the
minimum and the maximum of the support of the conditional distribution). We denote the
four variants StoROOBr (from Brown’s inequality), StoROOT (from Thomas and Learned-
Miller (2019)), and StoROOBr-o and StoROOT-o for their variants with oracle bounds.

As a test-case, we chose two functions with heteroscedastic noise and local extrema. The
first is Φ1(x, ·) = 0.18(sin(3x) sin(13x)+1.3)+0.062ζ(·)

(
cos(8x−2)+1.2

)
, where ζ is a log-

normal random variable of parameters 0 and 1 truncated at its 0.95-quantile (the truncated
mass is uniformly reallozcated between q(0.91) and q(0.95)). Note that to initialise StoROO
not too close from a global optimum, we optimize the quantiles of Φ1 on [−0.1, 0.9] and the
CVaR on [0, 1]. Figure 2 (left) shows the shape of the 0.1 and 0.9 -quantiles and -CVaR
of Φ1, while Figure 2 (right) shows samples of the 0.1-quantile. The second test-case is

Φ2(x, ·) = Cr(x) + ζ(·)|Cr(x) + 1.5
√
x21 + x22|, on [−0.5, 1]2 with

Cr(x) = 0.1
(∣∣∣ sin(x1) sin(x2) exp

(∣∣3− (
√
x21 + x22/π)

∣∣)∣∣∣+ 1
)1.4

and ζ a random variable that follows a Cauchy distribution of parameters (0, 0.75). Note
that for all x ∈ X , Φ2(x, ·) is unbounded and it has unbounded moments. Thus we can only
apply quantile optimization on Φ2 based on the strategies developed in the past sections.
Figure 3 (left) shows the shape of the 0.1-quantile of Φ2. The performance of each version of
StoROO is evaluated for different values of τ and quantified according to the simple regret.
In our experiments we fix the values β̂ = 12 and γ̂ = 1.4 (resp. β̂ = 2, γ̂ = 0.5 and β̂ = 2,
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γ̂ = 0.7) for the optimization of the quantiles (resp. the CVaR of order 0.1 and 0.9) of Φ1

and β̂ = 13 and γ̂ = 1 for the optimization of the 0.1-quantile of Φ2. Note that these values
underestimate the regularity conditions at optimum so that satisfying the condition (1). In
addition we fix K = 3D and we choose to expand the nodes into sub-region of equal sizes.
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Figure 2: Results for the Φ1 test function. Top left: conditional quantiles and CVaR of Φ1.
Top right: one run of StoROOkl for the 0.1-quantile with T = 5, 000, β̂ = 12
and γ̂ = 1.4. Middle: evolution of the simple regret for the optimization of the
quantile of order 0.1 (left) and 0.9 (right). Bottom: evolution of the simple regret
for the optimization of the CVaR of order 0.1 (left) and 0.9 (right).

Figure 2 and 3 report the average of the simple regret over 100 runs. For both values
of τ all the variants of StoROO have a regret that decreases with the budget. However
from our experiments a ranking can be created. For the optimization of the quantile let
us firt remark that as bounds are known for Φ1, for this test case we modified Proposition
(8-12-13) by replacing (−∞,+∞) by (0, 1). The less efficient method is StoROOH. For
τ = 0.9 its simple regret decreases slower than the three others methods and for τ = 0.1
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Figure 3: Results for the Φ2 test function. Left: conditional quantile of order 0.1 of Φ2,
right: simple regret for the optimization of the conditional quantile presented to
the left.

StoROOH does not reach the performance of the others variants. To reach a fixed accuracy,
StoROOH sometimes needs a much larger budget than others variants. For example, on
Φ1, taking τ = 0.9, StoROOH needs a budget of 15, 000 to reach a simple regret of order
10−4, while StoROOkl and StoROOkl-p need a budget equal to 5, 000. Second-to-last is
StoROOB. Using the maximal budget, on both experiments on Φ1, this variant reaches the
same accuracy as StoROOkl and StoROOkl-p but its simple regret decreases slower. For some
levels of performance StoROOB needs a much larger budget than StoROOkl. For example,
taking τ = 0.1, to reach the value rT = 10−4 StoROOB needs a budget of T = 15, 000
while T = 10, 000 is enough for StoROOkl. Finally, the most efficient methods are clearly
StoROOkl and StoROOkl-p. The use of a peeling argument (instead of a plain union bound)
in StoROOkl-p provides some additional gain over StoROOkl on Φ1 but the effect is negligible
on Φ2.

For the optimization of the CVaR, the variant based on tighter bounds is almost always
better than the other and it is independent of the use of oracle bounds. The use of oracle
bounds always improves the performance of StoROO and this effect is stronger if the confi-
dence intervals are created with the inequalities of Thomas and Learned-Miller (2019). Of
course, in a real problem the oracle bounds are not known. Nevertheless this result moti-
vates the use of estimators of the minimum and the maximum to estimate the conditional
support so that to accelerate convergence.

7. Conclusion

In this work, we extended StoOO to a generic algorithm applicable to any functional of
the reward distribution. We proposed a tailored application to the problem of quantile
optimization, with four variants: one based on the classical Hoeffding’s inequality, one based
on Bernstein’s inequality, and two others based on Chernoff’s inequality. We showed that
using Chernoff’s inequality to build confidence intervals resulted in a dramatic improvement,
both in theory and practice. We also illustrated the ability of StoROO to optimize the CVaR
and compared numerically four variants.
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For simplicity, we assumed that the local regularity (or at least, an upper bound) of the
target function at the optimum was known to the user. However, we believe that it might
be possible to combine our results to the procedure defined in Grill et al. (2015); Xuedong
et al. (2019) so as to propose an algorithm able to optimize g without the knowledge of the
smoothness near an optimal point: this is left for future work. A second possible extension
is to leverage the results proposed here to design an algorithm for the cumulative regret, in
the spirit of HOO Bubeck et al. (2011) for example.
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Appendix A. Appendix

A.1. Details about the regularity hypothesis

In the classical setting the Optimized Certainty Equivalent is defined as

Su(Y ) = sup
z

{
z + E

(
u(Y − z)

)}
,

with u a concave function. Here we assume u is concave and k-lipschitzian (k − Lip). Let
us consider two random variables Yx1 and Yx2 , then

|Su(Yx1)− Su(Yx2)| =
∣∣∣ sup

z

{
z + E

(
u(Yx1 − z)

)}
− sup

z

{
z + E

(
u(Yx2 − z)

)}∣∣∣
≤ sup

z

{∣∣E(u(Yx1 − z)
)
− E

(
u(Yx2 − z)

)∣∣}.
Using the Kantorovich-Rubinstein representation one obtains

sup
z

{∣∣E(u(Yx1 − z)
)
− E

(
u(Yx2 − z)

)∣∣} ≤ k ×W1(Yx1 − z, Yx2 − z)

= k ×W1(Yx1 , Yx2)

with W1 the Wasserstein distance associated with p = 1. Thus if g = Su, then a sufficient
condition to satisfied (1) is W1(Yx∗, Yx) ≤ β

k ‖x
∗ − x‖γ , for all x ∈ X .

To treat the case of the CVaRτ , we use the fact that if u(z) =
min(z, 0)

1− τ
then we have

the equality Su = −CVaRτ .
In the case of the conditional expectation the same kind of condition can be sufficient.

Indeed we have

|E
(
Yx1
)
− E

(
Yx2
)
| ≤ sup

‖f‖∈1−Lip

{∣∣E(f(Yx1)
)
− E

(
f(Yx2)

)∣∣} =W1(Yx1 , Yx2).

A.2. Proofs related to the generic analysis of StoROO

Proof of Proposition 2
Let us define Ph∗,j∗ the partition containing x∗. Assume that the partition Ph,j has been

selected, thus
Ūh,jη (t) ≥ Ūh∗,j∗η (t).

By definition Ūh
∗,j∗

η (t) ≥ g∗, thus Ūh,jη (t) ≥ g∗. Conditionally on Aη, Lh,jη (t)) ≤ g(xh,j(t))
that implies

g∗ − g(xh,j) ≤ Ūh,jη (t)− Lh,jη (t) ≤ Uh,jη (t) + β̂ δ(h)γ̂ − Lh,jη (t) ≤ 2 β̂ δ(h)γ̂ .
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Note that the last inequality is obtained because the partition is expanded, which implies
that

U(xh,j)(t)− L(xh,j)(t) ≤ β̂ δ(h)γ̂ .

Finally:
g∗ ≤ g(xh,j) + 2 β̂ δ(h)γ̂ ,

thus xh,j belongs to Jh.
Proof of Proposition 3

T =
∑

h,j∈TT

Nh,j(t) ≤
∑

h,j∈TT

nη,h because Nh,j(t) ≤ nη,h

≤
depth(TT )−1∑

h′=0

K|TT ∩ Jh|nη,h′+1 StoROO has not expanded all the sampled nodes

≤
depth(TT )−1∑

h′=0

K|Jh|nη,h′+1 = Sdepth(TT )−1.

Thus SHη ≤ Sdepth(TT )−1 ≤ Sdepth(TT ) so Hη ≤ depth(TT ). There is at least an expanded
node of depth H∗η ≥ Hη after a budget T was used.

Proof of Proposition 4
Proposition 2 implies that the center of an expanded partition is in Jh. Proposition

3 implies that a partition of depth at least H∗η has been expanded. Thus StoROO has
expanded a node in JH∗η . At the end of the budget StoROO returns the node having the
highest LCB among the nodes that have been expanded and not the deepest node among
those that have been expanded. But

g∗ − g(xh,j) ≤ ŪH∗η (T ),j′ − Lh,j ≤ ŪH∗η (T ),j′ − LH∗η (T ),j′ ≤ 2 β̂ δ(H∗η (T ))γ̂ .

That ensure the node having the highest LCB has the same theoretical regret as the node
of maximal depth among those that have been expanded.

Proof of Proposition 6
According to the assumption 2, each cell Ph,j contains a ball of radius νδ(h) centered in

xh,j that is a `β̂,γ̂-ball of radius β̂(νδ(h))γ̂ centered in xh,j . If d is the ν γ̂/2 near optimality
dimension then there is at most C[2 β̂ δ(h)γ̂ ]−d disjoint `β̂,γ̂- balls of radius β̂(νδ(h))γ̂ inside
X2 β̂ δ(h)γ̂ . Thus if |Jh| = |xh,j ∈ X2 β̂ δ(h)γ̂ | > C[β̂ δ(h)γ̂ ]−d this implies there is more than

C[2 β̂ δ(h)γ̂ ]−d disjoint `β̂,γ̂ balls of radius β̂(νδ(h))γ̂ with center in X2 β̂ δ(h)γ̂ , that is a
contradiction.

Proof of Theorem 7

T ≤
H∗∑
h=0

K|Jh|nη,h+1 by definition of H∗

≤
H∗∑
h=0

KC[2 β̂ δ(h)γ̂ ]−dnη,h+1 using Proposition 6
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=
H∗∑
h=0

KC[2 β̂(cρh)γ̂ ]−dnη,h+1 using the exponential decay of the diameter of the cells

≤
H∗∑
h=0

KC[2 β̂(cρh)γ̂ ]−d × κα log(T 2/η)

(β̂(cρh)γ̂)α
using Definition 1

= log(T 2/η)
KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α

H∗∑
h=0

ρh(−d γ̂− γ̂ α)

= log(T 2/η)
KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α
× ρ(H

∗+1)(−d γ̂− γ̂ α) − 1

ρ−d γ̂− γ̂ α − 1
rewriting the sum

≤ log(T 2/η)

(1− ρd γ̂+ γ̂ α)

KCκα[2 β̂ cγ̂ ]−d

β̂ cγ̂ α
× ρH∗(−d γ̂− γ̂ α)

=
log(T 2/η)

(1− ρd γ̂+ γ̂ α)

KCκα[2 β̂]−d

β̂
× δ(H∗)−d γ̂− γ̂ α.

Finally [
KCκα[2 β̂]−d

β̂(1− ρd γ̂+ γ̂ α)

] 1
d γ̂+ γ̂ α

[
log(T 2/η)

T

] 1
d γ̂+ γ̂ α

≥ δ(H∗).

Using Proposition 4 we obtain

rT ≤ c1
[ log(T 2/η)

T

] 1
α+d

.

A.3. Proofs related to the section Optimizing quantiles

Proof of Proposition 8
Let us consider the event

ξη = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t) or F̂

t
h,j

(
qh,j(τ)

)
< τ − εηNh,j(t)}.

P
(
ξη
)

= P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t) or ,

F̂ th,j

(
qh,j(τ)

)
< τ − εηNh,j(t)

)
≤ P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t))

)
+ P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< τ − εηNh,j(t)

)
Define m ≤ T the number of nodes expanded throughout the algorithm, define for 1 ≤ w ≤
m, ζsw as the time when the cell w has been selected for the s-th time and define Yw(ζsw) the
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reward obtained at that time at the point xw. Then one can write

P

(
F̂ th,j

(
qh,j(τ)

)
≥ τ + εη,TNh,j(t)

)
= P

(
1

Nh,j(t)

Nh,j(t)∑
s=1

1Yh,j(ζsh,j)≤qh,j(τ) ≥ τ + εηNh,j(t)

)
.

Using this notation, we have:

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, 1

u

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥ τ + εηu

)
≤

T∑
w=1

T∑
u=1

P
(1

u

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥ τ + εηu

)
By Hoeffding’s inequality, if

εηu =

√
log(2T 2/η)

2u
,

we obtain

P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ τ + εηNh,j(t)

)
≤ η

2
.

Now using Equation (4) we can express this inequality directly in terms of quantiles:

P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, qh,j(τ) ≥ Uηh,j(t)

)
≤ η

2
.

Using the same scheme of proof with Inequality (5), we obtain:

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, qh,j(τ) ≤ Lηh,j(t)

)
≤ η

2
,

and hence P
(
Aη
)

= 1− P
(
ξη
)
≥ 1− η.

Proof of Proposition 9
Without loss of generality let us assume τ > 0.5. Assume the node xh,j has been sampled

Nh,j ≥Mτ = max(nτ , n1−τ ) times, with

nτ >
2 log(2T 2/η)

τ2
and n1−τ >

2 log(2T 2/η)

(1− τ)2

thus

τ + 2

√
log(2T 2/η)

2Nh,j
< 1 and τ − 2

√
log(2T 2/η)

2Nh,j
> 0.

That implies

qh,j

(
τ + 2

√
log(2T 2/η)

2Nh,j

)
< +∞ and qh,j

(
τ − 2

√
log(2T 2/η)

2Nh,j

)
> −∞,
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and in particular
Uηh,j < +∞ and Lηh,j > −∞.

Then define the event

Cη =
⋂

T≥t≥1

⋂
Ph,j∈Tt

{
qh,j
(
τ + 2εη,TNh,j(t))

)
≥ Uηh,j(t) ≥ qh,j(τ) ≥ Lηh,j(t) ≥ qh,j

(
τ − 2εη,TNh,j(t)

)}
,

with

εη,TNh,j(t) =

√
log(2T 2/η)

2Nh,j(t)
.

Using equivalences (4) and (5), one can write:

qh,j
(
τ + 2εη,TNh,j(t)

)
≥ Uηh,j(t) ≥ qh,j(τ) ≥ Lηh,j(t) ≥ qh,j

(
τ − 2εη,TNh,j(t)

)
⇔ F̂ (qh,j(τ + 2εη,TNh,j(t))) ≥ τ + εη,TNh,j(t) > F̂ (qh,j(τ) ≥ τ − εη,TNh,j(t) > F̂ (qh,j(τ + 2εη,TNh,j(t))).

Thus

P(Cη) ≥ 1− P(∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, sup
y=qτ ,q

τ+ε
η,T
Nh,j(t)

|Fh,j(y)− F̂ th,j(y)| ≥ εη,TNh,j(t) )

≥ 1− P(∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, sup
y∈[0,1]

|Fh,j(y)− F̂ th,j(y)| ≥ εη,TNh,j(t) ).

Using the same notation as in the proof of Proposition 8, one can write

≥ 1−
T∑
w=1

T∑
u=1

P( sup
y∈[0,1]

|Fw(y)− 1

u

u∑
s=1

1Yw(ζsw)≤qw(τ)| ≥ ε
η,T
u ).

Now by applying the Massart’s inequality to bound

P( sup
y∈[0,1]

|Fw(y)−
u∑
s=1

1Yw(ζsw)≤qw(τ)| ≥ ε
η,T
u ),

one obtain P(Cη) ≥ 1− η. Thus with probability 1− η, we have:

Uηh,j(t)− L
η
h,j(t) ≤ qh,j

(
τ + 2εη,TNh,j(t)

)
− qh,j

(
τ − 2εη,TNh,j(t)

)
. (9)

Assuming that qh,j is differentiable in τ , by the mean value theorem, we deduce

qh,j(τ+2

√
log(2T 2/η)

2Nh,j
)−qh,j(τ−2

√
log(2T 2/η)

2Nh,j
) ≤ 4

√
log(2T 2/η)

2Nh,j
max

τ ′∈[τ−2εη,Tnτ ,τ+2εη,Tn1−τ ]

1

fxh,j ◦ F
−1
xh,j (τ

′)
.

Next, using (9) it is possible to write that with probability 1− η:

Uηh,j − L
η
h,j ≤ 4

√
log(2T 2/η)

2Nh,j

1

f̄xh,j
≤ 4

√
log(2T 2/η)

2Nh,j

1

minx∈X f̄(x)
.
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We define n′η,h as the smallest n such that

4

√
log(2T 2/η)

2n

1

infx∈X f̄(x)
≤ β̂ δ(h)γ̂ ,

that is

n′η,h = log(2T 2/η)

(
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

.

A proper nη,h has to verify

nη,h ≥Mτ and nη,h ≥ log(2T 2/η)

(
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

.

To satisfy this constraint we define

nη,h = log(2T 2/η)

(√
8 min(1− τ, τ)2 + 4

(
β̂ diam(X )γ̂ minx∈X f̄(x)

)2
β̂ δ(h)γ̂ minx∈X f̄(x) min(1− τ, τ)

)2

≥ log(2T 2/η)

((
2
√

2

β̂ δ(h)γ̂ minx∈X f̄(x)

)2

+

(
2

min(1− τ, τ)

)2
)

= n′η,h +Mτ .

To conclude the whole proof, since Cη ⊂ Aη ∩ Bη, we obtain P(Aη ∩ Bη) ≥ 1− η.
Proof of Proposition 11
Let Y1, · · · , Yn be n i.i.d. random variables bounded by the interval [0, 1]. Define

F̂n(q(τ)) = 1
n

∑n
i=1 1Yi≤q(τ). For x > τ the Bernstein’s inequality gives

P(|F̂n(q(τ))− τ | > ε) ≤ 2 exp

(
nε2

2τ(1− τ) + 2ε/3

)
.

Let us consider the event

ξη = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j

(
qh,j(τ)

)
≥ τ + εη,TNh,j(t) or F̂

t
h,j

(
qh,j(τ)

)
< τ − εη,TNh,j(t)}.

Using the same lines as in the proof of Proposition 8 we have

P(ξη) ≤
T∑
w=1

T∑
u=1

P
(
|1
u

u∑
s=1

1Yw(ζsw)≤qw(τ) − τ | > εη,Tu

)
then applying the Bernstein’s inequality we obtain

≤
T∑
w=1

T∑
u=1

2 exp

(
−

uεη,TNh,j(t)
2

2τ(1− τ) + 2εη,TNh,j(t)/3

)
. (10)
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By now the goal is to find εη,TNh,j(t) > 0 such that

uεη,TNh,j(t)
2

2τ(1− τ) + 2εη,TNh,j(t)/3
= log(2T 2/η).

Finding such εη,TNh,j(t) can be easily done because it is a square of a second order polynomial.
The result is

εη,TNh,j(t) =
log(2T 2/η)

3u

(
1 +

√
1 +

18uτ(1− τ)

log(2T 2/η)

)
.

Plugging the value of εη,TNh,j(t) inside (10) concludes the proof.
Proof of Proposition 12
Step 1: bounds on F̂n(q(τ)) for a i.i.d sample

Let Y1, · · · , Yn be n i.i.d. random variables bounded by the interval [0, 1]. Define F̂n(q) =
1
n

∑n
i=1 1Yi≤q. For x > τ the Chernoff’s inequality gives

P(F̂n(q(τ)) ≥ x) ≤ exp(−n kl(x, τ)).

Let τ+ > τ be the value such that kl(τ+, τ) = log(2/η)
n , then for all x ≥ τ+:

P(F̂n(q(τ)) ≥ x) ≤ P(F̂n(q(τ)) ≥ τ+) ≤ exp(n
log(2/η)

n
) =

η

2
.

Now let us define the candidate for the UCB of a i.i.d sample:

U(n) = min
{
q, F̂n(q) ≥ τ and n kl(F̂n(q), τ) ≥ log(2/η)

}
,

and let us remark that

F̂n(U(n)) ≤ F̂n(q(τ))⇔ τ ≤ F̂n(q(τ)) and kl(F̂n(q(τ)), τ) ≥ log(2/η)

n
, (11)

thus

P(F̂n(U(n)) ≤ F̂n(q(τ))) =P(τ ≤ F̂n(q(τ)) and kl(F̂n(q(τ)), τ) ≥ log(2/η)

n
)

≤P(F̂n(q(τ)) ≥ τ+) ≤ η

2
.

For x < τ let us introduce

L(n) = max
{
q, F̂n(q) ≤ τ and n kl(F̂n(q), τ) ≥ log(2/η)

}
,

one proves in the same way

P(F̂n(L(n)) > F̂n(q(τ))) ≤ η

2
.
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Step 2: Double union bound

Let us consider the event

ξη =
{
∀ h ≥ 0,∀ 0 ≤ j ≤ Kh, ∀ 1 ≤ t ≤ T,

F̂ th,j
(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j) or F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L

η
h,j)
}
.

P
(
ξη
)
≤ P

(
∀h ≤ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
+ P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L

η
h,j)

)
Following the notation of the proof of Proposition 8 we have

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T,

u∑
s=1

1Yw(ζsw)≤qw(τ) ≥
u∑
s=1

1Yw(ζsw)≤U
η
w

)
≤

T∑
w=1

T∑
u=1

P
( u∑
s=1

1Yw(ζsw)≤qw(τ) ≥
u∑
s=1

1Yw(ζsw)≤U
η
w

)
.

Using the equivalence (11), the probability can be reformulated as

=
T∑
w=1

T∑
u=1

P
(
τ ≤ F̂ u(q(τ)) and kl(F̂ u(q(τ)), τ) ≥ log(2T 2/η)

u

)
.

Now using Chernoff’s inequality we obtain

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
≥ F̂ th,j(U

η
h,j)

)
≤

T∑
w=1

T∑
u=1

exp(−u log(2T 2/η)

u
) = η/2.

By equivalence (4) this implies that, ∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T , with probability at
least η/2, Uηh,j(t) ≤ qh,j(τ). Using the same lines one can show

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh,∀1 ≤ t ≤ T, F̂ th,j

(
qh,j(τ)

)
< F̂ th,j(L)

)
≤ η/2,

By equivalence (5) this implies that, ∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T , Lηh,j(t) > qh,j(τ)
with probability at least η/2. Putting this two probabilities together prove the result.

Proof of Proposition 13
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Define

S̃τh,j(n) =

n∑
i=1

1Yh,j(i)≤qh,j(τ).

Step 1: Martingale For every λ ∈ R, let φτ (λ) = logE[exp(λ1Yh,j(1)≤qh,j(τ))]. LetW
λ
0 = 1

and for n ≥ 1,
W λ
n = exp(λS̃τh,j(n)− nφτ (λ)).

(W λ
n )n≥0 is a martingale relative to (Fn)n≥0. In fact,

E
[

exp
(
λ{S̃τh,j(n+ 1)− S̃τh,j(n)}

)
|Fn
]

=E
[

exp(λXn+1)|Fn
]

= exp
(

logE[exp(λX1]
)

= exp
(
{(n+ 1)− n}φµ(λ)

)
That is equivalent to

E
[

exp
(
λ{S̃τh,j(n+ 1)− S̃τh,j(n)}

)
|Fn
]

= exp
(
λSn − nφµ(λ)

)
.

Step 2: Peeling Let us devide the interval {1, · · · , T} into slices {tk−1 + 1, · · · , tk} of
geometric increasing size. We may assume that δ > 1, since otherwise the bound is trivial.
Take ξ = 1/(1− δη(T )), let t0 = 0 and for all k ∈ N∗, let tk = b(1 + ξ)kc.

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T, Uηh,j(t) ≤ qh,j(τ)

)
≤ P

(
∃ h ≥ 0,∃ 0 ≤ j ≤ Kh, ∃ 1 ≤ t ≤ T, Uηh,j(t) ≤ qh,j(τ)

)
.

Definem ≤ T the number of nodes expanded throughout the algorithm, thus for 1 ≤ w ≤ m,
it is possible to rewrite the last probability as

P
(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ n ≤ T, Uηw(n) ≤ qw(τ)

)
≤

T∑
w=1

P
(
∃ 1 ≤ k ≤ D, ∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

)
with D =

log(T )

log(1 + η)

≤
T∑
w=1

D∑
k=1

P
(
Ak

)
,

with
Ak =

{
∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

}
.

Observe that Uηw(n) ≤ qw(τ) if and only if
1

n

∑u
s=1 1Yw(ζsw)≤U

η
w
≤ 1

n
S̃τw(n) and

1

n

u∑
s=1

1Yw(ζsw)≤U
η
w
≤ S̃τw(n)

n
⇔ τ ≤ S̃τw(n)

n
and kl(

S̃τw(n)

n
, τ) ≥ δη(T ) +

1

n
.
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Define δ = δη(T ) + 1/n, let s be the smallest integer such that δ/(s+ 1) ≤ kl(1, τ); if n ≤ s,
then n kl( S̃

τ
w(n)
n , τ) ≤ s kl( S̃

τ
w(n)
n , τ) ≤ s kl(1, τ) < δ thus P(U(n) < q(τ)) = 0. Thus for all k

such that tk ≥ s, we obtain P(Ak = 0). For k such that tk > s, let t̃k−1 = max{tk−1, s}. Let
x ∈]τ, 1[ be such that kl(x, τ) = δ/n and let λ(x) = log(x(1−τ))− log(τ(1−x)) > 0, so that
kl(x, τ) = λ(x)x−(1−τ+τ exp(λ(x))). Consider z such that z > τ and kl(z, τ) = δ/(1+ξ)k.

Observe that

• if n > t̃k−1, then

kl(z, τ) =
δ

(1 + ξ)k
≥ δ

(1 + ξ)n
;

• if n ≤ tk, then as

kl
( S̃τw(n)

n
, τ
)
>
δ

n
>

δ

(1 + ξ)k
= kl(z, τ),

it holds that:

τ ≤ S̃τw(n)

n
and kl(

S̃τw(n)

n
, τ) ≥ δ

n
⇒ S̃τw(n)

n
≥ z.

Hence on the event {t̃k−1 < n < tk} ∩ {τ ≤ S̃τw(n)
n } ∩ {kl( S̃

τ
w(n)
n , τ) ≥ δ

n} it holds that

λ(z)
S̃τw(n)

n
≥ λ(z)z − φτ (λ(z)) = kl(z, τ) ≥ δ

(1 + ξ)n
.

Step 3: Putting everything together

{t̃k−1 < n < tk} ∩ {τ ≤
S̃τw(n)

n
} ∩ {kl(

S̃τw(n)

n
, τ) ≥ δ

n
}

⊂{λ(z)
S̃τw(n)

n
− φτ (λ(z)) ≥ δ

n(1 + ξ)
}

⊂{λ(z)Sw(n)− nφτ (λ(z)) ≥ δη(T )

(1 + ξ)
}

⊂{W λ(z)
n > exp(

δη(T )

(1 + ξ)
)}.

As (W λ
n )n≥0 is a martingale, E[W

λ(z)
n ] ≤ E[W

λ(z)
0 ] = 1. Thus the Doob’s inequality for

martingales provides:

P

(
sup

t̃k−1<n<tk

W λ(z)
n > exp

(δη(T )

1 + ξ

))
≤ exp

(
− δη(T )

1 + ξ

)
Finally

T∑
w=1

D∑
k=1

P
(
∃ tk−1 < n ≤ tk and Uηw(n) ≤ qw(τ)

)
≤ TD exp(− δη(T )

(1 + ξ)
).
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But as ξ = 1/(δη(T )− 1), D =
⌈ log(T )

log(1 + 1/(δη(T ) + 1))

⌉
and as long as

log(1 + 1/(δη(T )− 1)) ≥ 1/δη(T ),

we obtain:

P(Ac) ≤ T
⌈ log(T )

log(1 + 1/(δη(T ) + 1))

⌉
exp(−δη(T )+1) ≤ Tedδη(T ) log(T )e exp(−δη(T )) ≤ η/2.

Using the same lines for the LCB concludes the proof.

A.4. Proofs related to the section Optimizing CVaR

Proof of Proposition 14
Let us consider the event

ξη =
{
∀ h ≥ 0,∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,

ĈVaRτ
t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t) or ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

}
.

P
(
ξη
)

= P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t) or ,

ĈVaRτ
t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
≤ P

(
∀h ≤ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t)

)
(12)

+ P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
(13)

First let us consider (12):

P

(
∀h ≥ 0,∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≥ CVaRτ (Yxh,j ) + ε̃ηNh,j(t)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, inf

z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≥ CVaRτ (Yxw) + ε̃ηu

)
≤

T∑
w=1

T∑
u=1

P
(

inf
z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≥ CVaRτ (Yxw) + ε̃ηu

)
.

Thus by Brown’s inequality

(12) <

T∑
w=1

T∑
u=1

exp(−2(τ ε̃ηu/(b− a))2u).
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Taking

ε̃ηu =
(b− a)

τ

√
log(2T 2/η)

2u

provides the first part, i.e (12) <
η

2
.

We use the same scheme of proof to bound (13), the only difference comes from the fact
that the inequality of deviation is different:

P

(
∀h ≥ 0, ∀0 ≤ j ≤ Kh, ∀1 ≤ t ≤ T, ĈVaRτ

t
(Yxh,j ) ≤ CVaRτ (Yxh,j )− ε

η
Nh,j(t)

)
≤ P

(
∃ 1 ≤ w ≤ T, ∃ 1 ≤ u ≤ T, inf

z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≤ CVaRτ (Yxw)− εηu
)

≤
T∑
w=1

T∑
u=1

P
(

inf
z∈R
{z +

1

u(1− τ)

u∑
s=1

(Yw(ζsw)− z)+} ≤ CVaRτ (xw)− εηu
)
.

By Brown’s inequality

(13) <

T∑
w=1

T∑
u=1

3 exp

(
− τ

5

( εηu
b− a

)2
u

)
Taking

ε̃ηu = (b− a)

√
5 log(6T 2/η)

τu

provides (13) <
η

2
.

Finally putting (12) and (13) together provides P
(
ξη
)
< η and hence P(ξcη) = P(Aη) =

1− η.
Proof of Proposition 16 If Y1 · · · , Yn are i.i.d random variables bounded by (a, b) then

Thomas-Learned-Miller’s inequalities provide

P

(
− CVaRτ <

1

1− τ

n∑
i=1

(Yi+1 − Yi)
( i
n
−
√

log(1/η)

2n
− τ
)+
− Yn+1

)
< η

and

P

(
− CVaRτ >

1

1− τ

n−1∑
i=0

(Yi+1 − Yi)
(

min
{

1,
i

n
+

√
log(2T 2/η)

2Nh,j(t)

}
− τ
)+
− Yn

)
< η.

Define

ξη,1 = {∀ h ≥ 0,∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,−CVaRτ (Yh,j) < UηNh,j(t)},

and

ξη,2 = {∀ h ≥ 0, ∀ 0 ≤ j ≤ Kh,∀ 1 ≤ t ≤ T,−CVaRτ (Yh,j) > LηNh,j(t)},
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To treat the sequential point of view, here we use a double union bound as it is done in the
proof of Proposition 13, then it can be shown that

P(ξη,1) <
T∑
w=1

T∑
u=1

P
(
− CVaRτ (Y u

w ) < Uηu

)
.

Thus by defining

Uηu =
1

1− τ

u−1∑
i=0

(Yi+1 − Yi)
(

min
{

1,
i

u
+

√
log(2T 2/η)

2u

}
− τ
)+
− Yu

we obtain

P(ξη,1) <
T∑
w=1

T∑
u=1

η

2T 2
=
η

2
.

Using the same scheme of proof with

Lηu =
1

1− τ

u∑
i=1

(Yi+1 − Yi)
( i
u
−
√

log(2T 2/η)

2u
− τ
)+
− Yu+1

provides
P(ξη,2) <

η

2
.

Finally
P(ξη,1 ∪ ξη,1) < η,

and hence P
(

(ξη,1 ∪ ξη,1)c
)

= P(Aη) = 1− η.
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