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ABSTRACT

We propose and analyze StoROO, an algorithm for risk optimization on stochastic black-box
functions derived from StoOO. Motivated by risk-averse decision making fields like agriculture,
medicine, biology or finance, we do not focus on the mean payoff but on generic functionals of the
return distribution, like for example quantiles. We provide a generic regret analysis of StoROO.
Inspired by the bandit literature and black-box mean optimizers, StoROO relies on the possibility to
construct confidence intervals for the targeted functional based on random-size samples. We explain
in detail how to construct them for quantiles, providing tight bounds based on Kullback-Leibler di-
vergence. The interest of these tight bounds is highlighted by numerical experiments that show a
dramatic improvement over standard approaches.

Keywords Optimistic optimization - Risk-averse solutions - Quantile optimization

1 Introduction

We consider an unknown function ® : X x Q — [0,1] C R, where X C [0, 1] and 2 denotes the probability space
representing some uncontrollable variables. For any fixed x € X, Y, = ®(«, -) is arandom variable of law P, and we
consider g(x) = 1 (P,) with ¢, a real-valued functional defined on probability measures. We assume that there exists
at least one 2* € X such that g(z*) = sup,c g(z). Using a set of sequential observations (g(x1),--- , g(xr)), our
goal is to minimize the simple regret rp = g(x*) — g(xr), with 27 the value returned after using a budget T'.

Different families of algorithms have been developed to treat this problem. Some are for example of Bayesian flavor
[see Shahriari et al., 2016, for instance], some are inspired by the bandit literature. Here we focus our interest on the
bandit framework.

In the classical X'-armed bandit problem, a forecaster selects repeatedly a point x in the input space X € [0,1]” and
receives a reward distributed according to an unknown distribution P,,. Historically, the main goal was to minimize
the cumulative regret, i.e. the sum of the difference between his collected rewards and the ones that would have been
brought by optimal actions. In the last decade, other works focused on the simple regret. These can be divided in two:
algorithms that optimize an unknown function with the knownledge of the smoothness, for example StoOO [Munos
et al., 2014], HOO [Bubeck et al., 2011] Zooming [Kleinberg et al., 2008] or HCT [Azar et al., 2014], and others
focusing on the optimization of unknown functions without the knowledge of the smoothness, such as POO [Grill
et al., 2015], StroquOOL [Bartlett et al., 2018], GPO [Shang et al., 2019] StoSOO [Valko et al., 2013] or Locatelli and
Carpentier [2018].
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Those algorithms focus on the optimization of the conditional expectation of IP,.. This choice is questionable in some
situations. For example if the shape and variance of the reward distribution depend on the input, a forecaster may
be interested in different aspects of the unknown distribution in order to modulate its risk exposure. In the literature,
some measures of risk have been proposed to replace the expectation: for instance quantiles [also referred to as
Value-at-Risk, see Artzner et al., 1999, McNeil and Frey, 2000] for instance), the Conditional Value-at-Risk [CVaR,
Rockafellar et al., 2000], the entropy Value-at-Risk [Ahmadi-Javid, 2012], or expectiles [Bellini and Di Bernardino,
2017]. The purpose of this paper is to present a risk optimization framework of an unknown stochastic function with
the knowledge of the smoothness using only pointwise sequential observations and a finite budget 7.

X-armed bandit algorithms rely on optimistic strategies that associate with each point of the space an upper confidence
bound (UCB), that is, an “optimistic” prediction of the outcome. Adapting the classical setting to the optimization
of risk measures implies being able to create high-probability confidence bounds for that particular measure. This
problem has been tackled in the multi-armed bandit setting (¢.e. when the input space is discrete and finite). For
instance, Audibert et al. [2009], Sani et al. [2012] focused on the empirical variance, Galichet et al. [2013], Kolla et al.
[2019], Hepworth [2017] on the CVaR while in David and Shimkin [2016], Szorenyi et al. [2015] the authors based
their policies on the quantile. However, the literature is scarce in the continuous input space case.

In this paper we provide a new version of the Stochastic Optimistic Optimization (StoOO) algorithm [Munos et al.,
2014], named StoROO (Stochastic Risk Optimistic Optimization), which is designed to optimize any function g(x) =
Y(P,). In a first part, we provide an analysis of the simple regret from a generic point of view (that is, for any ).
Then, we apply StoROO to optimize the conditional quantile. Using only the assumption that the output distribution
support is connected and bounded in [0, 1] and admits a continuous density, we first propose an upper bound on the
simple regret using Hoeffding’s inequality. Next we derive confidence intervals that take into account the order of
the quantile respectively based on Bernstein’s and Chernoff’s inequalities. Finally, we present numerical experiments
that illustrate the ability of our method to optimize conditional quantiles of a black-box function and the relevance to
use confidence bounds derived from Chernoff’s inequality. Due to space limitation, technical proofs are deferred to
Supplementary Material.

2 Problem setup

2.1 Hierarchical partitioning

The upper confidence bounds on which optimistic algorithms are based are surrogate functions U : X — R larger
than the objective (in a sense detailed below) with high probability. At each round ¢, the point X (¢) having the highest
UCB is sampled and a reward Y (t) is collected.

In the classical multi-armed bandit problem, computing and sorting the UCB can be done without major issues. But
dealing with continuous input spaces (:.e. infinitely many arms) implies maximizing a UCB function over a continuous
space, which can be both computational intensive and algorithmically challenging. For example, Piyavskii’s algorithm
[see Bouttier, 2017, and references therein] defines U using a global Lipschitz assumption on the targeted function.
Because of the Lipschitz hypothesis, the UCB maximizer is at an intersection of hyperplanes, i.e. where the UCB is
non-differentiable. Thus a gradient-based algorithm cannot be used, implying that finding the point with the highest
UCB is a very hard problem to solve.

To overcome the computational difficulties, a popular alternative is to rely on hierarchical partitions [Bubeck et al.,
2011, Munos et al., 2014]. Let us consider an infinite hierarchical space structure P = {P, ; }1,; of X such that

K-1
Por =X, Puj=J Prirxii

=0

with K the number of sub-regions obtained after expanding a cell and Py, ; the j-th cell at depth A. In the following
we assume that:

Assumption 1: There exists a decreasing sequence 6(h), such that for any A > 0 and for any cell Py j,
SUP,ep, ; 1T — @njllo < 0(h), with 2y, ; the center of Py, ;.

Assumption 2: There exists v > 0 such that all cells of depth & contain a ball of radius v§(h).

Starting with Py ; and following an optimistic strategy, at time ¢ the algorithm has expanded some cells and the result
is a tree 7; that is a subset of P and a partition of X'. In this setting U is taken as a piecewise constant function. Indeed
for any (P ;)n,je; we define Uy, ; such that for all z € Py, 5, U(z) = Uy, ;.
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In the literature of X'-armed bandits there are two ways to select a cell of T; at each round. In Bubeck et al. [2011], the
algorithm follows an optimistic path from the root to the leaves. In Munos et al. [2014], StoOO selects the cell having
the highest UCB among all the cells of 7; that have not been expanded, i.e. the set £; of leaves of 7;. We consider
here this second alternative. Hence, to find the maximizer of U at time ¢, we only need to evaluate and sort a finite
number of values (Up ;) (h.j)ec, -

2.2 Upper and lower confidence bounds, bias

To create confidence bounds for (P, ;)1 j)er,» the idea of StoOO is to get a sample of every node cell center xy, ;.
Thanks to the fact that all observed values are independent, we can use a deviation inequality to create a UCB for
g(xp, j), that we denote U}, ;. Finally to create the UCB over the cell U}, ;, a bias term is added that takes into account
how g can potentially increase from the center of the cell to its edges.

To ensure the convergence of StoOO (and StoROO), the function U, ; only needs to be a UCB of max,ep, ; g(z) for
the cell containing z*, as is detailed in the proof of Proposition 1 (see also Munos et al. [2014]). Bounding by how
much ¢ can potentially increase from the center to the edge of the optimal cell requires a regularity assumption on g.
Following Munos et al. [2014], Azar et al. [2014], we assume the following smoothness property:

Ve e X, g(x)>g(x")— Blle —z*||” with~, 8 > 0. (D

Note that this condition is less restrictive than a global Lipschitz condition. It does not exclude functions that are very
irregular (possibly discontinuous), except close to global maxima. Based on (1) we define

U}hj = Uy, + By, j, with By, j = ﬂ&(h)'y

The algorithm also needs a quantity that bounds g from below in order to provide guaranties on the value of g over each
cell. We thus construct a lower confidence bound, termed Ly, ;, for g(x ), and use it as an LCB for the maximum of
g on Py,_;. In particular, on the cell Py« ;» containing the optimum z*, it holds that

Li- j- < g(a") < Up- j- + B3(h°))

with high probability. To summarize, the estimation of g(z*) is altered by two sources of error: the local estimation
error By« j» = Up» j+ — Ly« ;~ made at the center of the cell, and the bias term B+ j«. Balancing those two terms
naturally provides a trade-off between exploration and exploitation.

3 Stochastic Risk Optimistic Optimization

3.1 The StoROO algorithm

StoROO starts by sampling one time each K sub-region of the root node. Then, at each time 1 < ¢ < T the algorithm
selects Pr, j, € (Ph.j)(n,j)ec, having the highest UCB. To reduce the estimation error, StoROO can either get more
samples from Py, ;, (to reduce the variance), or split the cell in order to reduce its diameter (to reduce the bias). The
good balance between these two options is found by dividing a cell as soon as the local estimation error is smaller than
the bias, that is when

Uhtvjt - Lht-,jt < 55(}”)’y (2)
If Condition (2) is satisfied, StoROO expands P}, ;, and requires a new sample at the center of each sub-region. If
Condition (2) is not satisfied, then StoROO requires a new sample at the center xy, ;, which is used to update Uy, ;,
and Ly, j,.

When the budget is exhausted, several choices are possible for the return value: they have the same theoretical guar-
antees. Following Munos et al. [2014], one can return the deepest node among those that have been expanded. Here
we propose a different, more conservative choice. Denoting by .Zr the set of nodes having the highest LCB among
those that have been expanded after a budget 7', StoROO returns the node with the highest value g (an estimator of g)
among the deepest nodes of Zr.

The pseudo-code of the full algorithm is given in Algorithm 1. It requires the parameters $ and y of Condition (1), but
of course the inequality do not have to be tight.

3.2 Analysis of the algorithm

In this section we provide a theoretical analysis of StoROO. It is inspired by Munos et al. [2014], but differs most
notably by the fact that the analysis is suited for any g and not only for the conditional expectation.
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Algorithm 1 StoROO

Input: error probability > 0; number of children K; time horizon T'; 8 > 0; v > 0;
Define: UCB and LCB
Initializationn = 1;¢t = 1;
Expand into K sub-regions the root node (0, 0) and sample one time each child
while n < T do
foreach (h,j) € L; do
| compute Uy, ;(t)
end

Select (h, j) = arg max, iyer, Up,;(t)
Compute the LCB Lj, 5(t)
if Uﬁj(t) — L,'L;(t) < B4(h)" then
expand the node, remove (h, 3) from £L;, add to L; the K sub-cells of 73;173 and sample each new node once,
n=n+K,t=t+1
else
| Sample the state 2 = x;, 5 and collect the observation Yy, , ,n=n+K,t =t+1

end

end
Return the node according to the returning rule.

The analysis relies on the possibility to construct, for any > 0, upper- and lower-confidences bounds U ,Tl’ j (t) and
L} ;(t) such that the event

A= N {10 2 gleny), L0 < 9@}
T>t>1Py ;€T
has probability at least IP(A,)) > 1 — 7. We defer to Section 4 their specific expression for the case of the quantile.

Contrary to the framework of Munos et al. [2014], in our setting the magnitude of the confidence bound (i.e E)
associated to each node is not explicit. We thus need to introduce the following definition to quantify how many times
a node needs to be sampled before satisfying the expansion condition (Eq. 2).

Definition 1 Let
K

«@ t
Ny b (K, @) = 1og(T2/77) <55(h)’¥> and Ny, ;(t) = Z Ixsyer,,; -
s=1

The vector of safe constants v = (k, &) is composed of the constants k' > 0 and o > 0 such that the event
B= N N N AuL0- L0 <850}
T2t>1 Np >0y n (k' ,a’) Pr, €Tt

has probability at least 1 — .

Note that in the case of the conditional expectation, Munos et al. [2014] take o = 2, kK = /1/2 and n,; =
log(7?/n)
2(Ba(h)7)?
We first prove (Proposition 1) that any point at the center of an expanded cell of depth h belongs to
Jn = { n,; such that g(zp ;) +286(h)" = g*}. 3)

Next, we show that using a budget 7', the tree 77 reaches at least a depth H;;(T) given below (Proposition 2). This
implies that the point returned by the algorithm belongs to J H; (T) (Proposition 3). Finally, using an assumption on the

size of J}, that can be formalized by the so-call near-optimality dimension [Bubeck et al., 2011, Munos et al., 2014],
we provide an upper bound on the regret (Theorem 1).

Proposition 1 Conditionally on A,, StoROO only expands cells Py, ; such that xy, ; € J.

Given the value n,, ;, and the total budget 7", the deeper the algorithm builds the tree, the better are the guarantees on
the final point returned. So the goal of the following proposition is to provide a lower bound on the depth of 7.
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Proposition 2 Define H,, the largest h € IN such that
Sp=K Z N1 || < T,
h'<h
with |Jy| the cardinal of Jy,. The deepest node Hf; expanded by StoROO is such that H; > H,.
Intuitively, S, is the budget needed to expand all the nodes in Jj, for all A’ < h. Tt may be that some of this nodes will
not be visited, but in the worst case they are and they need to be considered in order to obtain a valid bound. Putting
Propositions 1 and 2 together, yields a first upper bound on the simple regret:
Proposition 3 Running StoROO with budget T', with probability P(A,, N B,)) the regret is bounded as
rr < 2B6(Hy(T))".

A more explicit bound for the regret can be obtained by quantifying the volume of
X.={reX, f@)<f —e)
for small values of e. Introducing the Holderian semi-metric
s (a,a’) = Blle — 2|,
that is associated with its regularity constants 5 and -y, the near-optimality dimension of the function is defined as

follows, see Munos et al. [2014], Bubeck et al. [2011].

Definition 2 The v-near optimality dimension is the smallest d > 0 such that for all € > 0, there exists C' > 0 such
that the maximal number of disjoint lg -balls of radius ve with center in X, is less than Ce 4,

To evaluate H,, we need to bound |Jp,| for all b > 0. The following proposition makes the link between the near

optimality dimension and |.Jp,|.

Proposition 4 Let d be the %-near—optimality dimension, and C' the corresponding constant. Then
C

[Jn| < 7(2ﬁ6(h)7)d )

Finally, combining Propositions 3 and 4 with an hypothesis on the decreasing sequence (%), it is possible to provide
the speed of convergence of rr.

Theorem 1 Assume that 5(h) = cp" for some ¢ > 0 and p < 1, and assume that v = (k, ). Thus with probability
P(A, N B,), the regret of StoOO is bounded as

log(T* /1

1 «a —d ﬁ
- )}‘1“, Wil‘h61=2ﬁ|:w:| ;

<
L cl|: (1 — pdA/Jrva)
where d is the near optimality dimension and C' the corresponding near optimality constant.

Remark: In the particular case where each cell is a hypercube and the sub-regions are created by the division of the
parent-cell into K = 20 sub-regions of equal size, then K = 2P, c is equal to v/D and p is equal to 3.

4 Optimizing Quantiles

In this section, we focus on the optimization of quantiles, which are well-established tools in (risk-averse) decision
theory [see Rostek, 2010, for instance]. In particular, they benefit from interesting robustness properties, with respect
to outliers or heavy tails. Let

g(x) = ¢z (7) = inf {q eR: F.(q) > T},

now denote the 7-quantile of Y, where F, is the cumulative distribution function (CDF) of IP,,.

In this section we detail how to construct the UCB and LCB for quantiles. First, we provide bounds based on Ho-
effding’s inequality and we use them to adapt the regret bounds of Theorem 3. Then we provide two more refined
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Figure 1: Illustration of the equivalence (4).

bounds that take into account the order 7 of the quantile based respectively on the Bernstein’s inequality and on the
Kullback-Leibler divergence.

Let us first introduce some notation. Forall 1 <¢t <T,1<h <t 1<j <K h and q € R we denote

Yo Iyw<olxmer,,
Np,;(t)

the empirical CDF of the reward inside the cell Py, ;, where N}, ;(t) is the (random) number of times the cell was

sampled up to time t (see Definition 1). The generalized inverse ﬁ‘,f ; of the piecewise constant function f?‘ﬁ ;18
defined as

FftL,j(Q) =

dnj(r) =inf{g e R: £} ;(q) > 7},
that is the [N}, ;(t) x 7] order statistic of the sample that has been collected from the node z;, ; until time ¢.

To define confidence bounds on the conditional quantile we proceed in two steps. First we propose confidence bounds
on Fj, j(qT). To do so, we simply use deviation bounds for Bernoulli distributions, since for all x € &, for all
1 <n < T, the random variables (]1 Y (€5) <4 (7) ) <1 ... n are independent and identically distributed with a Bernoulli

law of parameter 7, if £5; denotes the time when the node x has been sampled for the s-th time. Then we use the
properties

v

vV €>0 suchthat 7 +¢ < 1, F}t)j(QhJ(T)) >7+4+e & qn(7) ;(m+e), 4)

(T —e), (5)

IA

ot
h,
V e >0 suchthat 7+ ¢ > 0, Fﬁ’j(qhd(r)) <T—€ & qn (1) A;;

S

to create confidence bounds on ¢y, ;(7) using bounds on F,tl ;(g-). The first equivalence in illustrated on Figure 1.

4.1 Hoeffding’s bound and regret analysis

log (272 /1)
Let €7 =,/ ———=, and let
eten, o N ) and le
. r T . T
un (py = { MG Fi@) 2 ey o} T ) <1 ©)
J 1 otherwise,
" T . T
L) = max {q, Ff ;(q) > 7 — E&h,_j(t)} ifr — EnNh,]»(t) >0 7
J 0 otherwise.

The next proposition motivates the choice of the above quantities as a UCB and a LCB for the quantile of order 7 at
the points (z5;) (h )T -
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Proposition 5 For any ) > 0, forall h > 0, forall 0 < j < K" and forall 1 <t < T, if L}, ;(t) and U}/ ;(t) are
defined according to (7) and (6), respectively, then the event A, has probability at least 1 — 7).

Now, analyzing the regret requires a high probability bound on the number of time a node is sampled before being
expanded:

Proposition 6 Assuming that for all x € X, Y, has a density f, supported in [a,b], 0 < a < b < 1, such that
f(z) = mingepa ) fo(y) > 0. If L) j(t) and U;Zj(t) are defined according to (7) and (6), respectively then a vector

of safe constants is given as
2v2
v = T r /. \ 2 )
infacx f(x)

P(A,NBy) =1 —n.

and for any n > 0

According to the previous proposition, if we have sampled a node at depth h more than

2
M (5, @) = log<T2/n)<min €X2f\{f)55(h)7)

times, then with probability 1 — 1 Condition (2) is satisfied and thus the node is expanded.

®)

Equation (8) reflects that the smaller the minimum (taken over the whole support) of the density, the larger the upper
bound on the number of samples needed before being expanded. Actually the bound is crude. It is rather clear, in fact,
that the local minimum of f, around ¢, (7) is the crucial quantity. Here we chose to write the results in terms of the
global minimum to simplify the proof of Proposition (6). A more precise way to understand the behaviour of StoROO
is that the number of time a node needs to be sampled before expansion depends on the pdf value in a neighborhood
(of decreasing size with V) of the targeted quantile.

To obtain an upper bound on the simple regret, we now just need to combine Theorem 1 with Proposition 6 that
provides the following theorem.

Theorem 2 Assume that 5(h) = cp” for some ¢ > 0 and p < 1, then with probability 1 — n, the regret of StoROO for
minimizing the quantile is bounded as

log(T? /n) 174 KC[28~¢ G
M} T ith o = 28] SKC[2A]

T mingey f(2)?(1 — prtre)

with d the near-optimality dimension and C' the near-optimality corresponding constant.

TTSCZ[ )

Note that the speed of convergence is the same as the one obtained in the conditional expectation optimization setting;
only the constant varies.

4.2 Tight bounds

Using Hoeffding’s inequality is convenient because it leads to explicit lower and upper confidence bounds, which
simplifies the deriviation of bounds on the regret. However, it implicitly upper-bounds the variance of all [0, 1]-valued
random variables by 1/4, which is overly pessimistic when the inequality is applied to variables whose expectations
are far from 1/2. This is in particular the case for quantile estimation, when the quantile is of order close to 0 or
1. To take into account the order of the quantile, following David and Shimkin [2016], a first possibility is to derive
confidence intervals from Bernstein’s inequality as presented in the following theorem.

Proposition 7 Foranyn > 0, forall1 <t <T,1<h<tand1<j< K" define

: 3 T , T
on oy = { minde F(a) 27 e ) U, o) <1
h,j .
1 otherwise,
and . . .
L7 () = 4 max {ao. Fi (@) >7— . Wy = i) >0
h (t) J ; J
I otherwise,
with

- ~ log(272/n) 18Ny, (6)7(1 —7)
EN’?j(t) © 3Na,(1) (1 - \/1 - log(21%/n) )

Then the event A, has probability at least 1 — 1.



April 16,2019

The proof is deferred to Supplementary Material. Although Bernstein’s inequality takes into account the order of
the quantile, it is possible to do something better. In order to create tighter confidence bound, we thus go back
to Chernoff’s inequality and derive less explicit, but more accurate upper- and lower- confidence bounds on the 7-
quantiles. We follow here Garivier and Cappé [2011], but a close inspection at the proofs shows however a difference
in the order of the marginals of the KL functions. Recall that the binary relative entropy is defined for (p, q) € [0, 1]?

as:

D 1—p
kl(p,q) = plog = + (1 — p)log ;
(p;q) 7 ( ) =4

with by convention, 0log 0 = 0, log0/0 = 0 and x log /0 = +oo for x > 0.

Proposition 8 Foranyn > 0, forall1 <t <T,1<h<tandl1 <j< K" define

. . . 27?
U7, () = win{q, Fil;(a) = 7 and Ny () KU ;(a), 7) = log T}

if
272 .
Ny, ;j(t)KI(1,7) > log — and 1 otherwise.
n
Define
fot S T2
L7,(0) = max{q, Ff;(a) < 7 and No 5 (1) KUEL(q),7) > log =~ |

if

2772 )
Nh,j(t) kl(0,7) > log—— and 0 otherwise.
n

Then the event A,, has probability at least 1 — 1.

Contrary to Bernstein’s inequality, Chernoff’s bound P(ﬁ‘”(q(T ) > z) < exp(—nkl(z,7)) is always tighter than
Hoeffding’s inequality IP(F™ (¢(1)) > x) < exp (— 2n(r — «)?), which follows from Pinsker’s inequality [see e.g.
Garivier et al., 2018]:

1

Vo< <1, kl > —q)?>2(p—q)?.
<p<qg<l, (p7q)_2maxme[p7q]z(lix)(p 7)”=2(p—q)

For example, given 7 > 0.5 and an i.i.d. sample of size n, one can see that

Uy < dn <T + \/27(1 —7) log@/n)) <n (r + bg(W) =Ux

n 2n

with U¥! (resp. UY) the UCB associated to Chernoff’s inequality (resp. Hoeffding’s inequality). Berstein’s inequality
is tighter than Hoeffding’s when 7 is different from 1/2 and n sufficiently large, but always looser than Chernoff. It
follows in particular that the regret of StoROO using confidence bounds derived from Chernoff’s inequality has, at
least, the guarantees presented in Theorem 5.

The online setting we consider in this article induces that, after ¢ steps, the set of nodes and the number of observations
in each node are random. To cope with this, we thus need deviation bounds for random size samples. The most
simple way to obtain such inequalities is to use a union bound on the possible number of observations in each node,
as presented above. Tighter results can be obtained from a more thorough analysis (sometimes called peeling trick):
this is what is presented below.

Proposition 9 For any n > 0 let
6,(T) = inf {8, Te[dlog(T)] exp(—6) < n/2},
and define
Up;(0) = min g, 1 (q) > 7 and N5 (1) KU} (), 7) > 6,(T) }

if
Ny (@) kI(1,7) > 6,(T) and 1 otherwise.
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Figure 2: To the left: conditional quantiles of ®, to the right: one run of StoROOy, for the optimization of the
0.1-quantile with 7" = 5000, 8 = 12 and v = 1.4.

Define

LZ,j(t) = max {q, F’,f”(q) < 7 and Ny ;(t) kl(Ffoj(q),T) > 6,,(T)}
if
N ; () k10, 7) > 0,(T") and 0 otherwise.
Then the event A, has probability at least 1 — 1.

S Experiments

We empirically highlight the capacity of StoROO to optimize the conditional quantile of a black-box function. Four
versions of StoROO are compared, StoROOy (i.e StoROO using confidence bounds derived from Hoeffding’s in-
equality), StoROOg (i.e StoROO using confidence bounds derived from Bernstein’s inequality), StoROOy (i.e
StoROO using confidence bounds derived from Chernoff’s inequality) and StoROOyi., (i.e StoROO using confi-
dence bounds derived from Chernoff’s inequality and the peeling trick).

As a test-case, we use the function
() 0.3(sin(3z — 0.3) sin(13z — 1.3)) + 1.3 + 0.1{(cos(8z — 2.4) + 1.2)
xr =
1.63 ’

with ¢ following a log-normal distribution of parameter O and 1 truncated at its 0.95-quantile with the truncated mass
following a uniform distribution between 3.85 and 5.18. Figure 5 (left) shows the shape of the 0.1 and 0.9 quantiles
of g, while Figure 5 (right) shows samples of g.

The performance of each version of StoROO is evaluated for different values of 7 and quantified according to the
simple regret. In our experiments we fix the values 5 = 12 and v = 1.4 such that the condition (1) is satisfied. Note
that these values do not correspond to the actual regularity conditions at optimum. In addition we fix K = 3 and we
choose to expand the nodes into three sub-region of equal sizes.

Figure 5 reports the average of the simple regret over 1000 runs for 7 = 0.1 and 7 = 0.9. For both values of 7 all
the variants of StoROO have a regret that decreases with the budget. However from our experiments a ranking can be
created.

The less efficient method is StoROOg. For 7 = 0.9 its simple regret decreases slower than the three others methods
and for 7 = 0.1 StoROOy does not reach the performance of the others variants. Sometimes to reach a fixed accuracy,
StoROOpy needs a much larger budget than others variants. For example taking 7 = 0.9, StoROOy needs a budget
of 15000 to reach a simple regret of order 10~*, while StoROOy and StoROOx1., need a budget equals to 5000.

Then there is StoROOpg. Using the maximal budget, on both experiments this variant reaches the same accuracy as
StoROOy and StoROO\., but its simple regret decreases slower. For some levels of performance StoROOg needs
a much larger budget than StoROQy. For example, taking 7 = 0.1, to reach the value r = 1 x 10~ StoROOg
needs the budget 7' = 15000 while 7" = 10000 is enough for StoROOy.
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Figure 3: Evolution of the expectation of the simple regret for the optimization of the conditional quantile of ®: to the
left 7 = 0.1, to the right 7 = 0.9.

Finally, the most efficient methods are StoROOy; and StoROOy.,. Both methods are always better or equal to
StoROOy and StoROOg. The variants StoROOy and StoROOx ., are often equivalent but sometimes the regret of
StoROOy., decreases slightly faster than the version without the peeling trick. This behaviour provides a small gain
for StoROOyp.

6 Conclusion

In this work, we extended StoSOO to a generic algorithm applicable to any functional of the reward distribution. We
proposed a tailored application to the problem of quantile optimization, with four variants: one based on the classical
Hoeffding’s inequality, one based on Bernstein’s inequality, and two others based on Chernoff’s inequality. We showed
that using Chernoff’s inequality to build confidence intervals resulted in a dramatic improvement, both in theory and
practice.

For simplicity, we assumed in this paper that the local regularity (or at least, an upper bound) of the target function at
the optimum was known to the user. However, we believe that it is possible to combine our results to the procedure
defined in Grill et al. [2015], Xuedong et al. [2019] so that creating an algorithm able to optimize g without the
knowledge of the smoothness near an optimal point: this is left for future work. A second possible extension is to
leverage the results proposed here to design an algorithm for the cumulative regret, in the spirit of HOO Bubeck et al.
[2011] for example.

References

Amir Ahmadi-Javid. Entropic value-at-risk: A new coherent risk measure. Journal of Optimization Theory and
Applications, 155(3):1105-1123, 2012.

Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathematical
finance, 9(3):203-228, 1999.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvdari. Exploration—exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science, 410(19):1876—1902, 2009.

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Online stochastic optimization under corre-
lated bandit feedback. In ICML, pages 1557-1565, 2014.

Peter L Bartlett, Victor Gabillon, and Michal Valko. A simple parameter-free and adaptive approach to optimization
under a minimal local smoothness assumption. arXiv preprint arXiv:1810.00997, 2018.

Fabio Bellini and Elena Di Bernardino. Risk management with expectiles. The European Journal of Finance, 23(6):
487-506, 2017.

Clément Bouttier. Optimisation globale sous incertitudes: algorithmes stochastiques et bandits continus avec applica-
tion a la planification de trajectoires daavions. 2017.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-armed bandits. Journal of Machine Learning
Research, 12(May):1655-1695, 2011.

10



April 16,2019

Yahel David and Nahum Shimkin. Pure exploration for max-quantile bandits. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 556-571. Springer, 2016.

Nicolas Galichet, Michele Sebag, and Olivier Teytaud. Exploration vs exploitation vs safety: Risk-aware multi-armed
bandits. In Asian Conference on Machine Learning, pages 245-260, 2013.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond. In Proceedings
of the 24th annual conference on learning theory, pages 359-376, 2011.

Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The true shape of regret in bandit
problems. Mathematics of Operations Research, 2018.

Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions with unknown smooth-
ness. In Advances in Neural Information Processing Systems, pages 667-675, 2015.

Adam J Hepworth. A multi-armed bandit approach to superquantile selection. PhD thesis, Monterey, California:
Naval Postgraduate School, 2017.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 681-690. ACM, 2008.

Ravi Kumar Kolla, Krishna Jagannathan, et al. Risk-aware multi-armed bandits using conditional value-at-risk. arXiv
preprint arXiv:1901.00997, 2019.

Andrea Locatelli and Alexandra Carpentier. Adaptivity to smoothness in x-armed bandits. In Conference on Learning
Theory, pages 14631492, 2018.

Alexander J McNeil and Riidiger Frey. Estimation of tail-related risk measures for heteroscedastic financial time
series: an extreme value approach. Journal of empirical finance, 7(3-4):271-300, 2000.

Rémi Munos et al. From bandits to monte-carlo tree search: The optimistic principle applied to optimization and
planning. Foundations and Trends®) in Machine Learning, 7(1):1-129, 2014.

R Tyrrell Rockafellar, Stanislav Uryaseyv, et al. Optimization of conditional value-at-risk. Journal of risk, 2:21-42,
2000.

Marzena Rostek. Quantile maximization in decision theory. The Review of Economic Studies, 77(1):339-371, 2010.

Amir Sani, Alessandro Lazaric, and Rémi Munos. Risk-aversion in multi-armed bandits. In Advances in Neural
Information Processing Systems, pages 3275-3283, 2012.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016.

Xuedong Shang, Emilie Kaufmann, and Michal Valko. General parallel optimization without a metric. In 30th
International Conference on Algorithmic Learning Theory, 2019.

Balazs Szorenyi, Rébert Busa-Fekete, Paul Weng, and Eyke Hiillermeier. Qualitative multi-armed bandits: A quantile-
based approach. In 32nd International Conference on Machine Learning, pages 16601668, 2015.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic optimization. In Interna-
tional Conference on Machine Learning, pages 19-27, 2013.

Shang Xuedong, Emilie Kaufmann, and Michal Valko. General parallel optimization a without metric. In Algorithmic
Learning Theory, pages 762-787, 2019.

A Proofs related to the generic analysis of StoROO

Proof of Proposition 1

Let us define Pp,« ;- the partition containing z*. Assume that the partition P, ; has been selected, thus
Th,j TR 5
Uy (t) = Uy 7 (2).
By definition U/"7" (t) > f*, thus U/ (t) > f*. Conditionally on A,,, L (t)) < f(x ;(t)) that implies
o= flany) SUMI(t) — LI (t) UM (t) + BS(h)T — L7 (t) < 2B6(h).
Note that the last inequality is obtained because the partition is expanded, which implies that

U(xn,;)(t) = L(zn,;)(t) < Bo(h)7.

11
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Finally:
fr < f(@n;) +2B6(h)7,

thus x5, ; belongs to J.

Proof of Proposition 2

T = Z Ny ;(t) < Z nyn  because Ny ;(t) < nypp
h,j€Tr h,jE€Tr
depth(77)—1
< Z K|Tr N Jy |nn,h/+1 because StoROO has not expanded all the nodes it has sampled
h'=0
depth(77)—1
S Z K|Jh|nn,h’+l = Sdepth('TT)fl
h/=0

Thus Sp, < Saeptn(T7)—1 < Sdepth(T7) 80 Hy < depth(7r). There is at least an expanded node of depth H} > H,
after a budget T" was used.

Proof of Proposition 4 According to the assumption 2, each cell P, ; contains ball of radius vd(h) centered
in xp ; that is a lg, ball of radius S(vd(h))” centered in xp ;. If the d is the »7/2 near optimality dimen-
sion then there is at most C[235(h)7]~¢ disjoint I, balls of radius B(v6(h))? inside Xogs(n)-. Thus if
|Jnl = |zn,; € Xagsnyn| > C[28(5(h))?]~ this implies there is more than C[286(h)7]~ disjoint I3 - balls of
radius $(v6(h))” with center in X55(1,)~, that is a contradiction.

Proof of Therorem 1
=
T < Z K| Jp |0y 41 by definition of H*
h=0

< Z KC[2B8(h)"] "y pia using Proposition 4

h=0
o
= Z KC[2p (cph)"y]_dnn,hﬂ using the hypothesis on the exponential decay of the diameter of the cells
h=0
\- h d log(T"/n)
< KC[26(cp™)"]”% x k*———=—= applying Definition 1
Sl e

KCk*[28c7]~
o KO § i

BT

KCr*[2Bc7]~¢ p(H +D)(=dy—a) _q
_ 2
= log(T%/n) e X P
log(T?/n) KCk*[28c7]~¢ % pH*(fd“/*“/a)
- (1 — pd7+7a) Bere
_ log(T?/n) KCr*[2]
(1= ptrine) B

Finally

rewritting the sum

(H*) d’yf’ya.

Using Proposition 3 we obtain

e < o[ BD)

T

12
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B Proofs related to the section Optimizing quantiles

Proof of Proposition 5
Let us consider the event
& = {Vh>0,V0<j<K'VI<t<T,

Fy (qh,j(T)) 2740 o i (qh,j (7)) ST Nomb
ZT—’_EN;L] t) or,

)
Ffi,j (q’w ) < T —€p, J(t)>
)

< IP(VhSO,VOSjSKh,VlStST,FﬁJ >T ey, ))>

P(&,) :]P(Vh >0,V0<j<KhMVI<t<T, F,;j(qh

q}z]

: h n
+1P<tho,vogjgf(,v1gth,F,§7(q ) < T—e’jvhyj(t)>

Define m < T the number of nodes expanded throughout the algorithm, define for 1 < w < m, ¢ as the time when
the cell w has been selected for the s-th time and define Y,,({?,) the reward obtained at that time at the point x.,. Then
one can write

Nn,;(t)

. 1
]P(F*tw‘ (15(0) 27 4 <t>) ]P(Nhj(t) 2 D)< 27+€7vh.j<t>>'

s=1
Using this notation, we have:

IP(Vh >0,V0<j<KhV1<t<T, F,ij (qhﬂ-(r)) > 714 e;’\,h,j(t))

IN
=~
—~
LLl
—
IN
g

1 u
<T,31<uc<T, " Zl]le(cz)ng(ﬂ > 7+ 63)

T T
<X ZP(i Z Ly, (¢s)<qu(m) 2T+ 62)

By Hoeffding’s inequality, if

we obtain
P(Vh <OVO<j<K"VI<t<T, Ff, (qh,j(r)) > 7+ e’]vhj(t)) <

(RS

Now using Equation (4) we can express this inequality directly in terms of quantiles:

(VRS

]P(Vh <OVO<j <K' VI<t<T, qn(t)> U;lj(t)) <
Using the same scheme of proof with Inequality (5), we obtain:

IP(Vh >0V0<j< KM VI<t<T, g (r) < L’,;j(t)) < g
and hence P(A4,) =1-P(&,) > 1—n.

Proof of Proposition 6

Define first the event

Cp= ﬂ m {th T+ 2€N (t))) > Uy i(t) > qn (1) > Ly ;(t) > qn,j (T 267\73 (t))}

T>t>1Py ;€T

13
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with
77 T _ 108(2T2/77)
N () 2Np;(t)

Using equivalences (4) and (5), one can write:
an,j (T + 2€n’T () ) > Uy i(t) = an,(1) > Ly ;(t) > an,j (T — 2}, 7(t))
& Flang(r+26e§] ) =7+eN > Flan (1) =7 =Xl (> Flan (T +2€§] 1))

Thus
P(C,) > 1-P(Vh>0,Y0<j<K"V1<t<T, sup |Fnj(y) — Ef ()] > €t ®)
V=00, T o ’ fd
Np, 5t
> 1-P(Vh>0,Y0<j<K'"VI<t<T, sup |F,”() Fl )] > ek! W )-
y€(o, "

Using the same notation as in the proof of Proposmon 5, one can write

> I—ZZIP sup |Fy(y _7Z]IYWC)<qw(T)|>€"T)

w=1u=1 y€[0,1] s=1

Now by applying the Massart’s inequality to bound

P( sup |Fu(y Zﬂyw@ J<au(m] = €8T,
y€[0,1]

one obtain IP(C,)) > 1 — 7. Thus with probability 1 — 7, we have:

T
Uy () = L (1) < qnj (T + 2671(@,]-@)) —qn,; (T 26N (t)) ©)
Assuming that gy, ; is differentiable in 7, by the mean value theorem, we deduce
log (27 /n) log (27 /n) log (27 /n) 1
ani (T + 24| ——) —qn,; (T — 2 <4 max ——————.
h J( 2Nh7j ) h ]( 2Nh7] ) 2Nh,j 7/€(0,1) f(l?h o Fxhlj (7./)

Using (9) it is possible to write that with probability 1 —

2 2
U log(21%/n) 1 _ , [log(2T"/n)

hi h J = QNh)j fzh,j - 2Nh)j infpecr f(ﬂ?)
We define n,, ;, as the smallest n such that
2n infme)( f(fL') - ’
that is /3 )
2v/2
= log(T"? _ :
o <1088 G 7)

To conclude, since C,, C A, N B,,, we obtain P(A, N B,) > 1 —1.

Proof of Proposition 7

Let Yy, - -+, Y, be ni.i.d. random variables bounded by the interval [0, 1]. Define £ (¢(7)) = LS Ly, <q(r)- For
x > 7 the Bernstein’s inequality gives

P(|F" (qr) = 7| > €) < 2exp <2T<1 R 3>

Let us consider the event
& = {(Vh>0,V0<j<K'V1<t<T,

14
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> T > T
Ey (Qh,j(T)) =7+ 6nzvh,,j(t) or Fj, ; (Qh,j(7)> <T - f%h,,j(t)}
Using the same lines as in Proposition 5 we have

T T u
&)< > ZP('% > Ly c<ann) ~ 71> GZ’T)
s=1

w=1u=1
then applying Bernstein’s inequality we obtain
2

< ET: ET: 2ex ( - 1K) ) (10)
T P 27(1—71) + 26%$j(t)/3 .
By now the goal is to find G%Zj ® > 0 such that
“67V’hT,,j<t>2

= log (21 /n).
2r(1 —7) + 26;{}:] (t)/?)

Finding such 67\th (1) can be easily done because it is a square of a second order polynomial. The result is
»J

ar log (272 /n) (1+ 1+ 18u7’(1—7)).
ni (1) 3u log(272/n)
Plugging the value of E?\?Zj ) inside (10) concludes the proof.
Proof of Proposition 8
Step 1: bounds on F"(¢()) for a iid sample
Let Y7, -, Y, beni.i.d. random variables bounded by the interval [0, 1]. Define £ (q) = LS Ly,<q. Forz > 7

Chernoff’s inequality gives
P(F"(q(7)) = z) < exp(—nkl(z,T)).

Let 7+ > 7 be the value such that kl(7F,7) = %, then for all z > 77+:

[N i log(2
P(F"(4(r)) > #) < B(F"(a(r)) > ) < exp(n'2E/1) _ 1.
Now let us define the candidate for the UCB of a i.i.d sample:
U(n) = min {q, F”(q) > 7 and nkl(ﬁ'"(q), T) > 10g(2/77)},

and let us remark that

E™(U(n)) < F(q(1)) & 7 < F™(q(7)) and KL(E"(q(7)),7) > @, (11)

thus

log(2/n) )

P(E™(U(n)) < F™(q(r))) =P(r < F"(¢(r)) and KI(F"(q(7)),7) = -

<P(E"(q(r)) > 7*) <

N3

For x < 7 let us introduce
L(n) = max {q, F"(q) <7 and nkl(F"(q),7) > log(2/n)},

one proves in the same way

P(F"(L(n)) > F"(q(1))) <

>
>
NS

Step 2: Double union bound

15
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Let us consider the event

¢ = {Vh207V0§j§Kh,v1§t§T,

Bl (n(r) > B (U7) or B (ans(n) < B (27}

P(¢,) < ]P(Vh <SOVO<j<KMVI<t<T, Ff(qn (7)) > }f,j(U;j,j)>
+ IP(Vh >0,Y0<j < K" V1<t <T, F}(qn (7)) < F,g,j(Lz’j))

Following the notation of the proof of Proposition 5 we have

P(Vh >0V0<j<K"V1<t<T, F} (qn;(r)) > }i,j(UZZ,j)>

= ( T,31<us<T, ZHY (¢5)Squ(r) = Z]lYu,(cw )
T T u = !
< Z Z (Z]le(C" )<qu(r) = Z]IYM((S)<U")

Using the equivalence (11), the probability can be reformulated as

= 3 Y P(r < Fu(a(r) and K(F(g(r)),7) = W>
w=1u=1

Now using the Chernoff’s inequality we obtain
T T
. . log(27?
]P<Vh >0,Y0 <j< K" V1<t<T, F} (qn,(r)) > ) Z Z _ OgT/”)) 0/2.

By equivalence (4) this implies that, YA > 0,V0 < j < K" V1 < t < T, with probability at least n/2, U,’; j (t) <
qn; (7). Using the same lines one can show

lP(Vh >0,Y0<j < K" V1<t<T,Ff, (qm(T)) < F;LJ(L)> <n/2,

By equivalence (5) this implies that, VA > 0,V0 < j < K" V1 <t < T, LZ j(t) > g, ;(7) with probability at least
n/2,
Putting this two probabilities together prove the result.

Proof of Proposition 9
Define

S Z Ly, 5 () <ans()-
Step 1: Martingale For every A € R, let ¢, (\) = log Elexp(ALy, (1)<q, ;(r))]- Let W3t = L and for n > 1,

er = exp()\g,:)j(n) —ndr(N).

(W2)n>o is a martingale relative to (F,,),>o. In fact,

E[exp (A{S,;j(n T 1) - S;ﬁj(n)}) |}‘n} :E[exp(xxnﬂ)m}

=exp (log E[GXP()\Xl])
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=exp ({(n+1) = n}6,(N)
That is equivalent to
E [exp (A{é,:,j(n +1) - S*;’j(n)}) |}'n] = exp ()\Sn - n(b#()\)).

Step 2: Peeling Let us devide the interval {1,--- , T} into slices {t;_1 + 1, - - , ¢} of geometric increasing size. We
may assume that § > 1, since otherwise the bound is trivial. Take & = 1/(1 — 6,/(T')), let ty = 0 and for all £ € IN*,

lett, = [(1+&)F].
1P<\7h >0M0<j<K"V1<t<T, Ul (1) < qh,j<r)>
< IP(EIh >0,30<j<K" 31<t<T Ul (1)< qh,j(T)). (12)

Define m < T the number of nodes expanded throughout the algorithm, thus for 1 < w < m, it is possible to rewrite
(12) as

P31 <w

IN

T,31<n<T, Ujn) < qw(T)>

N

T
. log(T)
< IP(31<k<D,Ht_ <t and U(n) < qu ) th D= —28)
< wz::l <k< i1 <n <ty and Ul(n) < qu(r)) wi Tog(1 £7)
T D
< ZZIP(A/C)7
w=1k=1
with
Ap={Ftp—1 <n<tp and U} (n) < qu(7)}.
1 1~
Observe that U})(n) < qu,(7) if and only if — Y70, Ty, (¢sy<pn < —S7,(n) and
n = w)= n
1 & ST (n) S7(n) S7(n) 1
— 1 s g < < and ki(—4+ >0,(T)+ —.
n; Yo(¢psud S = & TS — = an ( o 2 T) 2 0y )+n

Define § = 6,(T") + 1/n, let s be the smallest integer such that 6 /(s + 1) < kl(1,7);if n < s, then nkl(%, 7)<
skl(Ze() 7y < sKI(1,7) < 6 thus P(U(n) < g(7)) = 0. Thus for all k such that #;, > s, we obtain P(A, = 0).
For k such that t;, > s, let tx_; = max{t;_1,s}. Let z €]7,1[ be such that kl(z,7) = &/n and let A\(z) =
log(z(1 — 7)) — log(7(1 — z)) > 0, so that kl(x, 7) = AM(x)z — (1 — 7 + Texp(A(z))). Consider z such that z > 7
and kl(z,7) = 0/(1 + &)*.

Observe that
e if n > #5_1, then
é )
kl(z,7) = > ;
7= Trer 2 v om
e if n < t;, then as ~
(el 0o 0 e
n ) (1 + g)k- ) )
it holds that: B ~ _
< o(n) and kl(Sw(n),T) > 9 = Su(n) > z.
n n n n
Hence on the event {f;,_1 <n < tx} N {r < W} N {kl(@, 7) > 2} it holds that
ST (n) 5

M) 2 A@)2 = 6:(0:) = KT 2 g
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Step 3: Putting everything together

{Ek,1 <n< tk} N {T < S;T(n)} N {kl(S;(n),T) > %}
S’L(n) 0
6y (1)
C{A(2)Sw(n) — nor(A(z)) = (1"+ 5)}
) > exp( L),

As (W),>0 is a martingale, ]E[Wﬁ‘ (Z)] < IE[W(;\ (Z)] = 1. Thus the Doob’s inequality for martingales provides:
6, (T 6, (T
Pl sup WO > exp (L) < exp ( _ M)
fk—1<n<tk 1+€ 1+§

Finally
_5(T)
(1+¢)

T D
Z ZIP( Jtg—1 <n <t and U] (n) < qw(r)) < TDexp(
w=1k=1

{ log(T")
log(1+1/(6,(T) + 1))

log(1 +1/(6,(T) = 1)) = 1/6,(T),

Butas{ =1/(6,(T) —1),D = -‘ and as long as

we obtain:
log(T)
log(1+1/(6,(T) + 1))

Using the same lines for the LCB concludes the proof.

P(A) <T| | exp(=8,(T) + 1) < Te[8,(T) log(T)] exp(=6,(T)) < n/2.
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