The Traditional Arabic Typecase, Unicode, TeX and METAFONT

Yannis Haralambous

To cite this version:

Yannis Haralambous. The Traditional Arabic Typecase, Unicode, TeX and METAFONT. Tugboat, 1997, 18 (1), pp.17-29. hal-02101612

HAL Id: hal-02101612

https://hal.science/hal-02101612

Submitted on 18 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Philology

The Traditional Arabic Typecase, Unicode, TEX and METAFONT

Yannis Haralambous*

1 Introduction

The first Arabic book, a $5 \times 11 \mathrm{~cm}$ volume titled (Book of the prayer of hours), was printed in 1514 by Grégoire de Grégoire in Venice and Fano, under the protection of Pope Leo the 10th [1, p. 18-19]. It took about two centuries for Arabic book printing to move to the East: in 1727 the Ottoman printing agency was founded in Constantinople and started printing using Dutch types and technology [8, p. 156]. A similar institution was founded in Cairo in 1821.

Undoubtedly a script like the Arabic one, having deep roots in calligraphy, was rather difficult to adapt to typography, a technique where strict standardization and repetition of forms is necessary. When Aldus Manutius created the first italic font in 1501, out of manuscript calligraphic forms, he made a certain number of choices - and these choices became a standard for occidental typography. Similar choices had to be made for Arabic: calligraphy had to be "tamed", so that the results would be homogeneous, reproducible, and flexible enough to be pleasant to the eye.

This standardization took place in 1906, in Cairo, when the ألمطابع الأماري ('Almatàa' al'amārya) typecase is defined. This typecase (see fig. 1), divided in four parts (as opposed to "upper" and "lower" case of the Occident), uses a total of 470 characters. Astonishing as it may seem, this typesetting system has been kept in use until today: books typeset in a traditional way, all around the Arabic world, are still using the same set of characters, and the same conventions and rules. ${ }^{1}$ In fig. 1 , the reader can see the four parts of this typecase.

The reader knowing the technical limitations of computerized typesetting can already imagine the effect of computers on the Arabic script: not being able to cope with the complexity of the Cairo typecase, the computer industry has tried (and was

[^0]finally able) to impose new standards of simplified typesetting, ${ }^{2}$ most of the time covering only the fundamental properties of Arabic script, without any typographical enhancement. Was it the computers, which have simplified Arabic printed script, or was it a deeper change in Arabic society and mentality? This is hard to say; nevertheless, even today, commercial computer typesetting systems are-a few isolated exceptions apart - unable to reach the typographic quality of 'Almatàa' al'amārya. In fig. 2, one can see different samples of printed Arabic material, showing the evolution and simplification of Arabic script; these examples are extreme cases: the first one is taken from a scholarly book printed in Lebanon (it contains almost all ligatures of the 'Almatāa' al'amārya typecase), the second from a technical book printed in East Germany (a fewer number of ligatures), and the third from a daily newspaper printed in the U.K. (almost no ligatures).

This paper describes the author's solution to this problem: الڭمل (Al-Amal), a typesetting system based on $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (actually $\mathrm{T}_{\mathrm{E}} \mathrm{X}-\mathrm{X}_{\mathrm{ET}}$), emulating the 'Almatāa' al'amārya typecase. This system (already presented in [6] and [7]), has been recently extended to the complete set of Unicode Arabic alphabet characters; problems and open questions arising from this extension are discussed at the end of the paper.

2 The Cairo typecase

Arabic letters have contextual forms, depending on surrounding letters in the same word: a typical three letter word will start with a letter in initial form, followed by a letter in medial form and, finally, by a letter in final form (the hypothetical word consisting of three times the letter 'gha' is written غنغ). A fourth form is used for isolated letters (this is also the form used in crosswords or Scrabble-like games, where letters have to placed in boxes, indepedently of their context). Some letters appear only in isolated and final form (and sometimes even only in isolated form), so that the letters immediately following them must be written in initial (or isolated) form, although they are located inside the word.

These are the basic contextual rules of the Arabic script: they are independent of style and medium, and are applied in all cases, without exception; they are as basic as the dot on the Latin lowercase ' i ', or the horizontal bar of the ' t '.

But besides these contextual forms, 'Almatāab al'amārya also combines letters into ligatures, not

[^1]

Figure 1: The Cairo typecase - cases 1 (left, bottom), 2 (left, top), 3 (right, top) and 4 (right, bottom)
unlike the ' f ' + ' i ' \rightarrow 'fi' phenomenon in Latin alphabet typesetting. In fig. 3, the reader can compare the same text with and without ligatures. The first case is more-or-less the best one can obtain from a standard commercial Macintosh and Windowsbased Arabic typesetting system. The text of the second figure is typeset in الامل (Al-Amal), a typesetting system developped by the author, and based upon the combined use of a Lex/Yacc preprocessor, TEX and METAFONT; it follows the traditional typesetting rules of the 'Almatāa' al'amārya typecase.

3 Typesetting rules for the Cairo typecase

In this section we give a short description of the most important ligatures and variant characters found in the Cairo 'Almat $\bar{a} b^{\prime}$ al'amārya typecase, and their use. This set of rules is described in [4, p. 102-103] and has been confirmed by careful examination of various printed texts of different origin. In fig. 3 the reader can compare the same text (actually the text of the first example of fig. 2) typeset via the Al-Amal system, with and without 'Almat $\dot{a} b^{\prime}$ al'amārya ligatures.

In the following we start by giving the mandatory ligatures (those that are part of every font), then we give the second level ligatures (those that are characteristic of the Cairo typecase), and finally we give the variant characters (form changes applied to single characters). By "foo-like", where "foo" is
some common Arabic letter, we mean all characters having the same base form as letter "foo" but different dots and other diacritics (for example, the ba-like family is the set of characters $ب, ~ ت, ~ ث, ~$ etc.).

After each entry of our list we give the coordinates of the type positions in the Cairo 'Almat $\bar{a} b^{\text {' }}$ al'amārya typecase (see fig. 1). These coordinates are notated in the following chess-like way: (a) the number of case $(1-4)$, (b) the column ($\mathrm{A}-\mathrm{N}$, counting from right to left ${ }^{3}$ with a subscript when the slot is splitted into two parts, the first part being the one on the right), (c) the row, ($1-8$ counting bottom to top).

3.1 Mandatory ligatures

L1. a lam-like letter followed by an alif-like letter: لالأثنين, جميلا, etc. 1E3, 1E4, 1F3, 2A2, $2 \mathrm{~A}_{1} 1$.
L2. the second part of the word Allah (God): الها. 4 A 8 .

3.2 Typographical ligatures

L3. a lam-like letter followed by meem: τ^{L}, سالمى, , ع. , etc. 1B8, 2E4, 2F4, 2G4.
L4. a ba-like letter followed by a ra-like one: فتر, ثبر, چیپ, etc. 2B1, 2C1, 2D1, 2E1.

[^2]منذ ظهور طبعة معجم بر وكلمان الثانية في عام 19 و 19 ، أصبح لدى دارسي اللغة السريانية اداة

 الكلمات واشتقاقها ، كما ان سعة اطلاعه وحصافته مسترف بهط في جـالي التحر يك وضبط الكتابة (الاماها).

 نهذا ما حدانا على وضع معجم مختصر ، من النوع المدربي ، آملين ان يكدوا فيه ما مه بكاجة اليه ، عع مراعاة الامانة قدر المستطاع .

ورق معلّ إعدادا خاصا تطبع عليه الصور في غشاء

 من النشا والزلال والجلسرين ، وتطبع عليه الصهور بعد
 الشفاف، ثم يطلى الوجه المطبوع بطبقة سن الغراء القابل للذوبان في الماء . وعندها يبل الورق المور ويلصق على السطح المطلوب النقل اليه، تننزع الورقة المبلـة ويثبت الطبع على ذلك السطع • وتطبع الصّور المنقولة
 الأفران لكى تصمد بعد ذلك للغسل بالماء اللساخن .

حــلايب مع التـوتر الآخـر الذي تــــــره
 الجمـاعات المتطرفة. وقد ذكرت الدوانر الرسمية في القاهرة امس أن سلطات الامن المصـــريـة

 ارهابيـة أو مـتطرفــة من الدول المجـاورة بعد ضبارِ شبكة تضـم عناصر سودانية وايرانية واردنية. ومن المتوقع ان تعلن النيابة العامـة

 اعتقلت اجـهـزة الامن المسـرية مـسـاء امس الامل ع7 من اعضــاء الجـمـاعـات المتطرفة في مدينة قنا بعد صـدامـهـم مـ

Figure 2: Samples of printed Arabic: Beirut 1963 (top), Leipzig 1981 (left), London 1992 (right).

L5. a ba-like letter followed by a final noon-like one: , ختّ , etc. 2F1, 2K2.
L6. a lam-like letter followed by a ha-like one: 2 H 1 , 2 I1.
L7. a ba-like letter followed by a ya-like one: سیى, أخواتى, etc. 2J1, 2K1.
L8. a gim-like letter followed by meem: چُ , 飞., etc. 2L1.
L9. a lam-like letter followed by a gim-like, and eventually a meem: $\frac{1}{f}, \frac{ل}{\text {, }}$, etc. 2 M 1 , 2N1.
L10. a ba-like letter followed by a ha-like: تهلال, بهrم, , پیهلوى, etc. 2F2, 2G2.

L11. a ba-like letter followed by meem: ثنهر, ,ثمل, تتع, , etc. 2H2, 2 $2,2 J 2$.
L12. a ba-like letter followed by a gim-like one, and
 etc. $2 \mathrm{~L} 2,2 \mathrm{M} 2,2 \mathrm{~N} 2$.
L13. a lam-like letter followed by a ya-like one: إلى, etc. $2 \mathrm{C} 4,2 \mathrm{D} 4$.
L14. a kaf-like letter followed by an alif-like, or a lam-like, or a final kaf-like: كارى, etc. Such a two-letter ligature can be extended to a three-letter or even four-letter ligature, by adding a ya-like letter, or a ha-like letter, or lam-like letter, or lam-alif-like ligature, etc.: كr , كام, , etc. 3H2, 3I2, 3L4, 3M4, 3H5,

Figure 3: Samples of text typeset with Al-Amal, with (top) and without (bottom) Cairo typecase ligatures

3I5, 3J5, 3K5, 3L5, 3M5, 3N5, 3L6, 3M6, 3N6, 3K8, 3M8.
L15. a ba-like letter, followed by a meem and a gimlike letter: 3L2, 3M2, 3N2.
L16. a lam-like letter followed by a lam-like letter and eventually by a meem or a gim-like letter: $3 \mathrm{E} 3,3 \mathrm{~F} 3,3 \mathrm{G} 3,3 \mathrm{E} 6,3 \mathrm{~F} 6,3 \mathrm{G} 6$.
L17. a kaf-like letter followed by a meem and eventually other letters: $3 \mathrm{I} 3,3 \mathrm{~J} 3,3 \mathrm{~K} 3,3 \mathrm{~L} 3,3 \mathrm{M} 3,3 \mathrm{H} 6,3 \mathrm{I} 6,3 \mathrm{~J} 6$, 3K6, 3L6, 3M6.
L18. a meem followed by a gim-like letter and even-
 $3 \mathrm{G} 4,3 \mathrm{E} 5,3 \mathrm{~F} 5,3 \mathrm{G} 5$.
L19. a sad-like, ha-like, fa-like or kaf-like letter fol-
 etc. $3 \mathrm{H} 7,3 \mathrm{I} 7,3 \mathrm{~J} 7,3 \mathrm{~K} 7,3 \mathrm{~L} 7,3 \mathrm{M} 7,3 \mathrm{H} 8$, 3I8, 3J8, 4I3.
L20. a ba-like, or lam-like, followed by meem, or a meem followed by a ba-like, followed by meem,
or a lam-like followed by two meems: $4 \mathrm{C}_{1} 1$, 4A2, 4B2.
L21. a sin-like, or sad-like, or fa-like, or ayn-like, or gim-like, followed by a gim-like and eventually

 N, ROWS $2-8$ and Columns $\mathrm{H}-\mathrm{K}$, Rows 2 4.

L22. a lam-like letter or lam-meem-like ligature, followed by a gim-like letter, and eventually a

L23. the name "Mohammad" 4 m 8 .

3.3 Variant forms

V1. an initial ba-like letter in front of a sin-like, sad-like, ayin-like, waw-like or ha-like one grows higher: يونان, نهنزة, ثورة, تعليق ,بسمة, etc. 2H6, $2 \mathrm{I} 6,2 \mathrm{~J} 6,2 \mathrm{~K} 6,3 \mathrm{~A}_{1} 8,3 \mathrm{~B}_{1} 8$.
V2. a medial ba-like letter between two ba-like letters, or in front of a sin-like letter grows higher:
, متيس, ,تقييش ,تستيت ,بـيس, ,ثبت ,تتبع , etc. 2H5, $2 \mathrm{I} 5,2 \mathrm{~J} 5,2 \mathrm{~K} 5,3 \mathrm{~A}_{2} 8,3 \mathrm{~B}_{2} 8,3 \mathrm{~A} 7,3 \mathrm{~B} 7,3 \mathrm{C} 7$, 3D7, 3E7.
V3. an initial or medial gim-like letter in front of an alif-like or lam-like letter takes a rounder closed form: هاي , چاجت, جليل, etc. 1K3, 1K4, 1L3, $1 \mathrm{~L} 4,1 \mathrm{M} 3,1 \mathrm{M} 4$.
V4. an initial meem in front of a ra-like letter, a ha-like letter or a ya-like letter gets smaller and non-hollow: أمي, عهل , بسبع, etc. 4C8, 4D8.
V5. a ra-like letter following a gim-like, ta-like, aynlike, fa-like, kaf-like, ha-like letter or a meem, takes a more calligraphic form: طر, ط , حرفی, , etc. 2L5, 2M5.

4 Porting the Cairo case to Unicode

The first plane of ISO 10646-1, also known as Unicode, provides characters for the following languages: Arabic (modern and classical), Farsi, Urdu, Pashto, Sindhi, Ottoman Turkish, Baluchi, Kashmiri, Kazakh, Lahnda, Dargwa, Uighur, Turkic, Berber, Hausa, Malay, Adighe, Ingush, Kirghiz [12]. ${ }^{4}$

Similarly to European languages which have diacritized letters of the Latin alphabet to adapt them to their phonetic needs, the languages stated in the previous paragraph have added diacritics to the letters of the basic Arabic alphabet. There is a slight difference though: historically, Arabic alphabet was first written without dots; ${ }^{5}$ so in a sense, dots are already "diacritics". It is only natural that these languages have first tried to use new combinations of dots and letter forms: almost every combination of basic form and sets of one, two, three, or even four dots, over or under the word has been used to obtain new characters.

The author has expanded the ll system to cover all these characters derived from the basic Arabic script; in fig. 4 the reader can see an example of Sindhi text (kindly provided to the author by

[^3]Prof. Aqha, Univ. of Illinois) typeset in Al-Amal. In most of the cases, the extension to Unicode has been a straightforward task. Nevertheless, in some cases the fact of applying a ligature or even just a contextual form similar to those of the basic Arabic alphabet brought up ambiguities. These will be discussed below.

4.1 Cases where contextuality leads to confusion between characters

1. Letters fa and qaf. In basic Arabic, letters fa ق and qaf its artificial derivative va ف have different forms: the former is longer and flatter, while the latter is rounder and deeper. This difference is visible only in the isolated and final forms: compare ق ققق and ففن. Since these letters differ mainly in the number of dots (one for fa, two for qaf, three for va), the shape difference is of minor importance, and in some modern Arabic typefaces it is totally ignored.

The problems arise with Unicode characters 06A7 (ARABIC LETTER QAF WITH DOT ABOVE) and 06A8 (ARABIC LETTER QAF WITH THREE DOTS ABOVE), which use the basic shape of letter qaf, and have the same number of dots as fa and va. These characters are used in Maghribi Arabic. In initial and medial forms, as well as in ligatures involving these forms, they are indistinguishable from the basic Arabic letters fa and va.
2. Letters ta, noon and ya. In basic Arabic, letters ta \because and noon $\dot{\sim}$ have different forms: the former is longer and flatter and the latter is rounder and deeper. Once again, the difference can only be seen in isolated and initial forms: compare تن تنن and نت . Since these letters differ mainly in the number of dots (one above for noon, two above for ta, etc.) the shape difference is of minor importance.

Unicode characters 06BB (ARABIC LETTER RNOON), 06BD (ARABIC LETTER NOON WITH three dots above) use the letter form of the Arabic noon and the dots of the Urdu letter tteh and the Arabic letter tha. These letters are used in Sindhi and Malay. Their initial and medial forms, as well as all ligatures involving initial and medial forms are indistinguishable from the Urdu and Arabic counterparts.

The situation is even more complicated since the Arabic letter ya shares the same initial and medial forms as ba, noon and friends: ي ييي. Nevertheless, the isolated and final forms of this letter are significantly different from

Figure 4: Sindhi text typeset in Al-Amal
those of the ba and noon letter shapes. Once again, in basic Arabic the number and position of dots is sufficient for determining the letter (ya carries two horizontaly aligned dots below).

Unicode character 067B (ARABIC LETTER BEEH) has the form of ba and carries two vertically aligned dots below; this is also the case of 06D0 (ARABIC LETTER E) which carries the same set of dots, but has the form of an Arabic ya. Furthermore, 06D1 (ARABIC LETTER YEH WITH THREE DOTS BELOW) carries three dots below, exactly as does Arabic letter tha: the former has the letter form of a ya, while the latter the one of a ba.
3. Arabic and Sindhi letters kaf. In Arabic, the letter kaf is written with an oblique ascender stroke in initial and medial form, and with a hamza-like diacritic in final and isolated form. Sindhi uses a kaf-like letter 06A9 (ARABIC LETTER KEHEH) which has oblique ascender strokes in all forms and no hamza-like diacritic. This letter is indistinguishable from the Arabic kaf, in initial and medial forms, as well as in all ligatures involving these forms.

4.2 Cases where ligatures obstruct proper diacritization of characters

1. The Pashto ring (as in ت) is incompatible with the ba-like + gim-like ligature (for example $\dot{<}$) and the initial/isolated ba-like + meem ligature (for example $\dot{\sim}$). Either the ring must be designed like "a drop that hangs" - a dubious esthetic result - or the ligature must be broken.

The author has tried to design a ligature of isolated form \because, but the result is not entirely satisfying.
2. The Uighur character $\left.\right|^{〔} 0675$ (arabic letter HIGH HAMZA ALEF) can hardly take part in a lam-alef-like ligature: the hamza would be too far to the right. ${ }^{6}$
3. The fact that 'Almat $\bar{a} b^{\prime}$ al'amārya ligatures have been designed without taking into account Indic characters, makes many ligatures with non-standard dots ambiguous: is the combination of 9 and τ (06A5 ARABIC LETTER FEH WITH THREE DOTS BELOW and the standard Arabic hah) or of $\boldsymbol{\omega}$ and \varlimsup_{\subsetneq} (06A1 ARABIC LETTER DOTLESS FEH and 0686 ARABIC LETTER TCHEH)? Theoretically, one can distinguish them by slightly moving the dots to the right in the former case (2 vs. $\frac{2}{4}$); but still the two forms are very close graphically, and it may be difficult to the reader to distinguish them at first sight.

5 Technical details

5.1 Preprocessing

The extended Al-Amal system consists of four modules, as shown in fig. 5 :

1. re-encoding into the (extended) Unicode encoding;
2. standard contextual analysis and processing of the mandatory ligatures;

[^4]

Figure 5: The Al-Amal internal structure
3. Cairo typecase ligatures processing (optional); and
4. output preparation (conversion into $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code).

The first three modules are independent of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. To avoid ligatures one simply removes module 3 from the processing chain. Preprocessors have been written in C, using Flex and Bison tools: writing a grammar for Arabic ligatures avoids tedious pattern matching.

5.2 The fonts

The Al-Amal have been designed in the METAFONT language, to benefit from the maximum possibilities of optical scaling. Many ligatures have been split in several parts and are re-combined by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (this is essentially the task of the preprocessor module). One can consider these fonts as glyph containers, providing glyphs which $\mathrm{T}_{\mathrm{E}} \mathrm{C}$ combines into characters and ligatures. This approach has allowed minimization of storage space and time needed for design the font. The author was able to produce all possible Cairo typecase ligatures on the Unicode Arabic character set, using only six 8-bit (partially filled) font tables, ${ }^{7}$ consisting of less than 1500 glyphs. See tables 1-6.

References

[1] Josée Balagna, L'imprimerie arabe en occident, Maisonneuve \& Larose, Paris 1984.
[2] Syed Barakat Ahmad, Introduction to Qur'anic Script, Curzon Press, London, 1985.
[3] Joseph D. Becker, Arabic Word Processing, Communications of the ACM, $\mathbf{3 0}$ (7), 1987.
[4] Claus Faulmann, Das Buch der Schrift, enthaltend die Schriftzeichen und Alphabete aller Zeiten und aller Völker des Erdkreises, Vienna, 1880 (reprint by Franz Greno, Nördlingen, 1985).
[5] Yannis Haralambous, Un système $T_{E} X$ berbère, Études et documents berbères, $1143-54,1991$.

[^5][6] Yannis Haralambous, Towards the revival of traditional Arabic typography... through $T_{E} X$, Proceedings of the EuroTEX92 conference, Prague, 1992
[7] Yannis Haralambous, Typesetting the Holy Qur' $\bar{a} n$ with $T_{E} X$, Proceedings of the 2nd International Conference on Multilingual Computing (Latin and Arabic script), Durham, 1992.
[8] Klaus Lagally, ArabTEX - Typesetting Arabic with Vowels and Ligatures, Proceedings of the EuroTEX92 conference, Prague, 1992
[9] Ahmed Lakhdar-Ghazal, Caractères arabes diacritiques selon l'ASV-CODAR (pour imprimer les langues arabes), Institut d'Études et de Recherches pour l'Arabisation, Rabat, 1993.
[10] Pierre MacKay, Typesetting problem scripts, BYTE 11, 2 1986, 201-218.
[11] Roland Meynet, L'écriture arabe en question, Dar el-Maghreb Éditeurs, Beyrouth, 1971.
[12] The Unicode Consortium, The Unicode Standard, Version 1.0, Vol. 1, Addison-Wesley, 1991.

\diamond Yannis Haralambous ${ }^{8}$ Atelier Fluxus Virus, 187, rue Nationale, F-59 800 Lille, France yannis@pobox.com URL: http://pobox.com/~yannis

	＂x0	＂x1	＂x2	＂x3	＂x4	＂x5	＂x6	＂x7
＂1x	飞	τ	＞	こ	亡	$\dot{\sim}$	$\dot{\sim}$	$\dot{\text { c }}$
	2	j	j	」	j	\sim	\cdots	\sim
＂2x	－	！				．		
	）	（			s	－	．	\backslash
＂3x		1	r	r	ε	0	7	v
	\wedge	9	：	\leq	＂		«	¢
＂4x		1		－	$\stackrel{\sim}{*}$	\angle	\＆	i
	\sim	\sim		$\overline{<}$	W	4	b	号
＂5x	号	2	S	ش	b	＊	＊	$\stackrel{1}{2}$
	－	\sim	ظ	i	5	\checkmark	ث	＊
＂6x	＊	号	＊	$\stackrel{7}{*}$	λ	\＆	i	？
	r		＊	S	1	－	：	
＂7x	\％	z	ァ	\cdots	$=$	ؤ	$\stackrel{1}{2}$	，
	¢	＊	j	－	－	\because	：	
＂8x	ش	$\stackrel{\text { \％}}{ }$	ش	\sim	\sim	\sim	－	is
	－	b	b	b	b	b	b	ε
＂9x	s	c	$\dot{\varepsilon}$	；	غ	\bigcirc	¢	$\stackrel{\text {－}}{ }$
	ق	\％	ق	5	5	ك	J	1
＂Ax	\downarrow	ρ	－	¢	ن	；	ن	－
	∞	＊	a	${ }^{*}$	，	\checkmark	ي	
＂Bx	\checkmark	ي	ي	ث	\％	＊	\cdots	\because
	－	E	\％	区	j	5	ξ	¢
＂Cx	3	ξ	\star	＊	¢	3	占	上
	3	号	ز	¢	\checkmark	v	\sim	y
＂Dx	λ	$\stackrel{y}{ }$	A	\checkmark	，	\sim	\sim	\bigcirc
	，	2	\cdots	\bigcirc	ق	$\stackrel{1}{2}$	－	ق
＂Ex	，	\lrcorner	ب	j	j	j	يا	$\stackrel{\square}{*}$
	ξ	\downarrow	\pm	－	i	i	\pm	\div
＂Fx	？	\bigcirc	\sim	－	$\stackrel{\square}{\square}$	\checkmark	\checkmark	$\stackrel{*}{*}$
	i	i	y	3	\leq	\leftrightharpoons	$\stackrel{\sim}{\sim}$	
	＂x8	＂x9	＂xA	＂xB	＂xC	＂xD	＂xE	＂xF

Table 1：Table of the amal0－10 font（Basic glyphs）．

	＂x0	＂x1	＂x2	＂x3	＂x4	＂x5	＂x6	＂x7
＂1x	\because	$\stackrel{3}{ }$	$\stackrel{\text {＊}}{ }$	«．	\because	$\stackrel{\square}{\square}$	\％	\cdots
	τ	\％	\％	实	E	；	＊	E
＂2x	E	\cdots	\sim	区	を	？	＊	を
	$\hat{\tau}$	＊	＊	E	区	＂	\cdots	区
＂3x		\cdots	？	＋	刍	¢	；	i
	\cdots	يا	3	$\dot{1}$	；	¿	3	\pm
＂4x	٪	¢	\％	\ddagger	ب	¢	$\stackrel{1}{2}$	\％
	ب	＋		3	\％	\bigcirc	3	3
＂5x	¢	\div	\div	\cdots	\because	\％	\cdots	\cdots
	$\stackrel{\text { ¢ }}{*}$	$\stackrel{\text { \％}}{\square}$	$\stackrel{*}{*}$	$\stackrel{*}{*}$	يـ	\bigcirc	$\stackrel{\square}{*}$	\sim
＂6x	¢	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\text { A }}{\sim}$	＊	ط	$\stackrel{\square}{*}$	\＆	$\stackrel{1}{5}$
	$\hat{\varepsilon}$	$\stackrel{\text { \＆}}{ }$	＊	e	\bigcirc	！	$\stackrel{+}{4}$	ب
＂7x	ب	$\stackrel{\square}{1}$	$\stackrel{\square}{4}$	ب）	\because	\because		\because
	ٌ	$\stackrel{3}{3}$	$\stackrel{3}{2}$	$\stackrel{\square}{4}$	\leq	\leq	\leq	\leq
＂8x	5	5	\＆	\checkmark	3）	5	＜	$\stackrel{3}{4}$
	$\stackrel{5}{3}$	5	S	¢	$\stackrel{F}{5}$	$\overline{5}$	$\overline{\text { ¢ }}$	$\stackrel{\square}{\square}$
＂9x	$\stackrel{y}{*}$	$\stackrel{\square}{5}$	$\bar{\Sigma}$	\because	ξ	5	र	گ
	ξ	\％	\％	\digamma	j	j	I	こ
${ }_{\text {A }}$	j	j	1	\downarrow	j	；	1	\downarrow
	－	；	$\dot{\square}$	\％	，	，	，	，
＂Bx	j	j	ง	¢	\％	3	＊	\％
	v	v	$\stackrel{\square}{4}$	彑	－	¢	－	¢
＂cx	j	\because	\％	3	3		：	＋
	$\dot{\square}$	：	\pm	$\stackrel{1}{*}$	$\stackrel{5}{2}$	：	\therefore	\because
＂Dx	＊	$\stackrel{\square}{\square}$	$\check{\sim}$	6	\lessdot	\checkmark	$\stackrel{\square}{\square}$	$\ddot{\square}$
	\because	，	\because	\％	¿	$\dot{\square}$	$\dot{\square}$	
＂Ex	i	i	y	$\dot{8}$	$!$	$!$	Y	${ }_{0}$
	$1{ }^{\circ}$	\leftarrow	צ	x	s	\％	＇	\％
＂Fx	v^{*}	\therefore	\because	＊	$\stackrel{8}{8}$	\pm	y	$\check{\sim}$
	y	\dot{x}	y	$\stackrel{\rightharpoonup}{x}$	$\stackrel{\square}{5}$	？	K	\％
	＂x8	＂x9	＂xA	＂xB	＂xc	＂xD	＂xE	＂xF

Table 2：Table of the amal1－10 font（Ligatures I）．

	＂x0		＂x2	＂x3	＂x4	＂x5	＂x6	＂x7
${ }^{11 \mathrm{x}}$	K	辰	${ }^{2}$	${ }^{\text {K }}$	$\stackrel{K}{*}$	良		
		＊	\checkmark	う	\checkmark	j		
＂2x			\checkmark	1	\checkmark	－	\checkmark	－
	$\stackrel{4}{4}$	$\stackrel{4}{4}$			f	．		y
＂3x	3	\％	\％	\％	\％			
	\leqslant	\leqslant	\％	ξ	\leqslant	\leqslant	F	\leqslant
＂4x	E	$\stackrel{\square}{1}$	\％	\leqslant	k	${ }_{*}$	k	\leqslant
	＊	\％	\％	E	\＆	＊		
＂5x	\leqslant	$\stackrel{5}{5}$	＊	K	\checkmark	\checkmark	F	$\stackrel{8}{5}$
	$\underline{8}$	$\stackrel{\square}{6}$	\％	k	K	＊	K	$\stackrel{\leftarrow}{*}$
＂6x	\leqslant	压	＊	${ }_{\text {k }}$	$\stackrel{R}{*}$	＊		．
	；	，	；	；		：	\because	．
${ }^{77 x}$	＊	＊	＊	＝	－	－	\div	\sim
＂8x	－	c	．		＊	＇	－	：
	＊	．	＊		．	－		
＂9x	$<$	z	$\dot{2}$	＜	\leq	2	2	4
	¿	\div	$\stackrel{3}{2}$	\leq	\check{z}	$<$	\％	z
＂Ax					－	：		
	＊	$\stackrel{ }{*}$	$\stackrel{*}{*}$	4	\because	$\stackrel{*}{*}$	－	2
＂Bx	\because	2	ε	$\dot{\varepsilon}$	\＆	－	：	$\stackrel{1}{2}$
	2	\div	\div	\div	$\stackrel{1}{2}$	；	；	$\stackrel{1}{2}$
＂cx	1	\div	$\stackrel{\square}{\square}$	\div	$\frac{1}{2}$	1	I	i
	1	2	$\stackrel{ }{d}$	£	d	1	\sim	\＆
＂Dx		．		＝	－	＇	＇	：
＂Ex			\because			，		
	：	－	．	＂		：	\checkmark	：
${ }^{\text {＂Fx }}$	\dagger	t	\dagger	＋	1	1	i	1
					h	1	\％	\sim
	＂x8	＂x9	＂xa	＂xB	＂xC	＂xD	＂xE	＂xF

Table 3：Table of the amal2－10 font（Ligatures II）．

	"x0	"x1	"x2	"x3	"x4	x5	"x6 \dot{s}	"x7
"1x	$\begin{aligned} & s \\ & ه \\ & ه \end{aligned}$	$\begin{aligned} & \xi \\ & s \end{aligned}$	$\stackrel{\text { s }}{ }$		s			
			ς	$\stackrel{*}{8}$	$\stackrel{5}{*}$		s	s
"2x	$\begin{aligned} & r \\ & \ddot{r} \end{aligned}$	\because	\star	$\dot{\sim}$	r	$\stackrel{b}{\sim}$	$\stackrel{\sim}{2}$	r
		$\stackrel{\sim}{\sim}$	\checkmark	$\stackrel{\sim}{*}$	rim	\dot{r}	$\stackrel{\sim}{r}$	$\stackrel{\sim}{\sim}$
"3x	\%	تم	ث	r	יㅡㅇ	b	\%	5
	π	$\dot{\sim}$	$\%$	\%	\%	$\stackrel{\text { r }}{ }$	r	¢
"4x	S		\%	K	${ }^{2}$	-	S	\%
	¢	\bar{z}	-	$\frac{k}{k}$	$\stackrel{8}{8}$	$\begin{aligned} & K \\ & K \\ & \xi \end{aligned}$	$\begin{aligned} & K \\ & 5 \\ & 5 \\ & \zeta \end{aligned}$	
"5x	5	$\overline{\%}$			$\begin{aligned} & \text { K } \\ & \gtrless \\ & \gtrless \\ & \gtrless \end{aligned}$			¢
	Σ	ζ						
"6x	ξ			$\begin{aligned} & k \\ & k \\ & k \end{aligned}$	$\stackrel{\dot{s}}{ }$	r	\sim	
	\checkmark	\cdots	$\dot{\sim}$	$\stackrel{3}{3}$		$\underset{\sim}{\square}$	$\underset{\sim}{7}$	*
"7x	$\underset{8}{7}$	$\stackrel{\checkmark}{\square}$	ξ	ξ	$\dot{\xi}$	$\stackrel{8}{\text { ¢ }}$	$\dot{¢}$	\%
		$\hat{¢}$	$\%$	$\stackrel{\text { \% }}{\sim}$	\sim	*	نبـ	0
"8x	\%	$\stackrel{\sim}{0}$	¢	¢	${ }^{\sim}$	$\stackrel{*}{*}$	s	8
	*	ξ	$\dot{\xi}$	$\hat{\xi}$	-	3	*	9
"9x	9	ف!	$\stackrel{\circ}{*}$	*		9	\%	2
	$\begin{aligned} & \text { ? } \\ & 6 \\ & 6 \end{aligned}$!	6	$\stackrel{\#}{8}$	5	β	∞	\%
"Ax		$\stackrel{\sim}{*}$	$\stackrel{*}{*}$	$\stackrel{i}{*}$	b	尔	-	$\begin{aligned} & \stackrel{Y}{i} \\ & i \end{aligned}$
		$\stackrel{*}{*}$		$\stackrel{*}{*}$	${ }_{\square}$	6	L	
"Bx	$\begin{aligned} & r \\ & r \end{aligned}$	r	$\stackrel{*}{r}$	r	r	$r^{\text {b }}$	r	T
		$\begin{aligned} & \ddot{r} \\ & \ddot{r} \\ & \dot{r} \end{aligned}$	$\begin{aligned} & v_{0} \\ & \dot{r} \\ & v_{0} \\ & \dot{b} \end{aligned}$	$\begin{aligned} & \ddot{r} \\ & \dot{r} \\ & \ddot{r} \\ & \check{r} \end{aligned}$	T π 	$\begin{aligned} & \dot{r} \\ & \dot{r} \\ & \dot{r} \\ & \hat{b} \end{aligned}$	$r$$r$$r$$r$	r \uparrow $\underset{\sim}{f}$
"Cx	$\begin{array}{r} r \\ r \end{array}$							
"Dx								
	"x8	"x9	"xA	"xB	"xC	"xD	"xE	"xF

Table 4: Table of the amal3-10 font (Ligatures III).

	＂x0	＂x1	＂x2	＂x3	＂x4	＂x5	＂x6	＂x7
＂1x		b		。				－
	＊	＊			ل	J	J	§
＂2x	\cdots	ت	$\stackrel{*}{*}$	u	n	占	نi	\because
	u	\checkmark	$\stackrel{\#}{*}$	\because	μ	～	u	
＂3x		b		＊				
	＋	3	＊	צ	يك	产	§	ִi
＂4x	シ	－	＊	\＃＊	ज	§	\checkmark	
	بٌ	ت	＊	ن	ي	k	ن＇	¢
＂5x	＊＊	凹	＊＊＊	凹	v		\cdots	
	\cdots	ش	بی	\％	\＃	\cdots	شی	شبنى
＂6x	\％	ش\％	0	ض	يكى	¢	\sim	ض
	يیى	ش	فى	قى	＊	\checkmark	？	ف冖
＂7x	－	3	3	3	＊	3	＋	＋
		\％	5	5	5	5	5	5
＂8x	5	§	5	5	\％	K	K	K
	K	كی	S	新	K	K	K	K
＂9x	－		：	＊	c			
	＂x88	＂x9	＂x＇A	＂xB	＂xC	＂xD	＂xE	＂xF

Table 5：Table of the amal4－10 font（Ligatures IV）．

Table 6: Table of the amalf-10 font (Vowels and diacritics).

[^0]: * The author would like to thank Michel Goossens, for among other things - having given him access to [11], an extremely exciting book which has motivated this and forthcoming developments.
 ${ }^{1}$ In [4, p. 102-103], a book published in 1880 (!) the reader can find 30 rules for typesetting Arabic, which are still strictly applied today by traditional typographers.

[^1]: ${ }^{2}$ For more information on the Arabic script and the computer see also [3] and [10].

[^2]: ${ }^{3}$ Remember, we are reading from right to left!

[^3]: ${ }^{4}$ This set of characters is quite complete; nevertheless, the author encountered characters not provided in Unicode, in four cases: for typesetting the Qur'ān, a ba-like letter without dot is needed [2, p. 102-103] (one new character), for typesetting old manuscripts, all characters are needed without dots (2 new characters, in ba-like and qaf-like forms), Salem Chaker's proposal for the transcription of Berber into Arabic script [5] (one new character), and Ahmed Lakhdar's proposal for the writing of African languages [9] (7 new characters and 6 new diacritics).
 ${ }^{5}$ Take for example letters ('b'), ت ('t'), ث ('th' like in 'thought'); they differ only by the number and position of dots. Originally, these letters were all written without dots, and the reader had to guess their pronounciation from the context(!).

[^4]: ${ }^{6}$ Not to mention the fact that in the Qur'ān one finds a lam-alef ligature with a central hamza, not included in Unicode.

[^5]: ${ }^{7}$ In a forthcoming implementation of Al-Amal to Ω, these fonts will be merged into one 16 -bit (virtual) font, and contextual analysis, as well as Cairo typecase ligatures, will be handled by Ω Translation Processes.

