Yannis Haralambous
email: yannis@pobox.com

John Plaice
email: plaice@acm.org

Multilingual Typesetting with Ω, a Case Study: Arabic

In this paper we describe the internal structure of the Arabic script package for the Ω typesetting system, as well as the techniques and tools used for its development. This package allows typesetting using regular L A T E X styles, in all Arabic alphabet languages: Arabic, Berber, Farsi, Urdu, Pashto, Sindhi, Uighur, etc. We also give a description of the character codes added to Unicode, to obtain the Unicode++ encoding, used by the Ω system for typesetting purposes.

Overview of the Ω Ar abic Scr ipt Package

Typesetting with Ω is a process similar to typesetting with T E X: the user prepares a "source" file, containing the text of his her document and a certain number of macrocommands for attribute changes of the text (font characteristics, language, case, etc.), references to figures (included in graphical format files on disk) and other material included in or accompanying the text.

Once this source file prepared, Ω is launched: it reads the file, expands the commands and typesets the text accordingly. To perform this task, Ω loads and executes several ΩTPs (Ω Translation Processes), which take care of low level properties of the document (contextual analysis of the script, case switching according to script and language, etc.). It also uses different fonts, most of which are virtual, in the sense that they themselves call other fonts. On a higher level, such a document uses L A T E X packages, some of them modified to take advantage of the additional features of Ω vs. T E X.

The leading idea of the Ω Arabic Script Package (as of any Ω language package) is that the low level properties of the script have to be separated from higher level typesetting commands. For example, contextual analysis of the Arabic script has to be completely independent of the L A T E X command level, so that one can use Arabic text in any context (inside a table or a formula, or deeply nested inside several L A T E X environments and commands, etc.) and under any circumstances.

There are two key aspects to Arabic script typesetting, unfortunately of unequal complexity: the first one is contextual analysis, that is the fact that Arabic letters change shape according to their position in a word, or according to the fact that they are part of an abbreviation, etc. This aspect can be handled easily and efficiently by ΩTPs. The second aspect is more global: it is the fact that Arabic script is written from right to left.

Two methods can be applied: the first one is to change the default direction of the whole document. This method is extremely efficient when the document is entirely in Arabic, or if left-to-right text excerpts are exceptional. Being global, this method applies also to page-level typesetting methods, such as the order of columns in a multicolumn environment, etc. Of course, mathematical formulas are not affected by this global direction change.

The second method is to keep left-to-right as default direction and to temporarily switch to right-to-left for every Arabic script sentence. This can be practical for a document where Arabic excerpts are exceptional.

Par ts of the Ω Ar abic Scr ipt Package

This package consists of the following elements:

1. The OmegaSerifArabic PostScript fonts: files omsea1.pfb, omsea2.pfb, omsea3.pfb and the corresponding AFM files. A Sans-serif font (Omega-SansArabic), as well as additional styles of the Serif font are under development.

2. The virtual font omrl: files omrl.ovf, omrl.ofm, omsea1.tfm, omsea2.tfm, omsea3.tfm.

3.

The configuration file omrl.cfg, which is used by the PERL utility MakeOVP to create the virtual font out of the AFM files and other information.

A certain number of ΩTPs:

(a) 7arb2uni. In the following sections we will describe the use of the package, from the end users' point of view. We will assume that the user is familiar with the T E X typesetting system and the L A T E X macro package.

Basic Macros

Before starting a new document one has to choose if the "background language" is going to be an Arabic alphabet language, in other terms, if we expect pages and columns to be typeset from right to left, and the whole global page design to be right-to-left oriented.

If this the case, then the macro \GlobalArabic[language] has to be used in the document header, where the optional argument language is one of the following: arabic (by default), farsi, urdu, pashto, sindhi, custom.

This macro will switch the global typesetting direction of the document to rightto-left and will launch the ΩTPs necessary for the language chosen.

Inside the document, independently of the choice of background language, one can use L A T E X environments arabic, berber, farsi, urdu, pashto, pashtop, sindhi to switch to the corresponding language, and latin or greek to switch to a Latin alphabet language or some flavour of Greek. It should be noted that these macros are only temporary and will be adapted to a more global language-switching scheme, currently being elaborated by the L A T E X3 and Ω working groups.

Input of Ar abic Alphabet Text

You Have an Arabic Keyboard

If you have an Arabic Keyboard, containing sufficiently many keys for the language you want to typeset (for example, with a standard Arabic keyboard one can perhaps typeset Farsi, possibly Urdu but not Pashto and certainly not Sindhi), you need to configure Ω to your input encoding, by providing the appropriate input ΩTP by use of the \ArabicInputEncoding macro, which you have to place in the header of your document. We have already written such ΩTPs for three input encodings: Macintosh Arabic (applemac, covering Arabic, Farsi, Urdu), Windows Arabic (1256, covering Arabic and Farsi), MS-DOS Arabic ASMO (708, covering Arabic only) and covering only Arabic). If your equipment is not in this list, go to section 6 to see how to write your own ΩTPs.

You Don't Have an Arabic Keyboard

In that case you can use a Latin transcription: we have prepared ASCII Latin transcriptions for each of the main Arabic-alphabet languages: Arabic, Berber, Farsi, Urdu, Pashto (Afghanistani and Pakistani), Sindhi. Here they are:

Ar abic/Farsi Transcription

A p z ` m I 'a j zh gh n y 'i H s f 'n 'y 'A kh sh q -h || "A ch S v "h E b d D k e t dh T g U LLah th r Z l 'u SLh
Remarks:

1. The tah marbutah can be written in two ways: "h or "t.

2. The waw can be written in two ways: w or U.

The hyphen in front of the transcription of is only necessary to prevent confusion between cases such as kh () and k-h ().

We suggest you use it all the time.

VERY IMPORTANT: the duplication of consonants (shaddah) is obtained by writing the consonants twice. So for example, Dmm"h will produce and not

; to obtain the latter, type Dm-m"h, as for example in the word , which presents both cases, and which is typed t-tHrrk.

Vowels and other diacritics

،

.

transcribed:

li'aannahaA "Al<>'Ana laA tufakkiru fiI naf<>sihaA, walakinnahaA tufakkiru fiI 'aakhaway<>haA wafiI "Al<>khaTari "AlladhiI laHiqahumaA.

Ur du Tr anscr iption

The Urdu transcription is similar to the Arabic/Farsi one described above, with a few additional characters, and one exception. The additional characters are , and , transcribed by 't, 'd, 'r. The exception concerns the two different uses of the hah glyph . In Urdu it can be used as the second part of a digraph, such as for example , in which case we transcribe it as -h; it can also be the standard consonant hah, in which case we transcribe it by x. Notice the four forms of the latter in Urdu:

, while in Arabic the same letter is written .

Example:

. transcribed:

xmArI Trf prAnE zmAnE my'n dstUr t-hA kx Agr ksI shkhS kU kAghdh pr kchh lk-hA xUA grA p'rA ml jAtA tU Uh As przE kU AHtyAT sE A't-hA kr kxy'n rk-h dytA yA pAnI mI'n bxA dytA tAkx lk-hE xU'yE HrUf kI bE HrmtI nx xU.

Pashto Tr anscr iption

The Pashto transcription is similar to the Arabic/Farsi one described beyond, with a few additional characters and some exceptions. We are proposing two ΩTPs, using the same transcription, for the two flavors of written Pashto: Afganistani and Pakistani.

1. A variant form of is provided in the font. The user can change the ΩTPs (see 6) so that the former is used instead of the latter.

Sindhi Tr anscr iption

Sindhi being a language with many more letters than Arabic, and using Arabic letters in a way quite different than Arabic, it is not surprising that the Sindhi transcription is fundamentally different from the Arabic, Farsi, Urdu and Pashto ones. As a matter of fact we have tried to use as few non-alphabetic characters as possible, following a more-or-less rational scheme loosely based on the correspondence between Sindhi written in Arabic and in Devanagari script and the standard transcription of the latter. Since shadda is much more seldom in Sindhi than in Arabic, the "double consonant = consonant + shadda" convention is not valid in this transcription; instead we propose a transcription of the shadda diacritic: +. 1. The transcription / is used for constructions such as (b/), (t/), (kh/), etc.

A

2. The waw can be written in two ways: w or U.

Example:

. . transcribed:

tn-hn kry AsAn khy pn-hnjy =z-hnn khy sjA=g rkh'nU pUndU ||eN pn-hnjy jdUj-hd meN .=dA-hp pydA kr'ny. AhU b/ m`lUm kr'nU pUndU t/ sndh meN hr 'A'yy wqt chA chA thy r-hyU 'Ahy ||eN dshmn AsAn jy ||eN AsAn jy jdUj-hd jy khlAf k-h.rA k-h.rA g-hA.t g-h.ry r-hyU 'Ahy.

Berber Transcription

The Berber transcription is different from the previous ones because it is based on a tri-alphabetic system (Tifinagh, Latin and Arabic alphabets). 1 The goal of this transcription is to enable output in the three alphabets, out of the same code. In particular, since Latin alphabet has upper and lower case, it should be possible to distinguish these (and of course ignore the distinction when typesetting in Arabic or Tifinagh). In the table below, all transcribed letters are in lowercase ASCII, but can very well be written also in uppercase, producing the same result: Tifinagh, tifinagh or TIFINAGH will all three produce .

Tr. Lat. Ar. Tif. Tr. Lat. Ar. Tif. Tr. Lat. Ar. Tif.

a a .h h .s s b b i i t t c c j j .t t gh k k u u d d l l x x .d d m m z z .e n n .z z f f .n n . .i i g g q q -- _ _ .g g r r h h s s 1
The reader can find more information in Un syst eme T E Xberb ere, Etudes et Documents Berb eres, 11 (1994), La bo ıte a Documents/ Edisud, Paris (France).

Remarks:

1. Letter can also be transcribed w.

2.

Letter can also be transcribed y.

3. The stroke is not to be confused with the graphical connecting stroke keshideh. It is placed between words and plays a grammatical role.

4. Duplication of consonants (shaddah) again is transcribed by writing the corresponding consonant twice.

Example:

، . . . ، ، ، ، : ، ، . transcribed:
Tifinagh, d--tira timezwura n .imazighen. Llant di tmurt--nnegh dat tira n ta.erabt d--tla.tinit. Nnulfant--edd dat .imir n ugellid Masinisen. .Imazighen n .imir--en, ttarun--tent ghefi.zra, degg .ifran, ghef .igduren, maca tiggti ghef i.zekwan : ttarun fell--asen .isem n umettin, d wi--t--ilan, d wayen yexdem di tudert--is akken ur t ttettun .ina.tfaren.

The same code will produce the following output in the Tifinagh alphabet:

, _ . _ _ . _ . _ , _ , , , : _ , _ _ , _
.

and the following one in the Latin alphabet: Tifina , d_tira timezwura n imazi en. Llant di tmurt_nne dat tira n ta rabt d_tla tinit. Nnulfant_edd dat imir n ugellid Masinisen. Imazi en n imir_en, ttarun_tent efi zra, degg ifran, ef igduren, maca tiggti ef i zekwan : ttarun fell_asen isem n umettin, d wi_t_ilan, d wayen yexdem di tudert_is akken ur t ttettun ina tfaren.

Wr iting Your Own Tr anscr iption

We have developed and presented in this paper a certain number of Arabic alphabet language transcriptions for two reasons: first, to show the possibilities and power of Ω, and second, to give a starting point for the user to create his her own transcriptions. The process of creating a new transcription is twofold: the first part, which can be very difficult and painful, consists of finding the combination of letters, digits and ASCII symbols which will transcribe each character; the second one, which is straightforward (modulo some precautions) is to implement this in Ω by writing the appropriate ΩTP.

A Good Tr anscr iption: Is it Possible?

There are (at least) two goals for a good transcription:

1. It has to be readable and easily memorizable. In other words, AHmd is better than '.hmd, for denoting : although an apostrophe can be considered a logical choice for transcribing an alif and the period in front of the h may denote that it is an emphatic 'h' sound, taking an A for alif and a capital H for the emphatic h is more readable; also using rules such as "uppercase ASCII characters transcribe emphatic letters" is an easy way to memorize the transcriptions of , , , , .

It has to be complete and avoid ambiguities. Of course all letters of the tar-

get language have to be covered, but having many letters to transcribe leads sometimes to ambiguities: for example taking h for , k for and kh for are perfectly logical choices; nevertheless there is a hitch: when you need to transcribe you are tempted to write simply kh and this will of course produce instead. The solution we have given to this problem is to type a hyphen between the letters which are not considered as a 'digraph', but this is only a compromise solution: the user must constantly be aware of this problem, and this is hardly the case when you are concentrated in your text... It is clear that these two goals are contradictory: an accurate and unambiguous transcription has to be complicated and will be difficult to read and memorize; a friendly and easily readable transcription will be full of ambiguities.

An additional problem when making a transcription is to choose between (etymo)logical, phonetic and graphical representations of characters. A typical example is the standard Ω transcription of Greek: w is chosen for letter ω, this is a purely graphical choice: the 'w' looks like an omega, but has absolutely no other relation with, neither historical nor phonetic (the letter omega represents the sound 'o' in modern Greek); b is chosen for letter β, this is an etymological choice: the Latin 'B' derives from the ancient Greek 'B', otherwise β looks quite different than 'b' and is pronounced 'v' in modern Greek; finally, x is a phonetic transcription of letter ξ; clearly they do not bear any resemblance, and historically it is not clear (at least to the author) why 'x' should be derived from ξ (their positions in the alphabet is quite different as well, and this is an argument speaking against an etymological relation between the letters).

The reader may object that this distinction between etymological, phonetic and graphical representations is not relevant for Arabic alphabet transcriptions; actually this is only partly true: take for example bh for , this is an etymological transcription in the sense that it reflects the standard transcription of the Indic alphabet letter which corresponds to that Sindhi letter. Also `for ayn is in some sense a graphical representation: it has been chosen because it resembles the IPA transcription of the ayn, which is . For the same reason, ' has been chosen for the hamza with carrier (in , , etc.): the hamza's IPA transcription is ʔ.

We hope to have convinced the reader that the making of a transcription is a difficult task, needing a lot of thought, compromises and tests. Once again, we would like to emphasize the fact that our transcriptions are only temptative proposals and should not be taken as standards of any kind; after all the power of Ω is that it can work with any input transcription without affecting further processing, be it contextual analysis, diacritic placement or esthetical ligaturing.

In the next section we will see how to implement a new transcription or change an existing one by writing/modifying an ΩTP file. But first some generalities on the ΩTPs used by the Arabic Ω system.

The ΩTPs used by the Ar abic Ω system

When Ω reads the text flow it places letters, digits and punctuation (whatever is not an escape or special character) into a buffer. When it encounters a special character it stops buffering and executes one after the other all currently active ΩTPs on the buffer. In theory, ΩTPs could be used to arbitrarily send character combinations to other combinations: one could very well imagine an ΩTP sending the string "Yannis" to "John" and "John" to "Yannis", or "Microsoft Word" to "ʧ ξ "; nevertheless, such an ΩTP would not be of general use... Our development has mainly been focused in building ΩTPs in accordance to the following scheme:

Input text foo2uni -----→ Unicode++ uni2foo -----→ DVI output
where foo2uni sends text encoded in an arbitrary encoding into Unicode++ (Uni-code++ is Unicode extended for the needs of Ω and typography), and uni2foo converts Unicode++-encoded data into the encoding of the output font. By this method we are able to keep completely separate input encoding and font encoding.

In the case of Arabic things are slightly more complicated since an additional step is needed: contextual analysis. This is where our scheme proves to be extremely efficient: by performing contextual analysis on the level of Unicode++, and hence obtaining the following new scheme:

Input text foo2uni -----→ Unicode++ uni2cuni -----→ cUnicode++ cuni2oar -----→ DVI output
we still remain independent of both the input and the font encoding. This means that if we need to adapt Ω to a new Arabic encoding we only need to indicate which code position corresponds to which Unicode character, and, on the other hand, if we want to adapt a new font to Ω, we only need to indicate which font position corresponds to which contextual form of which character, in cUnicode++.

In the next section we will partly describe the syntax of ΩTP files by giving examples of foo2uni cases.

Implementing a Tr anscr iption

The ΩTP files we will need for input encoding → Unicode++ transformations use only part of the syntax of ΩTP files.2 Such an ΩTP file is of the following form: input: 1; output: 2; expressions: where input: 1; output: 2; means that input is 8-bit while output is 16-bit, and ... are lines of the following form: before => after ;

where before is an expression before the transformation, and after after it. For example, `a' => "o" ; will transform all 'a's in the file into 'o's.

How do we describe characters and strings? On the left side of => we can only put separate characters: they can be written either as "grave accent+ASCII char-acter+apostrophe" or as @"XYZT where XYZT are hexadecimal digits: in this case we are not restricted to ASCII characters. The latter syntax can also be used on the right side. For example, `i'`j' => @"0133 ; @"008E => @"00E9 ; will send the string 'ij' to the Unicode++ character representing the Dutch ij ligature, and the 8-bit code 8E (a Macintosh 'e' with acute accent) to the Unicode++ character 00E9 (which is the Unicode 'e' with acute accent).

On the right side of => we can also write complete strings, possibly containing Ω commands, which will be forwarded to the next ΩTP or to the typesetting engine of Ω. For example, `~' => "\penalty10000" ; sends the tilde character to the T E X command of infinite penalty. 3 We can also use ranges on the left side: for example, `a'-`k' means "all characters between a and k".

By using parentheses and the vertical bar on the left side, we obtain the Boolean 'or' operator:

(`E'|`e') => ;

for example, will send both uppercase and lowercase letters 'e' to nothing (a transformation which would leave Perec's book La disparition unchanged4).

This operator becomes even more useful by the fact that we can use on the right side the exact character matched on the left side: the commands \1, \2, ... , \9 used on the right side stand for the first, second, ..., ninth character matched on the left side. For example:

`c'(`a'|`e'|`i'|`o'|`u')`t' => "m" \1 "p" ;
will send cat, cet, cit, cot, cut respectively to map, mep, mip, mop, mup. We can go even further: ΩTP syntax allows us to add or substract a fixed offset to the characters matched on the left side. For example: `a'-`z' => #(\1 -@"0020) ; will substract 20 from the code position of the character found on the left side. The characters on the left side being precisely lowercase letters, this offset will turn them into uppercase ones.

Examples

The beginning of the ΩTP 7arb2uni, used to send the ASCII transcription of Arabic to Unicode++, described in 5.2.1, to Unicode++, looks like this: input: 1; output: 2; expressions:

`L'`L'`a'`h' => @"FDF2 ; `S'`L'`h' => @"FDFA ; `|'`|'`|'`|'
=> @"0621 @"0651 ; `|'`|' => @"0621 ; `z'`h'`z'`h' => @"0698 @"0651 ; `z'`h' => @"0698 ; `z'`z' => @"0632 @"0651 ; `z' => @"0632 ; `y'`y' => @"064A @"0651 ; `y' => @"064A ; `v'`v' => @"06A4 @"0651 ; `v' => @"06A4 ; `u'`N' => @"064C ; `u' => @"064F ;

Let us take a closer look at these lines. The left sides `L'`L'`a'`h' and `S'`L'`h' correspond to the (religious) ligatures and which appear in the Arabic Presentation Forms part of Unicode, that's why the code positions we send them to are so high. The line `|'`|'`|'`|' corresponds to a double hamza; according to our transcription rules, by writing a letter's transcription twice without intermediate hyphen, we get the letter followed by a shaddah diacritic. On the right side of `|'`|'`|'`|' you see two codes: 0621 stands for the stand-alone hamza in Unicode++, and 0651 for the shaddah. The next line will send || to the standalone hamza.

WARNING: the order of these lines is very important: transformations are matched in the order lines are read. By putting the double hamza before the single one, Ω will first look for a double hamza and only if it does not find any will then proceed to transforming a single one.

For the same reason digraphs such as zh must appear before their first letter in the ΩTP file (and trigraphs before the starting digraph, etc.). That's why the order of lines starting with a 'z' is 'zhzh ', 'zh', 'zz', 'z'. 5 Our sample file ends like this:

`h'`h' => #(@"0647) #(@"0651) ; `h' => #(@"0647) ; `-'`-'`-' => @"2014; `-' => ; . => #(\1) ;

This means that after having entered all digraphs using 'h' as second character, we enter the stand-alone 'h', first as a double letter, and secondly as a single letter.

Finally we send the triple hyphen to an m-dash '-' and the single hyphen to nothing: its purpose is to prevent combinations of letters to be interpreted as digraphs: when reading k-h, Ω will not match it with kh: it will first match k with letter kaf, then send the hyphen to the vacuum of non-existence and when arriving to the h the k will already be matched so that it is too late to construct a kh digraph.

The period at the beginning of the last line is part of the ΩTP syntax we have not seen yet: it means 'any character'. Since this is the last line of the file, we can interpret it rather like 'any still not matched character'. This line simply sends any character not yet matched to itself.

Wr apping it up

Once the ΩTP file has been written or modified, one only needs to compile it (by using the otp2ocp utility) and place it where Ω expects to find it. On the L A T E X command level, ΩTPs are loaded via the \ocp command, in a way similar to fonts: to load the file foo2uni one will write \ocp\FooUni=foo2uni Of course this is preferably done inside a L A T E X package or style file: the final user should not need to deal with or understand this kind of code. Once the ΩTPs are loaded they are combined into lists. In this way we can push or pop simultaneously ΩTPs on/from a stack. This is useful because a language switch usually requires several ΩTPs to be changed at once. To define ΩTP lists we use the following syntax: \ocplist\ArabicOCP= \addbeforeocplist 100 \ArabUni \addbeforeocplist 200 \UniCUni \addbeforeocplist 300 \CUniArab \nullocplist

The numbers (100,200,300) allow us to introduce additional ΩTPs, if necessary, between the already defined ones. Finally, to activate/desactivate an ΩTP list, we use the commands \pushocplist (followed by the name of the ΩTP list) and \popocplist. To take a real life example,

\ocp\ArabUni=7arb2uni

 Arabic Script Package you must have Ω version 1.45 or higher installed on your machine. Place OFM, OVF, TFM and OCP files where the system expects to find them (if in doubt, consult the texmf.conf file). Keep the arabic.sty file somewhere where it can be found by Ω. Finally add the following few lines to the psfonts.map configuration file of odvips:

	omsea1 OmegaSerifArabicOne </foo/omsea1.pfb
	omsea2 OmegaSerifArabicTwo </foo/omsea2.pfb
	omsea3 OmegaSerifArabicThree </foo/omsea3.pfb
	where /foo stands for the absolute path of the directory containing the PFB files.
	This is all you need to do: you can start already by launching Ω on files
	testarab.tex and testsind.tex.

otp, 7-bit Arabic/Farsi transcription to Unicode; (b) 7ber2uni.otp, 7-bit Berber transcription to Unicode; (c) 7urd2uni.otp, 7-bit Urdu transcription to Unicode; (d) 7pas2uni.otp, 7-bit Afghanistani Pashto transcription to Unicode; (e) 7pap2uni.otp, 7-bit Pakistani Pashto transcription to Unicode; (f) 7snd2uni.otp, 7-bit Sindhi transcription to Unicode; (g) uni2cuni.otp, contextual analysis, sending Unicode++ to cUnicode++ ('c' for 'contextual');

(h) cuni2oar.otp, cUnicode++ to omrl font.

These ΩTPs are available in human-readable and compiled binary format (OCP), the latter being loaded by Ω on runtime.

5.

A L A T E X style (arabic.sty) defining a command that will activate and deactivate the ΩTPs.

6. Documentation and test files (testarab.tex, testsind.tex).

3 Installation of the Ω Ar abic Scr ipt Package

To use the Ω

 are obtained in the following way: (they are typed after the consonant to which they belong)

	fatha	a
	kasra	i
	damma	u
	soukoun	<>
	vertical fatha a|
	fathatan	aN
	kasratan	iN
	dammatan	uN
	Example: it is a trivial task now to welcome you to this system of Arabic input,
	by saying	
	\begin{arab}	
	\Huge	
	'aahlAaN wa sahlAaN!	
	\end{arab}	

!

Example of vowelized Arabic:

The uni2cuni ΩTP file already needs more complicated constructions.

By this we obtain the same result as in T E X but without turning tilde into an active character, a fact that T E X users will surely appreciate.

Although there are rumors that there is a single 'e' in that book... The authors were not able to find it yet.

There is a simple way of avoiding ordering problems: after having written this part of the ΩTP file, run a line sorting program on it so that lines are sorted in inverse lexicographical order. This will automatically place trigraphs before digraphs before singletons, etc.

Availability and Fur ther Infor mation

The Ω system is entirely in the public domain. It can be obtained from any CTAN server. The latest information on Ω and its Arabic system can be found on the Ω server: http://www.ens.fr/omega courtesy of the Ecole Normale Sup erieure de Paris.

Samples

Starting from next page, a few samples (Arabic, Berber, Sindhi). For these examples we have switched the background language to Arabic, so that even page numbers are in Arabic.