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Abstract This paper introduces BAZAR, a collaborative robot that inte-
grates the most advanced sensing and actuating devices in a unique system
designed for the Industry 4.0. We present BAZAR’s three main features, which
are all paramount in the factory of the future. These features are: mobility for
navigating in dynamic environments, interaction for operating side-by-side
with human workers and dual arm manipulation for transporting and assem-
bling bulky objects.

Keywords Efficient, flexible and modular production · Robotics · Smart
Assembly · Human-robot co-working · Real industrial world case studies ·
Digital Manufacturing and Assembly System · Machine Learning.

1 Introduction

The concept of cobots, i.e., robots collaborating with human workers in man-
ufacturing assembly lines, dates back to the pioneer work [3]. These devices
should reduce ergonomic concerns due to on-the-job physical and cognitive
loading, while improving quality and productivity.

Although some automotive manufacturers are gradually introducing cobots
in their production line, a key question persists: how should a collaborative
robot be designed? The ultimate goal is to have the adaptability of humans
merged with the high performance of robots in terms of precision, speed and
payload [31].
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Fig. 1 The BAZAR (Bimanual Agile Zany Anthorpomorphic Robot) collaborative robot
designed at LIRMM. The platform includes: one Neobotix MPO 700 omni-directional mobile
base with two Hokuyo UTM-30LX laser scanners, one Microsoft Kinect V2 RGBD camera
(not show in this figure), two AVT Prosilica GT Gige/PoE RGB cameras, two DLINK DCS
5222L pan-tilt RGB cameras and two KUKA LWR4+ arms. Each arm is equipped with one
ATI Mini 45 force/torque sensor, one Shadow Dexterous Hand with SynTouch LLC Biotac
tactile sensors and a Leapmotion vision sensor mounted on the hand wrist.

In this paper, we present BAZAR, the Bimanual Agile Zany Anthorpo-
morphic Robot designed and developed by the LIRMM researchers since 2016.
BAZAR (shown in Fig. 1) is a dual arm mobile manipulator that combines the
latest sensing and actuation technology to empower Factories of the Future.
We are using it in the context of European Project H2020 VERSATILE (2017-
2020), to address the needs of our industrial partners PSA Peugeot Citroën,
Airbus and BIC. VERSATILE targets the main challenges of the Industry
4.0, namely the radical change of the manufacturing environment, which has
quickly shifted towards a novel production paradigm with high volumes of
products individually personalized1. In this context, production flexibility and
real-time machine reconfigurability become paramount [7].

We will mainly deploy BAZAR for the automotive kitting pilot case pro-
posed by PSA in VERSATILE. In this application (which is a typical example
of smart logistics), the robot must transport specific car parts to a “kit” carried
by an autonomous ground vehicle. This requires the integration of many fea-
tures, namely manipulation, interaction with humans, navigation and docking.

1 https://versatile-project.eu/

https://versatile-project.eu/
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Although many dual arm mobile manipulators have been recently devel-
oped for similar applications, in our opinion BAZAR has various advantages
over the existing robots. These are listed below.

– The high quality of actuators and sensors. We have chosen the best devices
available on the market. This design choice, while making the cost of the
robot increase substantially, is motivated by recent experiences of collab-
orative robots for the industry, which were driven by the opposite design
choices. An emblematic example is Baxter from Rethink Robotics which
– designed with cheap series elastic actuators, at the cost of precision and
motion performance – caused Rethink Robotics to shut down in 20182.

– The modular design of the hardware and software (which will be detailed
in Sect. 2). All of BAZAR’s parts (arms, hands, sensors) can be easily
removed or swapped with other ones (e.g., cheaper, see point above) if need
be. First, this makes the prototyping quickly adaptable to the application
and context. Second, such modular design can account for the – extremely
short – lifetime of current day robotics devices, which evolve on a 2-3 year
timescale. Modularity gives BAZAR a crucial advantage over “closed” dual
arm mobile manipulators, such as Justin3, PR24, or AILA [38].

– The use of omidirectional wheels makes BAZAR capable of carrying higher
payloads than its counterparts TUM-Rosie 5, MADAR [65], ARMAR6 or
TOMM [23], all of which are equipped with swedish wheels. This is par-
ticularly relevant for industrial applications, such as the kitting pilot case
mentioned above.

After a preliminary presentation of the robot design (Sect. 2), the paper
focuses on the main features that we developed on BAZAR to make it capa-
ble of realizing such a complex task. Namely, these features are: mobility for
navigating in a dynamic and complex environment (Sect. 3), interaction for
operating side-by-side with human workers (Sect. 4) and dual arm manipula-
tion for object transportation and assembly (Sect. 5).

All the results presented here are also illustrated in the videos of the IDH
LIRMM channel7.

2 The BAZAR Design

The irony of the name BAZAR, Persian for “Marketplace”, lies in its mean-
ing in the French urban dictionary, a “complicated grouping of different el-
ements”. Indeed, in contrast with most existing mobile manipulators, which

2 https://www.therobotreport.com/rethink-robotics-closes-its-doors/
3 https://en.wikipedia.org/wiki/Justin_(robot)
4 http://www.willowgarage.com/pages/pr2/overview
5 https://ias.cs.tum.edu/dokuwiki/robots/tum-rosie
6 https://spectrum.ieee.org/automaton/robotics/industrial-robots/

kit-armar6-humanoid
7 https://www.youtube.com/playlist?list=PLglynvGCAuFJe5Mct9L6B_woAcLRpaGgW

https://www.therobotreport.com/rethink-robotics-closes-its-doors/
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https://spectrum.ieee.org/automaton/robotics/industrial-robots/kit-armar6-humanoid
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are completely designed by a single manufacturer, BAZAR combines the lat-
est generation sensors and actuators – from various brands – within a unique
robotic platform. These include laser scanners, 2D/3D cameras, force/torque
sensors, robotic arms and hands. In the rest of this section, we detail first the
operational and then the control architecture of BAZAR.

2.1 Operational Architecture

The BAZAR hardware is composed of robotic parts available on the market,
and shown in Fig. 1. These are:

– One Neobotix MPO 700, an omni-directional non-holonomic mobile robot
base with four steerable wheels, for moving in the factory.

– Two Hokuyo UTM-30LX laser scanners, with 30 meters and 270◦ scanning
range, mounted on opposite corners of the mobile base, to get a complete
360◦ vision of the robot surroundings, for obstacle avoidance and environ-
ment mapping.

– One Microsoft Kinect V2 RGBD camera, mounted on BAZAR’s torso8.
This is used to detect humans in the environment.

– Two AVT Prosilica GT Gige/PoE RGB cameras, mounted on the robot
torso as a stereo pair, used for far range object detection.

– Two DLINK DCS 5222L pan-tilt RGB cameras, also mounted on BAZAR’s
torso as a stereo pair. While having the advantage of being actuated, these
have lower quality than the AVT cameras mentioned just above. Given
their limitation for vision (bad image quality and slow frame rate) and
control (slow movements and imprecise synchronization between images
and servo position) we use them only for teleoperation, and not in the
work presented here.

– Two KUKA LWR4+ arms, each having 7 controllable joints (7 degrees of
freedom) and a torque sensor per joint. These are used for object manipu-
lation.

– Two (one per arm wrist)ATI Mini 45 six axis force/torque sensors, mounted
on each arm’s end effector, to measure the external forces coming from
physical interaction with environment. These are more precise than the
joint torque sensors mentioned just above.

– Two (one per arm wrist) Shadow Dexterous Hands, each with 19 degrees of
freedom, mounted on the force sensors. They are used for grasping objects.

– Ten (one per hand fingertip) SynTouch LLC Biotac tactile sensors, for
measuring contact points and grasping forces.

– Two (one per hand) Leapmotion stereovision sensors mounted on the hand
wrists. These short range (0m to 0.5m) sensors estimate the 3D position
of objects that are near the hands’ palms.

All these devices are mechanically assembled as shown in Fig. 1, with cus-
tomized 3D printed and machined hardware parts.

8 The Microsoft Kinect V2 is not shown in Fig. 1.
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Fig. 2 The control architecture of BAZAR. The core component is BAZAR’s embedded
computer, with two Intel Xeon 2.4 Ghz hexacore processors with 32 Gb of RAM each and
an Nvidia Geforce GTX 1080 Ti graphic card. This computer is connected to all the other
devices (sensors and actuators) via the ethernet and USB links shown in the figure.

2.2 Control Architecture

We implemented the control architecture (shown in Fig. 2) on an embedded
computer with two Intel Xeon 2.4 Ghz hexacore processors with 32 Gb of RAM
each. These support the Ubuntu 18.04 operating system and can provide up
to 24 exploitable CPUs. An Nvidia Geforce GTX 1080 Ti is also embedded,
and dedicated to GPU acceleration needed by deep learning algorithms.

This main computer is connected to all other sensors and subsystems using
PCIe extension cards and motherboard default ports as detailed below.

– To communicate with the MPO 700 embedded computer, we use an eth-
ernet port of the main computer motherboard, connected to a switch. A
simple home-made protocol between the two, based on UDP/IP, gives ac-
cess to the robot control modes (joint velocity or robot twist control) and
to sensor data (joints, encoders, and laser scanners). The MPO700 com-
puter support a ROS [57] architecture running on a Linux Ubuntu 10.04
operating system. It accesses the wheels’ drive modules through a CAN
bus and the Hokuyo UTML-30LX laser scanners through USB serial links.

– We use a dual port Ethernet extension card to communicate with the AVT
Prosilica GT cameras. Communication with each camera is implemented
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using a dedicated Gigabit Ethernet link and cameras are powered using
PoE (Power over Ethernet).

– To communicate with the DLINK DCS 5222L pan-tilt cameras, we rely on
standard IP protocols for remote monitoring. These are supported by the
same ethernet network used to control the MPO700.

– We use a dual port Ethernet extension card to communicate with the con-
trol cabinets of the KUKA LWR4+ arms, via a dedicated UDP/IP protocol
called FRI9. The FRI protocol gives access to the robot control modes (po-
sition, impedance and torque control) and sensor data (joint torques, joint
position, etc.). The industrial controllers of LWR4+ themselves support
basic control functionalities and communicate with motors and sensors us-
ing a Sercos bus.

– We use a National Instrument PCIe-6259 Data Acquisition card to acquire
the analog signals from the two ATI Mini45 force sensors.

– To communicate with both Shadow hands, we use an Ethercat bus. This
gives access to the controlled torques of motors and to the sensors (en-
coders, Biotac) data.

– A USB3 extension card accesses – with individual USB serial – links
KinectV2 RGBD camera and both Leapmotion stereo cameras.

As the reader can see, this architecture is quite heterogeneous. Its design is
driven by the need for communication means specific to each vendor’s subsys-
tem. The direct consequence is the need to manage synchronization of these
subsystems directly in the main computer software. This is still a challenging
problem as one should concurrently consider the following specifications:

1. the correct execution of the control and perception pipelines imposes soft-
ware real-time constraints,

2. the robot software should run on multiples CPUs, to have enough comput-
ing power to execute all algorithms on time,

3. the robot functioning mode should be dynamically reconfigurable, so that
the global application can quickly adapt to variations in the mission or
environment.

Unfortunately, today no generic software solution can deal with all these chal-
lenges. For instance, ROS [57] may manage communication between subsys-
tems (running on different CPUs) but is not capable of dealing with global
real-time synchronization constraints. Hence, for now, we have decided to man-
age synchronization “by hand”. We do this by managing creation, synchroniza-
tion, data sharing and periodic execution of threads with basic C++ APIs, to
precisely control the execution of our software.

Regarding modularity, Ethernet and USB communication make the archi-
tecture easily adaptable to the different use cases, by simply connecting ade-
quate subsystems. From the software perspective, this merely consists in using
adequate drivers and related functionalities in the final application, i.e., the
given use case. This way, we can implement minimal applications, to validate

9 https://cs.stanford.edu/people/tkr/fri/html/

https://cs.stanford.edu/people/tkr/fri/html/
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independently each subsystem. To achieve this in a reusable way, we inte-
grate all software parts using a home made standardization framework called
Knowbotics. Our mid-term objective is to produce reusable software that is
independent from any middleware, so that we can reuse it “on demand” within
any context (e.g., OROCOS10, ROS, ROS211).

Concerning verification, we have simulated all our algorithms using Matlab
and V-REP12 before experimenting on the real robot. While this is a crucial
step in robotics, it has its limitations. In fact, simulations cannot account for
the inaccuracy and incompleteness of real sensor data (e.g., vision or force
measurements). The V-REP simulations are so far from realistic scenarios,
that we only use them to debug our software and to verify that it outputs
adequate commands, but not to assess our algorithms’ performance.

3 Mobility

In applications that require high mobility, industrials generally opt for steer-
able wheeled mobile robots (SWMR). These systems differ from classic wheeled
ones by their capability of moving sideways. Their task space velocities are:
linear velocity v (with components vX and vY ), and angular velocity ω (see
Fig. 3). This mobility is obtained by employing fully steerable conventional
wheels, that have two active joints: one for steering and another for driving
(noted respectively β1 and φ1 for wheel 1 in Fig. 3). SWMR are cheaper and
have higher load carrying capacities than other non-conventional wheels (e.g.,
Swedish or Omni-directional). Hence, for BAZAR, we have chosen this solu-
tion, that distinguishes it from similar mobile manipulators, such as MADAR [65]
and TOMM [23].

Despite these clear advantages, SWMR present challenging control issues
when operating in unpredictable dynamic environments. Indeed, in such envi-
ronments, since the robot behavior cannot be preplanned due to unexpected
events (e.g., moving obstacles or interacting humans), roboticists generally
rely on reactive sensor-based methods. These methods use vision or distance
feedback control to output the robot wheels velocities, which can vary unpre-
dictably from one iteration to the next. This issue has not yet been treated
in the literature, which currently focuses on “more classic” control problems
specific to SWMR, such as:

1. proper steering coordination [10,58,61,68],
2. avoidance of kinematic and representational singularities [19,20,21,24,30,

60,64,68],
3. fulfillment of steer joint performance limits [11,18,22,50,51,52,53,60,63].

In the rest of this section, we present our solutions to two fundamental
problems that must be addressed to deploy SWMR in factories. The first is

10 http://www.orocos.org/
11 https://github.com/ros2/ros2
12 http://www.coppeliarobotics.com/

http://www.orocos.org/
https://github.com/ros2/ros2
http://www.coppeliarobotics.com/
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Fig. 3 Kinematic model of a steerable wheeled mobile robot with 4 wheels. The figure
shows: the task space velocities (linear velocity v = [vX vY ]> and angular velocity ω),
the instantaneous center of rotation (ICR) and the steering and driving angles of wheel 1
(respectively β1 and φ1).

a controller that can concurrently manage singularities and motion disconti-
nuities. The second is a framework for visual navigation with simultaneous
collision and occlusion avoidance. For further details on these two works, the
interested reader is referred to [62] and [36], respectively.

3.1 Addressing kinematic singularities and motion discontinuities

We developed the kinematic model of BAZAR in Cartesian space coordinates,
following to the pioneer work of Betourne [5], Campion [8], Low [39] and Muir
[42]. Although BAZAR has 4 wheels, the model is valid for any SWMR with 3
or more wheels. It consists of an inverse actuation kinematic model that gives
the joint space velocities (steer β̇ and drive φ̇) in function of the task space
velocities (vX , vY , ω), and of a forward kinematics model, that estimates the
robot odometry from the wheel encoders.

In a first work [63], we present a numeric treatment of SWMR kinematic
singularities and a benchmark test trajectory for evaluating the performance
of any SMWR controller with respect to these singularities. We also show
that our approach outperforms the embedded controller of the BAZAR base
(Neobotix-MPO700) in addressing the singularities.

In a second work [62], we design an ICR (Instantaneous Center of Rotation,
see Fig. 3) based kinematic control framework that is:

1. robust with respect to trajectory discontinuity,
2. capable of handling kinematic singularities in the ICR space,
3. compliant with the maximum steer joint limits in terms of velocity and

acceleration (or seamlessly, jerk).

The framework consists of two decoupled kinematic controllers: a Cartesian-
velocity based controller and an ICR-based one. The former controls the wheel
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driving speeds φ̇, by employing the Cartesian space kinematic model men-
tioned above. The latter controls the wheel steering rates β̇, while respecting
the maximum steer joint limits, by using optimization to locate the next sam-
ple time ICR coordinates. The benefit of using separate kinematic controllers
for the drive and steering rates is that it is not necessary to map the 2D ICR-
coordinates (XICR, YICR) to the 3D task space velocities (vX , vY , ω). Thus,
associated singularities and non injectiveness are avoided. The 3D Cartesian
space kinematic model is free from representational singularity, and the kine-
matic singularities are handled in the 2D ICR space controller.

In our framework, the task space velocities (vX , vY , ω) are generated by a
high level perception/navigation controller (that will be described in Sect. 3.2).
This is then mapped to the 2D ICR space (XICR, YICR), and the output
desired ICR motion is fed to a simple ICR velocity (proportional) controller,
along with the current ICR coordinates. The output reference signal of the con-
troller is then fed to an optimization algorithm that determines the next sample
time ICR coordinates that will minimize the desired quadratic cost error, while
respecting the joint performance limits formulated as linear constraints. The
corresponding steer joint reference signal β is then evaluated, differentiated, to
obtain the command signal, and finally sent to the motor drivers. At the same
time, a decoupled robot velocity controller is implemented. The initial output
of this controller is projected in the null space of the next sample time robot
configuration (represented by the kinematic constraint matrix), to obtain a
feasible wheel rate command signal, φ̇. For more in depth details, the reader
is referred to the our work [62].

Once we are capable of managing discontinuous motion commands and
kinematic singularities, we can have SMWR accomplish sensor-based naviga-
tion missions that have been traditionally deployed on non-holonomic robots,
e.g., visual navigation [12] and lidar-based avoidance of mobile obstacles [13]
This will be the object of the next section.

3.2 Visual navigation with obstacle avoidance

A typical Industry 4.0 visual navigation application is kitting in automotive
manufacturing, a pilot case proposed by PSA Peugeot Citroën in the context
of the VERSATILE Project. The robot must transport car parts to a “kit”
carried by a cart moving autonomously on the factory floor.

This task imposes several constraints related to the sensors (visibility, [6,
28,55]) or to the environment (obstacles, [32,37]). In this section, we address
the problem of dealing with both collisions and occlusions caused by static and
moving obstacles, during visual navigation of an omnidirectional robot (here,
BAZAR) equipped with fixed – limited field of view – on-board sensors.

Specifically, the navigation task consists in making the robot safely and
autonomously navigate towards a static or moving target – the cart that carries
the “kit” – in an unknown environment. Figure 4 gives an overview of this task
with relevant variables. We detect the target T with the pair of AVT Prosilica
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Fig. 4 Top view of the robot (green box with black wheels) with visual target T (blue).
We show the occupancy grid (yellow), obstacles (gray), some omnidirectional tentacles (red
and orange), and the robot linear and angular velocities, respectively v = [vX vY ]> and ω
(purple). In the figure, the robot is following the red tentacle: this tentacle is tangent to v,
with radius ‖v‖/ω. We also represent the cameras field of view (blue) and the desired pose
of the target T ∗ with respect to the robot.

GT cameras. Since these are fixed, their combined field of view (blue in the
figure) is centered at the midpoint of the 2 optical centers. Concurrently, we
build a local map of the obstacles (the occupancy grid, yellow in the figure)
using the Hokuyo distance sensors.

Referring to Fig. 4, the task specifications are:

1. make the robot go towards the target T (blue triangle) until its position
in the robot frame is T ∗ (cyan triangle),

2. orient the robot so that it points the visual sensors towards the target,
3. avoid collisions with the obstacles (gray), while realizing 1 and 2.
4. estimate the target pose (relative to the robot) at all times, even during

sensor occlusions, in order to predict it in case of reappearance.

More formally, to fulfill specifications 1 and 2, the robot should move so
that the visual target (that can be static or moving) is displaced in the robot
frame, from the current pose T to a desired (final) constant pose T ∗. This final
pose is defined by the user depending on the application. In the VERSATILE
kitting example, for BAZAR to place the car parts on the kit, the target is the
kit and T ∗ will be some kit pose that is easily accessible by the robot hands.
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Fig. 5 Sequence of 10 image pairs during a visual navigation experiment. BAZAR (with
arms and hands not mounted in this experiment) follows a blue moving cart (the target)
in a cluttered environment. The environment is composed first of a corridor and then of
a cluttered hall. For each of the 10 image pairs, we show on top the images acquired by
BAZAR’s left AVT camera, and on the bottom an external view of the robot. The figure
shows that with our approach, BAZAR can avoid obstacles, while simultaneously dealing
with total target occlusion (images 5 and 8).

In case dangerous obstacles (either static or moving) are present, the robot
should circumnavigate them, while maintaining T in the field of view (specifi-
cation 3). This is done by the collision avoidance framework that we designed
in [35]. We use a set of drivable paths (tentacles) both for perception and
motion execution. Each tentacle is a semicircle that starts in the robot center
and is tangent to the robot linear velocity v = [vX vY ]

>. An example with 12
tentacles (5 linear and 7 circular) is shown in Fig. 4. A search algorithm selects
the best tentacle, that allows the robot to avoid the obstacles while keeping
the target in the field of view. It may happen that none of the tentacles can
guarantee both the field of view constraints and the robot safety, or that ob-
stacles on the path provoke partial/total target occlusions. To overcome both
problems (specification 4), we design a Kalman filter that estimates the target
pose by using its previous location and the robot control inputs.

The effectiveness of our approach is validated through several experiments
on BAZAR. One of them is shown in the 10 snapshots (pairs of images) of
Fig. 5. For each pair, we show on top the images acquired by BAZAR’s left
camera, and on the bottom the external view of the robot. The purpose of
this experiment is to assess the performance of our framework in a complex
environment, including first a corridor and then a cluttered hall. BAZAR starts
by following the blue cart (simulating the kit-carrying cart) that is moving
along the corridor (snapshots 1-4). A first moving obstacle (human) crosses
the robot path and occludes the target without affecting BAZAR’s behavior
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(snapshot 5). The robot also succeeds in avoiding a second obstacle – while
following the cart and keeping it in its field of view – until reaching the hall
(snapshots 6 and 7). Then, BAZAR is in a difficult situation where an obstacle
crosses its way, while the target has slightly changed direction (snapshot 8).
This leads to a complete loss of target visibility. Once again, the robot manages
to avoid the obstacle and to recover visibility of the cart, thanks to the target
pose estimation module. Finally, BAZAR reaches the desired pose with respect
to the target (snapshots 9 and 10), after having avoided all obstacles, while
either keeping the target visibility or predicting its future location.

Despite these nice results, our framework has two limitations. First, vision
is not generic yet (currently the framework can only track a blue cart), but
generalizing it is out of scope here and can nowadays be done with state-of-
art deep learning algorithms such as YOLO13. The second limitation concerns
the initial conditions: we assume that the cart is visible at the beginning
of navigation. If it is not the case, an exploratory phase can be added at
initialization. This could be the object of future work.

4 Interaction

In current day factories, robots are designed and programmed to perform
specialized tasks. Hence, it is difficult for an unskilled worker to reprogram
the robot for a new task [49]. Traditional robot teaching methods are tedious,
non-intuitive and time consuming. Instead, gestures and touch are natural and
intuitive ways to communicate/interact with the robot [48].

In the rest of this section, we explain how we enhanced BAZAR’s interac-
tion with humans. This is a crucial feature in the factory of the future, where
non-expert users should have access to intuitive tools for easily controlling and
re-programming robots on the fly. First, we present our framework for making
BAZAR recognize human gestures using vision and deep learning. Then, we
outline the features of our OpenPHRI (Open Phyisical Human Robot Inter-
action) software library; this is particularly useful for programming BAZAR,
by using merely force and touch.

4.1 Vision-based Intention Recognition

In our recent work [40], we provide BAZAR with the capability of extract-
ing – with its Kinect V2 – human skeletons and hand gestures, to be used
for intuitive robot control. We focus on the 9 static hand gestures from the
American Sign Language [4], shown in Fig. 6 (left) and consider all other as
None gestures. Let us break the complete Vision-based Intention Recognition
pipeline in the following steps:

1. data collection,

13 https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/
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2. estimation of the human skeleton,
3. extraction of hand images,
4. image processing of hand images for training a Convolutional Neural Net-

work (CNN),
5. CNN training,
6. CNN validation.
In the following paragraphs, we detail each of these six steps.

Fig. 6 Left : the 9 gestures from the American Sign Language that we consider in our work.
For each image we show a real sample image (top) and the same image with substituted
background (bottom). Right : background substitution process. From Kinect V2 depth map,
we obtain a binary mask of the hand and its inverse. The first mask is multiplied by the
original image to subtract the background, while the latter is multiplied by a random pattern
image. Adding the resultants, we obtain a new hand image with substituted background.

Data collection In a campaign involving 10 volunteers (age 22 − 35, 8 males
and 2 females), we have recorded – using BAZAR’s Kinect V2 – the 9 gestures.
The recordings (RGB and depth images) are performed at distances of 1.5, 3
and 5meters from the Kinect. We have released online our dataset OpenSign14,
as a benchmark for the research community.

Estimation of the human 3D skeleton On each recorded RGB image, we ex-
tract the 2D human operator skeleton using the OpenPose library [9][70], and
enrich it with the third dimension, obtained from the Kinect V2 depth image.
14 http://bit.do/OpenSign

http://bit.do/OpenSign
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Extraction of hand images Based on the 3D skeleton information, we crop
– on each RGB and depth image – a region of interest around each hand.
Specifically, the size of the region of interest is large if the hand is near (i.e.,
if the hand depth is small).

Processing hand images To make the detector more robust, we enrich the
dataset by processing the hand images. At this step, a crucial operation is
background substitution, shown in Fig. 6 (right). This is done with 1100 im-
ages of random patterns and indoor architectures freely available on the inter-
net15. Along with background substitution, we randomly apply the following
techniques: addition of Gaussian or “salt and pepper” noise, histogram equal-
ization, channel shift, zoom, shearing, axes flip and position shift. None of
these, except for background substitution, is applied to the cross-validation
and test images.

CNN training For gesture classification, we exploit the state-of-the-art Convo-
lutional Neural Network Inception-v3 [66] which is pre-trained on large image
data from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[59]. The total number of images for training is 20950, and we divide them
with a ratio of 3:1:1 between train, cross validation and test images. To make
Inception V3 classify 10 gestures (instead of the 1000 for which it is designed),
we replace the last softmax activation layer with a new layer of 10 neurons.
We perform training in three phases by unfreezing the last layer only, then
respectively the top two and four inception blocks. This gradual unfreezing
prevents damaging the pre-trained weights and thus over-fitting. Each train-
ing epoch takes approximately 130 seconds to pass and the network achieves
validation accuracy of 99.12% at the 745th epoch, after 27 hours of training.

CNN validation The cross-validation phase determines the best performing
weights. Then, we run the network on the – unseen – test set, to quantify its
accuracy. The normalized confusion matrix in Table 1 shows the accuracy in
recognizing each gesture. The table shows that the system performs very well,
with accuracies over 98% for the 9 gestures.

These results have encouraged us to deploy the system on BAZAR (see
Fig. 7), to command the robot actions with the hand gestures disctionary.
A limitation of our framework is that it relies on Kinect for 3D skeleton esti-
mation. Porting to a standard camera requires 3D reconstruction, which is a
non-trivial task, currently explored within our group. Furthermore, in future
work, we will improve the accuracy of the None gesture (currently, 94.3%) by
adding transitional gestures to the dataset.

15 https://pixabay.com/

https://pixabay.com/
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Predicted Labels

A F D L 7 5 2 W Y ~

A
ct
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l
L
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el
s

A 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
F 0.005 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
D 0.000 0.000 0.995 0.000 0.000 0.000 0.002 0.000 0.000 0.003
L 0.000 0.000 0.002 0.995 0.000 0.000 0.000 0.000 0.002 0.000
7 0.000 0.000 0.000 0.000 0.998 0.000 0.002 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.997 0.000 0.003 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.002 0.992 0.000 0.000 0.005
W 0.000 0.000 0.000 0.000 0.007 0.000 0.006 0.981 0.000 0.003
Y 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.992 0.000
~ 0.019 0.005 0.005 0.004 0.005 0.005 0.011 0.000 0.005 0.943

Table 1 Final results (Normalized Confusion Matrix computed on the test set) of visual
gesture recognition accuracy for the 9 gestures.

Fig. 7 Screen-shots of the experiment that we performed to validate the robustness of our
hand gesture detector. (a): the blue box shows the localization of human operator and the
extraction of human skeleton. The red box shows the hand cropped image that is passed
through the convolutional neural network for hand gesture detection. The human operator
in (a) gives a “Handover” command to the robot. In (b), the operator hands over the tool
to the robot. (c): the robot moves towards the table to drop the object. In (d), the operator
gives a “Stop” command to the robot to conclude the operation.

4.2 Safe physical human-robot collaboration

A fundamental requirement of human-robot interaction in the Industry 4.0 is
safety. Furthermore, whenever interaction results in collaboration, i.e. when
both agents work together for a common goal, the robot has to be easy to
program, even by non-expert users. These two concerns have motivated us to
develop OpenPHRI, an open-source software library designed to easily pro-
gram collaborative robotic applications, with a strong emphasis on safety.
OpenPHRI is available online16 free of charge under the GNU LGPLv3 li-
cense17. Although we have validated OpenPHRI on BAZAR, the library can
be used to control any robot meant to collaborate with humans.

Before explaining the library, let us recall some robotics fundamentals. A
robot task can be expressed via joint velocities q̇ or via task space velocities ẋ.
The joint velocities are those of the robot actuators. Examples of task space
velocities are: for a fixed manipulator, the end-effector Cartesian linear and
angular velocities with respect to a fixed frame, for a mobile base such as
BAZAR’s, the planar velocities, i.e., ẋ = [vX , vY , ω]

> (see Sect. 3.1). A direct

16 https://github.com/BenjaminNavarro/OpenPHRI
17 https://www.gnu.org/licenses/lgpl-3.0.en.html

https://github.com/BenjaminNavarro/OpenPHRI
https://www.gnu.org/licenses/lgpl-3.0.en.html
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Fig. 8 Overview of the OpenPHRI framework. Variables q̇∗ and ẋ∗ are the desired velocities
output by the damping controllers respectively in the joint and task space. We obtain ẋtot

and q̇tot by combining q̇∗ and ẋ∗ respectively in the task and joint spaces. Finally, q̇con is
the joint velocity sent to the robot motors after having applied the constraints.

relation exists between these vectors through the Jacobian matrix J, that can
be derived from the robot forward kinematic model:

ẋ = Jq̇. (1)

OpenPHRI allows the user to provide compliance and other safety features
in either the joint or task spaces, depending on the application. The framework
implements a two-layer damping controller depicted in Fig. 8. The inputs can
be real or virtual velocities and/or forces in joint and/or task space. The first
layer (which embeds the damping controller) maps these inputs to desired
joint space and task space velocities: q̇∗ and ẋ∗, respectively. The second layer
accounts for the safety constraints (e.g., on velocity, power, kinetic energy) that
can be arbitrarily defined by the user. This layer reduces the robot actuators’
velocity q̇con if the desired velocities were to violate the constraints.

The following six equations sum up the OpenPHRI controller:

ẋ∗ = B−1t
∑
fi∈F

fi +
∑
ẋi∈V

ẋi (2)

q̇∗ = B−1j
∑
τi∈Γ

τi +
∑
q̇i∈ω

q̇i (3)

ẋtot = ẋ∗ + Jq̇∗ (4)

q̇tot = J†ẋ∗ + q̇∗ (5)
α = min(1,min(C)) (6)

q̇con = α q̇tot. (7)

Damping control operates at both the task (2) and joint (3) levels, on the set
of forces (F , Γ ) and on the set of velocities (V, ω), to combine multiple input
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sources. The user can regulate the behavior via damping gain matrices Bt

and Bj . The resulting desired task and joint velocities (ẋ∗ and q̇∗) are then
combined using (1) to obtain the total velocities ẋtot and q̇tot. These operations
are shown in (4) and (5), where J† is the task Jacobian pseudo-inverse18. The
velocity scaling factor α in (6) is computed from the set of constraints C, each
constraint being a positive scalar value. The joint velocity q̇con finally sent to
the robot motors is obtained with (7) by applying the velocity scaling factor
α to the total joint velocity q̇tot.

This approach, being quite simple, allows very fast computation of the con-
trol commands and is suitable for high frequency real-time robot control. Be-
sides, this simplicity facilitates the adoption of OpenPHRI by a large panel of
people. More details about the method and experimental results are presented
in [46]. The OpenPHRI library has been validated multiple times on BAZAR.
Here, we outline two experiments, detailed respectively in [44] and [45].

The first (depicted on the left in Fig. 9) is a collaborative screwing exper-
iment. In this scenario, BAZAR carries and actuates an electric screwdriver
while complying with the external forces applied by the operator to reach
the screwing locations. The arm motion is constrained, in order to fulfill the
ISO10218 standard [1] and to keep the operator safe. Moreover, while the
tool is being grasped, contact forces at the fingertip are regulated using the
measures provided by the Biotac Tactile Sensors to ensure a firm grasp and
avoid tool slippage. Since the thumb’s tactile sensor is not in contact with the
tool, the operator can use it as a button to shift between the different task
states (i.e. grasp the tool, actuate the tool, etc). This is a simple and intuitive
human-machine interface.

In the second experiment (right of Fig. 9), we apply a whole body ap-
proach, by extending the arm’s workspace thanks to the mobile base. As above,
BAZAR is compliant to the forces applied by the operator. Yet, the goal now
is to have the arm moving and the mobile base still when working locally,
and the opposite (fixed arm and moving mobile base) when reaching a distant
location. This is a more human-like motion than the one obtained when all
robot parts are moving together. The transition between the two states (one
part fixed, the other moving) is determined by the arm configuration: the base
is fixed while the arm is not near a singular configuration, has a minimum of
manipulability and is away from the torso. As soon as one of these constraint
is broken, the velocities are smoothly transfered to the mobile base to continue
the motion. The mobile base stops when the operator pushes the arm away
from these constraints.

A limitation of OpenPHRI is that currently it is being used only in our
lab. Yet, as with any open source library, we aim at attracting more users to
test the library’s features and limitations.

18 Near singular configurations this is computed via damped least squares [17].
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Fig. 9 Two examples of physical human-robot collaboration with BAZAR. Left: collabora-
tive screwing. The robot helps the user in a screwing task. BAZAR’s motion is compliant
with the forces that the human applies on the hand wrist and fingertips. Right: Intuitive
whole body interaction with both BAZAR’s arm and base. Depending on the force applied
by the user, either the arm, the mobile base, or both move.

5 Dual arm manipulation

By integrating two manipulators, the potential of robotics for industrial appli-
cations is significantly increased. This type of structure allows the manipula-
tion of large and heavy objects [15] as well as the achievement of difficult tasks
that are not feasible with a single arm [27][56]. In the rest of this section, we
present our work in providing BAZAR with the capabilities for manipulating
rigid (Sect. 5.1) and deformable (Sect. 5.2) objects.

5.1 Dual arm manipulation of rigid objects

Dual-arm platforms have a large number of degrees of freedom (DOF). Based
on the cooperative task space representation [16], numerous bimanual opera-
tions only require the specification of arms’ relative motion, while the absolute
location can remain free. In this case, the number of DOF of the robot greatly
exceeds the number of DOF of the task, providing high redundancy. Previous
works on dual-arm control have proposed to make use of redundancy to avoid
obstacles [41], increase manipulability [26] or satisfy joint constraints [33][54].

However, these methods do not guarantee that hard constraints (e.g. phys-
ical limits of the robot) are satisfied at all times. Moreover, standard inverse
kinematic controllers minimize the Euclidean norm of joint velocities, while
still actuating unnecessary joints. Therefore, to perform simple operations
(e.g. screwing), these controllers often generate large displacements in the
workspace (as depicted in Fig. 10(a)).

In [67] we propose a new approach to exploit redundancy during bimanual
relative operations. Our strategy aims at generating a parsimonious solution,
i.e., one that actuates the minimal number of joints needed to fulfill the task
(see Fig. 10(b)). Hence, the overall robot motion is reduced and so is the risk
of unintended contact in an unstructured industrial environment. Moreover,
some studies have revealed that parsimonious motion provides more natural
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(a) Standard QP

(b) Hierarchical Parsimonious QP

Fig. 10 Initial and final configurations reached during a screwing task with different task-
solving approaches: (a) the standard QP results in the actuation of all the joints, with large
motions in the workspace (b) conversely, with the hierarchical parsimonious QP, the robot
performs the task by barely rotating its end-effectors, hence with more economic motion.

human-like movements and is therefore more predictable from the operator
point of view [29,71]. We base our approach on a hierarchy of tasks, imple-
mented as a sequence of quadratic programs (QP) [34]. Thus, in addition to
parsimonious task resolution, we define a secondary task with lower priority
that is occasionally activated to move joints away from their physical limits
when approaching them. Thanks to the QP architecture, hard constraints can
also be handled to ensure the validity of the solution.

The objective is to find the joint velocities q̇ that guarantee a desired task
space velocity ẋ, according to (1). For dual arm manipulation, ẋ is the relative
motion between the end-effectors. For instance, performing the screwing oper-
ation shown in Fig. 10 corresponds to applying a rotational velocity around the
axis to align the end-effectors. When the system is redundant, multiple joint
configurations may realize the task, and a QP is used to obtain the desired q̇.
This QP minimizes the Euclidean norm of (1) under a set of constraints to be
satisfied at any time:

min
q̇

‖Jq̇− ẋ‖2

s.t. Aq̇ = b, Cq̇ ≤ d,
(8)

with A, C, b and d matrices and vectors predefined to set the constraints.
These constraints may represent physical limits of the robot (joint position, ve-
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locity, ...) or express safety considerations (collision avoidance). We can obtain
a parsimonious solution of (1) by solving the problem:

min
q̇

1

2
‖Jq̇− ẋ‖22 + λ ‖q̇‖1 , λ > 0

s.t. Aq̇ = b, Cq̇ ≤ d.

(9)

Setting λ = 0+ will return the solution of (1) that has least l1-norm, corre-
sponding to the most parsimonious solution [25].

In [67], we propose a hierarchical parsimonious QP framework that inte-
grates (9) as the primary task and a joint limits avoidance strategy as lower
priority task. We denote as QP1 the optimization process for solving the pri-
mary task and q̇1 the corresponding solution:

q̇1 ∈ min
q̇

1

2
‖Jq̇− (ẋ∗ +Ke)‖22 + λ ‖q̇‖1 , λ = 0+

s.t. q̇≤ q̇ ≤ q̇.

(10)

Here, ẋ is the task velocity command (e.g., issued from trajectory generation),
q̇ and q̇ are lower and upper bounds for the joint velocities, respectively.
A second QP (referred to as QP2) is implemented to consider joint limits
avoidance as the secondary task. It generates an additional q̇2 solution of:

q̇2 ∈ min
q̇

‖q̇− q̇r‖2

s.t. q̇− q̇1 ≤ q̇ ≤ q̇− q̇1,

Jq̇ = 0.

(11)

Here, q̇r is a joint limit repulsive vector (see [67] for details). To satisfy the
primary task without degrading its performance, we added the equality con-
straint Jq̇ = 0. Hence, the solution space of QP2 is restricted to the null space
of the primary task. Also, joint constraints have to be updated to take into
account q̇1. Finally, the joint velocity sent to the robot is:

q̇ = q̇1 + q̇2. (12)

We have validated this approach in an experiment (shown in Fig. 10) where
BAZAR’s two arms perform a relative screwing motion to assemble two parts.
The screwing operation, that could be intuitively performed by a simple ac-
tion, generated a high occupancy of the workspace using the standard QP
(Fig. 10(a)). Conversely, the parsimonious solution has resulted in local and
economic movements, as demonstrated by Fig. 10(b) that shows similar inter-
mediate and final configurations (except for the grippers’ orientations). The
secondary task has slightly modified the configurations to avoid limits for the
right shoulder and for the wrists. During the whole operation, the standard
QP returned solutions that actuate on average 13.4 joints vs the 6.3 actuated
with the hierarchical parsimonious QP (12). Currently, our framework cannot
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manage collision avoidance (including self collisions between the two arms).
We are currently exploring this issue.

5.2 Dual arm manipulation of deformable linear objects

Deformable objects are widely present in modern factories. The most com-
mon ones are cables/ropes, which are classified as deformable linear objects
(DLOs). DLOs play an important role in many manufacturing processes. Cable
displacement and insertion are typical tasks. A majority of these tasks involve
shaping the DLO into a desired configuration. In this section, we present our
controller for making BAZAR capable of modifying the shape of DLOs (here,
cables) in the plane.

A model of linear objects considering bend, twist, and extensional defor-
mations was developed in [69]. Nakagaki et al. extended the model in [69],
and used it for cable insertion [43]. However, these approaches require a model
to execute the manipulation task. This is not practical in industrial settings,
where cables often have different thickness and structure, so their deforma-
tion characteristics vary. Inspired by [47], we propose model-free dual arm
manipulation of DLOs using visual feedback. Further details are in [72].

We consider the DLO as a system with unknown dynamics that receives 6
inputs from BAZAR (see top left snapshot in Fig. 11(a)):

r = [ẋ1 ẏ1 θ̇1 ẋ2 ẏ2 θ̇2]
T ∈ R6. (13)

Each end-effector applies two translation velocities ẋ and ẏ and one angular
velocity θ̇ in the manipulation plane. The DLO shape is observed by a static
camera with optical axis perpendicular to the manipulation plane. We param-
eterize the DLO shape with an N order Fourier series, i.e., by the Fourier
coefficient vector s ∈ R4N+2. The goal is to design a feedback law for r that
drives the cable from its initial shape s0 to the desired shape s∗, while esti-
mating online the deformation model.

Small robot movements result in small variations of s:

δs = Qδr, (14)

where Q ∈ R(4N+2)×6 is the local deformation matrix, and δr = rδt is the
change in robot position, with δt being the sample time duration. Using vision
data, we can estimate Q from δs. Then, to drive s to s∗, we apply the servo
control law from [47]:

δr = −λ(Q̂>Q̂)−1Q̂>sat (s− s∗) , (15)

with λ a feedback gain, Q̂ the estimate of Q and sat(·) a vectorial saturation
function.

We test our framework with different cable thicknesses, initial/desired
shapes, and light conditions. Fig. 11 shows the results of the experiments.
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(a) Experiment with a thick cable.

(b) Experiment with a thin cable.

Fig. 11 Consectuive snapshots of BAZAR’s end effectors while they manipulate a black
cable. The goal is to deform the cables to the desired shape (red). To do so, we use visual
feedback to control the planar velocities of the left (ẋ1, ẏ1, θ̇1) and right (ẋ2, ẏ2, θ̇2) end
effector.

The red curve indicates the desired shape. Using the proposed control frame-
work, BAZAR successfully deforms the cables into the desired shape without
knowledge of the model. Since the deformation matrix Q directly maps the
robot motion to the changes in the linear objects’ shape, the approach requires
no camera calibration. However, there are some limitations in our approach:
the Fourier approximation yields an under-actuated control problem and the
deformation model is only valid locally. Hence, there is no guarantee of global
convergence. These limitations can be solved by path planning strategies which
we are currently investigating. The goal is to plan the transitions between de-
sired configurations so that they are ’near enough’ to guarantee convergence.

6 Conclusions

We have presented the design and features of BAZAR, a collaborative robot
for the factory of the future that we have developed at LIRMM in Montpellier,
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France since 2016. Aside the clear applicative purposes for the industry 4.0,
BAZAR is an ideal platform for merging and extending state-of-art research
results. Firstly, it can link multiple senses (force, vision, and distance) in the
context of safe human-robot interaction and navigation. Second, it can be used
for whole-body control, exploiting dual-arm kinematic solutions and extending
them to the mobile base control. Last but not least, we have started to use
BAZAR to explore the concurrent use of vision and force for dual arm ma-
nipulation of deformable objects. Automatic manipulation of soft materials is
a fundamental - yet open - research problem in robotics, despite its numer-
ous applications (e.g., in the food industry). For this, we will profit from our
previous works on dual arm control [2], and on merging vision and force for
manipulation [14].

Despite all these features, the algorithms that we presented in this pa-
per (particularly BAZAR’s kinematic controller described in Sect. 3.1) require
tuning many parameters (e.g., gains, thresholds). Up to date, there is no re-
liable procedure to automate parameter tuning in complex robotic control
tasks. In our work, tuning relies on trial-and-error and on the expertise of the
researchers, that learn by doing several experiments. Although this problem
is being currently addressed using machine learning and non-linear optimiza-
tion (e.g., particle swarms), such techniques do not easily generalize. Despite
the nice results obtained in the field, the robotics community is aware that
these methods work well for the situations and tasks they have been trained
on, but do not generalize when the tasks change and when priorities switch
among tasks. Furthermore, they require extensive use of simulators (to avoid
consuming the robot hardware, as in the Google AI experiments 19 where
14 robots must work in parallel for hours to learn the parameters of a sim-
ple grasping task). Yet, simulators do not always reproduce perfectly the real
system variability (sensor measurements, unpredictability of human-robot in-
teraction, etc). Although this problem concerns the optimization controllers
at large and is somehow beyond the narrow scope of this paper (which focuses
on the design and applications of BAZAR), it is in our opinion one of the main
open unsolved problems in robotics.
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