%0 Journal Article %T Cosmic-ray transport from AMS-02 boron to carbon ratio data: Benchmark models and interpretation %+ Département d'Informatique [Bruxelles] (ULB) %+ Service de Physique Théorique %+ Laboratoire de Physique Théorique et Hautes Energies (LPTHE) %+ IFSC %+ Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)) %+ Laboratoire de Physique Subatomique et de Cosmologie (LPSC) %+ Laboratoire Univers et Particules de Montpellier (LUPM) %+ IFAC %+ EMA %+ Laboratoire d'Annecy de Physique des Particules (LAPP) %+ Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH) %+ KVI %A Genolini, Yoann %A Boudaud, Mathieu %A Batista, P. I. %A Caroff, S %A Derome, Laurent %A Lavalle, Julien %A Marcowith, Alexandre %A Maurin, D. %A Poireau, V. %A Poulin, Vivian %A Rosier, S. %A Salati, P. %A Serpico, P. D. %A Vecchi, Manuela %< avec comité de lecture %Z LUPM:19-046 %@ 2470-0010 %J Physical Review D %I American Physical Society %V 99 %P 123028 %8 2019 %D 2019 %Z 1904.08917 %R 10.1103/PhysRevD.99.123028 %K Galactic cosmic raysCosmic-ray propagation %Z Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] %Z Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Journal articles %X This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 B/C data and the \usine{} propagation code. We employ a new fitting procedure, cautiously taking into account systematic error correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross-section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges, that can be related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We single out a scenario which yields excellent fits to the data and includes all the presumably relevant complexity, the \BIG{} model. This model has two limiting regimes: (i) the \SLIM{} model, a minimal diffusion-only setup, and (ii) the \QUAINT{} model, a convection-reacceleration model where reacceleration is tuned by non-relativistic effects. All models lead to robust predictions in the high-energy regime ($\gtrsim10$~GV), i.e. independent of the propagation scenario: at $1\sigma$, the diffusion slope $\delta$ is $[0.43-0.53]$, whereas $K_{10}$, the diffusion coefficient at 10~GV, is $[0.26-0.36]$~kpc$^2$~Myr$^{-1}$; we confirm the robustness of the high-energy break, with a typical value $\sim 0.2$. We also find a hint for a similar (reversed) feature at low rigidity around the B/C peak ($\sim 4$~GV) which might be related to some effective damping scale in the magnetic turbulence. %G English %2 https://hal.science/hal-02101560v1/document %2 https://hal.science/hal-02101560v1/file/PhysRevD.90.112009.pdf %L hal-02101560 %U https://hal.science/hal-02101560 %~ IN2P3 %~ UNIV-PARIS7 %~ UNIV-SAVOIE %~ UGA %~ LAPP %~ LPNHE %~ LPSC %~ CNRS %~ LPTHE %~ UNIV-MONTP2 %~ INPG %~ LAPTH %~ OPENAIRE %~ LUPM %~ USPC %~ MIPS %~ UNIV-MONTPELLIER %~ SORBONNE-UNIVERSITE %~ SORBONNE-UNIV %~ LUPM_EMA %~ LUPM_IFAC %~ SU-SCIENCES %~ UNIV-PARIS %~ UGA-COMUE %~ USMB-COMUE %~ SU-TI %~ ANR %~ ALLIANCE-SU %~ UM-2015-2021 %~ LPNHE-2 %~ TEST-SEBASTIEN3 %~ SUPRA_PHYS_THEO_STATS