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Abstract—We propose a solution for Electric Vehicle (EV)
energy management in smart cities, where a deep learning
approach is used to enhance the energy consumption of electric
vehicles by trajectory and delay predictions. Two Recurrent
Neural Networks are adapted and trained on 60 days of urban
traffic. The trained networks show precise prediction of trajec-
tory and delay, even for long prediction intervals. An algorithm
is designed and applied on well known energy models for traction
and air conditioning. We show how it can prevent from a
battery exhaustion. Experimental results combining both RNN
and energy models demonstrate the efficiency of the proposed
solution in terms of route trajectory and delay prediction,
enhancing the energy management.

Index Terms—Recurrent Deep Learning, Electric vehicles,
Energy control

I. INTRODUCTION

The extensive use of electric vehicles faces different chal-
lenges such as energy management [1], [2] and route selection
[3], [4]. EVs use limited resource batteries that require an
effective energy management. Battery is solicited for motor
traction but also for other energy consumption sources that
are more targeted to driver and passengers comfort. Simple
energy estimation for the rest of the trip in an electric car is
not efficient at all. It can result in a battery exhaustion when
traffic jams are not taken in consideration. It can result also in
an under usage of the battery if the delays/distances are over
estimated.
In this paper, we propose an energy management solution
for electric vehicles based on predicted trajectory and delay
information using deep learning recurrent neural networks
(RNN).
Recurrent neural network (RNN) [5] is a class of artificial neu-
ral networks where each neuron in the network is chained to its
predecessor and successor. This neuron or group of neurons
has its local memory. This sequential chaining and memory
make it adapted to remember combinations of sequences. It
is hence capable of predicting the future output based on
a sequence of ordered input sequence. RNN are extensively
used in natural language processing for word completion,
translation or even composition.
In this work, we use Long Short Term Memory (LSTM) [6]
and Gated Recurrent Units (GRU) as variants of RNNs. We

use them to model and learn the urban car trajectories and
delays from a large real data set.

We apply this prediction to very accurate models for traction
and air conditioning energy estimation.

The rest of the paper is organized as follows: in section II,
we present related work on EV energy management. In section
III, we describe the recurrent neural network used for urban
traffic learning. In Section IV, we describe the adaptation of
RNNs to the Italian dataset and study effect of meta parameters
on prediction precision. In section V, our energy management
algorithm is presented and analysed. Finally in Section VI we
conclude the paper and give perspectives.

II. RELATED WORK

Interesting effort has been invested in the electric vehicle
challenge including the energy management and route selec-
tion.

A. EVs Energy Management Efforts:
The energy management for EVs is an important issue [1],

where the optimal energy management allows to efficiently
consume the energy which guarantees the use of the EVs for a
long time. Tian et al. [7] presented a real-time charging station
system for electric vehicle taxis by combining real-time GPS
trajectories and historical charging of each electric vehicle taxi.
They predicted the current state of each taxi and based on
this information, when a taxi request for a recommendation,
they recommend a charging station which offers the minimal
total time. Experiment results showed that the proposed system
reduces the cost time by 50%. Similarly, Manshadi et al. [8]
proposed a decentralized optimization framework for wireless
charging on transportation and electricity networks. It enables
to evaluate the effects of the electricity demand and the effects
of electricity pricing for electric vehicles. They considered that
all the EVs paths have the same total cost for travel from
source to destination. However, this work did not consider
traffic jams and route delays, which could lead to more
charging opportunities and more power usage for EVs. Gao et
al [9] presented a speed optimization framework to minimize
the energy consumption and the battery aging for intelligent
EVs to optimize the real-life driving conditions. They derived



the battery life control-oriented model and formulated the
speed optimization during the acceleration process. This was
solved using the SQP algorithm. The simulation results show
that the battery capacity can be reduced by 9.6% during
acceleration from 0Km/h to 100Km/h within 14 seconds, with
an increase of 1.6% of battery energy consumption.

B. EVs route selection research efforts:
The route selection for EVs is a mechanism allowing to

select the best route based on different information such as
congestion, accident, etc. with an objective to find the short
route with less energy consumption for EVs. The prediction
[10] is generally used in vehicular traffic to find the optimal
route from source to destination. De et al [11] presented
a novel system called the intention-aware routing system
(IARS) for EVs. It allows the electric vehicles to compute
a routing policy in order to minimize their expected journey
time while taking into account the intentions, or policies of
the other vehicles. They demonstrated the efficiency of the
proposed IARS using realistic settings with real data from the
Netherlands. Experimental results show that the IARS leads
to more than 50% reduction in overall journey times and 80%
improvement in waiting times at charging stations. However,
capacity distribution to every charging station is not considered
in this work.

Li et al [12] proposed a multi-objective route optimization
model to determine the optimal route for EVs, and coordinate
wireless and plug-in charging strategies, to trade off the
charging cost and total time consumption for a trip. To prove
the efficiency of the proposed model they used two systems
for testing, including real-world road for Xi’an city.

Yi et al [13] proposed an energy aware routing framework
for EVs with the objective of enhancing the future electric
transportation systems. They introduced a stochastic decision-
making framework in order to handle the effects of different
environmental factors on the energy cost of transportation. In
addition, they formulated the optimal routing problem as a
stochastic programming problem, and they applied the risk
control of the total energy for objective to find the minimum
energy route. The simulation results demonstrate the utility of
this approach, However, the proposed approach is not always
the best solution because sometimes the energy efficient route
is not suitable for the customers.

III. RECURRENT NEURAL NETWORK (RNN)

Various research works have been carried out dealing with
real-time traffic flow predictions. These forecasts are more and
more important if we consider the case of electric cars, to
better control energy consumption.
These contributions generally demonstrate that the Recurrent
Neural Network (RNN) [5] which is a class of artificial neural
networks where each neuron in the network is chained to
others, gives the best results to this day.
It is a class of neural networks that can predict the future
sequence based on a learned pattern (sequence of normalized
values).

In the presented work, we convert a sequence of vehicle
hops corresponding to its trip to a time series. We train the
model, tune it and use it for prediction. After analysis of both
methods and their meta parameters, we will explain what was
our selected one.

The formulation of RNN could be of the following form:
we consider an input sequence x = (x1, ..., xt), hidden
vector sequence h = (h1, ..., ht) and output vector sequence
y = (y1, ..., yt).

ht = H(Whxxt +Whhht−1 + bh) (1)

pt =WhyYt−1 + by (2)

Where:
Whx corresponds to the weight between the input and hidden
layer parameters, Why corresponds to the weight between
hidden and output layer parameters, Whh corresponds to the
weight between hidden layers, bh and by symbolizes the bias
vectors for the output and hidden layers. H is a nonlinear
activation functions.

A. Long Short-Term Memory (LSTM)

LSTM was firstly proposed in 1997 by Hochreiter and
Schmidhuber for language modeling [6]. Indeed, one of
the most popular problems that RNN suffers from is the
vanishing gradient, and LSTM came to solve it.
The LSTM is composed of special blocks, called memory
blocks. These memory blocks contain special multiplicative
units called gates. A typical memory block is composed of
three gates, The input gate is responsible for the addition of
information by dealing with the upcoming data. The output
gate is responsible for selecting useful information from the
current cell state and showing it out as an output. The forget
gate is responsible for removing information from the cell
state, in fact information that is no longer required for the
LSTM understanding (processing) is removed.
LSTMs have been used to advance state of the art of many
difficult problems, including speech recognition and acoustic
modeling. The first use of LSTM for traffic prediction was
on 2015 [14]. Figure 1 display the structure of LSTM blocks.
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Figure 1: Structure of LSTM blocks

it = σ(WixXt +Whhht−1 +Wicct−1 + bi) (3)

ft = σ(Wfxxt +Whhht−1 +Wfcct−1 + bf ) (4)

ct = ft ∗ct−1+it ∗g(Wcxxt+Whhht−1+Wccct−1+bc) (5)



ot = σ(Woxxt +Whhht−1 +Wocct−1 + bo) (6)

ht = ot ∗ h(ct) (7)

Where:

σ(x) =
1

1 + ex
(8)

The it, ft, ct, ot, σ respectively correspond to the input gates,
the forget gates, the memory cells, the output gates and the
sigmoid activation function.

Today, LSTM is enriched with the ’Dense’ property. In fact,
we add at the end of this RNN one or several deep layers (fully
connected neuron layers), resulting in a complex mathematical
architecture that gives much better results than before [15].
Google has also improved Dense LSTM scalability with slight
modifications (DLSTM-P).

B. Gated Recurrent Units (GRU)

GRU was firstly proposed by Cho et al. in 2014 [16].
Similarly, to the LSTM blocks, the GRU has gates that
modulate the flow of information inside the blocks. A typical
GRU block is composed of a couple of gates. A reset gate
like the forget gate in LSTM, it makes the block act as if it is
reading the first symbol of an input sequence, allowing it to
forget the previously computed state. And an update gate, that
decides how much the block updates its activation, or content.
Figure 2 shows the structure of the GRU blocks.
We decided to compare Dense GRU and Dense LSTM, for that
we used the same optimization method. As it will be shown
in the results, we observed a net improvement of predictions
made with LSTM. That’s why our choice will be focused on
it.
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Figure 2: Structure of GRU blocks

rt = σ(Wxrxt +Whrht−1 + br) (9)

zt = σ(Wxzxt +Whzht−1 + bz) (10)

h̃t = f(Wxhxt +Whh(rt � ht−1) + bh) (11)

ht = (1− zt)� ht−1 + zt � h̃t (12)

The rt, zt, h̃t, ht, respectively correspond to the reset, update
gates, candidate hidden layer values, and the hidden layer
values at time t.

IV. DATA SET PREPARATION, RNN TRAINING AND
PREDICTION

A. System Description

From the dataset, we could analyze the trip lengths. Trips
are periodically sampled by GPS but the recorded time stamps
are not exactly periodic, which is probably due to some phe-
nomena like jitter. Nevertheless, it gives a good approximation
of the trip description. We call a ”hop” each time a user is
recorded by a base station. Figure 3 shows three cumulative
distribution functions (CDF): the CDF of the number of hops
per trip, the CDF of the trip distance in kilometers and the
one of the trip duration in seconds. The y-axis corresponds
to the cumulative probability density, the x-axis is either the
trip duration in seconds, or the trip length in number of hops
or in kilometers. It can be noted that 85% of the trips are
at most 20 hops large. That is why in our learning method
we describe trips by a 20x3 dimensional array, each position
being described by the latitude, longitude and time of the user.
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Figure 3: Cumulative distribution functions (CDF)

For each car trajectory, we keep 20 hops, that define the
trip. Each hop is identified by 3 values: time, latitude and
longitude. In the presented work, we decided to shift our data
by four steps. The ML algorithm given the current position
must predict the next four positions of the car during the trip.
Figure 4 below schematizes how the label is shifted compared
to the input. In the training phase, if our input contains the 15
first values of the trip of a specific car, the label will contain
the 15 values shifted by this shift (4 in our case). qIn the test
step, given an input, the ML algorithm will predict the 4 next
values of the trip. If we increase the shift step, the performance
of the algorithm will decrease or it will need more training.
Next step is to scale the data, since NNs work better on values
between -1 and 1.
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Figure 4: Necessary shifts for target data prediction



B. System Setup

The performance of the proposed solutions has been eval-
uated after extensive training. We have used real mobility
traces of taxis in Rome Italy [17] to train and predict routes.
60 days of traffic, where each day contains approximately
70000 different vehicle trajectories, were used. The code is
based on keras 1 with a tensorflow 2 backend for DLSTM
and DGRU which are implemented in python 3 environment.
Table I outlines the different configurations used in the training
step 4.

Table I: Neural Network Configurations

Config Epoch Step per Epoch
1 4 300
2 4 3000
3 8 3000
4 8 5000
5 12 3000

For each configuration, we calculate the mean square error
(MSE) in order to choose the best Epoch/Step Per Epoch
giving to the optimal MSE values.

Figure 5 shows the mean square error with different config-
urations of the neural network listed in table I. We can notice
that the use of 4 neurons (4 layers, 100 hidden neurons and
two dense layers) enhances the efficiency of the prediction
compared to the other values of neural. In addition, the use
of 4 neural with the second configuration gives the best MSE
value that equal to 0.011 with short execution time.

MSE =
1

n

n∑
i=1

(Pi − P̂i)
2 (13)

MAE =
1

n

n∑
i=1

|(Pi − P̂i)| (14)

RMSE = (
1

n

n∑
i=1

(Pi − P̂i)
2)1/2 (15)

C. Result analysis

Figure 6a displays the obtained results using the DLSTM
and DGRU for route prediction, in fact, we show that the
LSTM family gives better results compared with GRU one,
where the MSE of the LSTM is 0.014, better than the MSE
of GRU, that is equal to 0.015.

Figure 6b shows the results of route prediction using LSTM
and GRU. We show that the LSTM is more close to real traces
in all the routes, where the GRU stays alongside the real traces
but very far compared to LSTM. In addition, the MSE is equal
for LSTM and GRU where its value is 0.00004.

1Keras: https://keras.io/
2Tensorflow: https://www.tensorflow.org/
3Python: https://www.python.org/
4Python code and trained network will be published with article
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Similarly, Figure 6c shows the predicted route using DL-
STM and DGRU, from this figure we show that the GRU
stays farther to real traces in all the routes. On the other side,
LSTM is very close to real traces in all the routes except the
final hop of the route where the LSTM is far from the real
traces. In addition, the MSE is equal for both GRU and LSTM
with a value equal to 0.00032.

Table II outlines the different values of MSE, MAE and
RMSE for LSTM and GRU after the test step.

MSE MAE RMSE
Route LSTM GRU LSTM GRU LSTM GRU
1 0.0014 0.0015 0.00775 0.0138 0.038 0.038
2 0.00004 0.00004 0.00337 0.00382 0.006 0.006
3 0.00032 0.00032 0.0119 0.0136 0.041 0.040

Table II: Obtained values for mean square error (MSE), mean
absolute error (MAE) and root-mean-square error (RMSE), in
the test phase.

Finally, we plot in Figure 7 both real and predicted traces
from the DLSTM network. The red line (real) is quite close to
prediction (yellow). Note that we can easily map the prediction
on real streats with specific navigation algorithms but this is
out of the scope of our work.

V. ENERGY MANAGEMENT FOR EVS

We propose to manage EV energy based on our knowledge
and predictions extracted from the previous sections. We as-
sume that EVs have regular access to the prediction system. As
explained before, we can adjust the number of predicted future
steps and the management system in the car can hence know
in advance the predicted trajectory along with the estimated
times along that trajectory.

The main idea in our contribution on energy management
is that time predictions when there are additional traffic jams,
provide very precious information to battery management.
Depending on the actual State of Charge of the battery (SoC),
there may be serious risks that autonomy cannot lead the car
to its final destination. Since it is known that comfort energy
in a car can go up to 30% of the total power, cutting such
non-critical accessories can provide this extra energy.
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Figure 6: Predicted routes using DLSTM & DGRU

Deep learning provides an information that is difficult to
obtain elsewhere. This information is regularly updated by the
inherent sliding time series prediction system.

Before we explain the proposed algorithm, we need to
present the energy management of a typical electric vehicle.

A. Traction Power Model

EV energy consumption goes mainly for the traction power.
Secondary energy consumption is spent on air conditioning
(cold or hot), and other onboard systems. The sum of those
auxiliary sources can easily reach one third of the total
consumption. They are hence not negligible.

First, we use a traction motor model presented in [18].
Although, it can be found in several other contributions, this
early model has the advantage of being quite exhaustive. The
EV is characterized by its weight, its batteries and other
characteristics such as motor inverters and auxiliary loads.
The consumed traction power looks like a fluctuating positive
function. It depends on the road type (that can be extracted
from our deep learning prediction), on the number of stops on
the trajectory and the driver mood (also speed limitations!).

B. Air Conditioning model

Another study in [19] has provided a simple air conditioning
power consumption model (validated in real conditions). It
takes in consideration temperatures/humidity outside cabin,
inside and required by the driver. It is said simple because
it does not take more advanced parameters such as driver
ethnic origin, number of passengers, etc... From this model, we
calculate energy based on different required comfort profiles.
For simplicity, we restrict the study on two models. We assume
a summer temperature of 30 degrees outside the cabin with
80% humidity. The first model is called FullConfort. Its target
is to decrease cabin temperature to 21 Celsius degrees and
humidity to 50%. The second is called HalfConfort and targets
a cabin higher temperature of 25 degrees.

C. Energy Management Algorithm

Based on those three elements: deep learning continuous
prediction, required traction energy and auxiliary energy, we
propose our management system. The algorithm is described
in 1.

Algorithm 1 Energy Prediction and Management Algo-
rithm
1: Input: State of Charge, list of previous points triplets
2: Output: Use Full Air Conditionning, Half,Traction or Alert
3:
4: while Not at Dst do
5: Calculate next predicted sequence triplets (x,y and time)
6: Calculate Predicted Time to Dst
7: Calculate FullComfort, HalfComfort and Traction energies to Dst
8:
9: if TractionEnergy ≥ SoC then

10: Raise Severe Alert (Not Enough Energy)
11:
12: else if HalfConfort ≥ SoC then
13: Raise Traction Only
14:
15: else if FullConfort ≥ SoC then
16: Raise HalfConfort Only
17: end if
18:
19: end while

Figure 7: DLSTM predicted route versus real trajectory on
Google Earth

D. Results

We evaluate the energy models for traction and comfort.
We test two scenarios: full comfort means that the driver
puts the air conditioning at its maximum power (21 de-
grees/50 % humidity). The half comfort is a compromise that
offers a better temperature/humidity (26 degrees) condition
over external conditions (30 degrees/80% humidity). Figure
8 shows the energy consumption for full, half comfort and
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traction only driving situations measured during estimated and
predicted times to reach the destination. We use information
from Route 2, to calculate distances, estimated and predicted
times. We show that in the comfort situation, the energy is
totally consumed where its value reaches the SoC value during
exactly the estimated time. This means that for a simple
average complexity car calculator, the estimated energy is
sufficient to reach the destination with comfort driving. But
in the reality, and through our predicted time where different
criteria are considered, the energy is not sufficient to reach the
destination with a comfortable driving. Its value reaches the
SoC after 200 mn which is not the sufficient time to reach the
destination. Consequently, the energy will be totally consumed
before reaching the destination and the battery charge will be
exhausted.
For the half comfort driving, we show that the predicted energy
is sufficient to reach the destination in the estimated and
predicted times. However, its exact value is totally different
in the two trips. During the predicted time calculation, more
energy is logically needed compared to the estimated time.
Similarly, during the normal driving mode (traction only),
the energy is sufficient to reach the destination for both trip
duration. Again, more energy is consumed during the predicted
trip because it is closer to the real traffic jam conditions.

VI. CONCLUSION & FUTURE WORK

This paper presents a deep learning approach for EVs
energy management, where Recurrent neural networks (RNN)
are used for route and delay prediction with both LSTM
and GRU models. We used real mobility traces of Rome,
Italy to train and predict trajectories and delays with the two
models. We succeed to tune our neural networks to reach
a very good prediction rate. Experimental results show that
the prediction using LSTM overpasses GRU. We then studied
the energy consumption in three different driving situations,
full comfort, half comfort and normal (traction only) based
on estimated and predicted arrival times. An algorithm is
proposed to periodically evaluate those energies and compare

to the State of Charge of the battery. The algorithm proposes
to the driver the possible choices to safely reach destination.
The code for RNN and energy calculation will be published.
Next, we plan to develop a reinforcement learning algorithm
that selects adequate actions on vehicle parameters in real time
to optimize both driving and comfort.
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