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In this work we study Good-For-Games (GFG) automata over ω-words: non-deterministic automata where the non-determinism can be resolved by a strategy depending only on the prefix of the ω-word read so far. These automata retain some advantages of determinism: they can be composed with games and trees in a sound way, and inclusion LpAq Ě LpBq can be reduced to a parity game over A ˆB if A is GFG. Therefore, they could be used to some advantage in verification, for instance as solutions to the synthesis problem. The main results of this work answer the question whether parity GFG automata actually present an improvement in terms of state-complexity (the number of states) compared to the deterministic ones. We show that a frontier lies between the Büchi condition, where GFG automata can be determinised with only quadratic blow-up in state-complexity; and the co-Büchi condition, where GFG automata can be exponentially smaller than any deterministic automaton for the same language. We also study the complexity of deciding whether a given automaton is GFG.

Introduction

One of the classical problems of automata theory is synthesis -given a specification, decide if there exists a system that fulfils it and if there is, automatically construct one. The problem was solved positively by Büchi and Landweber [BL69] for the case of ω-regular specifications. There are two standard approaches to the problem: either by deterministic automata [McN66] or by tree automata [Rab72]. Henzinger and Piterman [HP06] have proposed a model of Good-For-Games (shortly GFG) automata that enjoy a weak form of nondeterminism while still preserving soundness and completeness when solving the synthesis problem.

An automaton is Good-For-Games if there exists a strategy that resolves the non-deterministic choices, by taking into account only the prefix of the input ω-word read so far. The strategy is supposed to construct an accepting run of the automaton whenever an ω-word from the language is given. The motivation for this model in [HP06] was to simplify the transition structure of automata as solutions of the synthesis problem for Linear Temporal Logic. Experimental evaluation of GFG automata and their applications to stochastic problems were discussed in [KMBK14].

The notion of GFG automata was independently discovered in [Col09] under the name history-determinism, in the more general framework of regular cost functions. It turns out that deterministic cost automata have strictly smaller expressive power than non-deterministic ones and therefore history-determinism is used whenever a sequential model is needed.

In the survey [Col12] two important results about GFG automata over finite words are mentioned: first that every GFG automaton over finite words contains an equivalent deterministic subautomaton, second that it is decidable in PTIME if a given automaton over finite words is GFG. Additionally, a conjecture stating that every parity GFG automaton over ω-words contains an equivalent deterministic subautomaton is posed.

In [BKKS13], examples were given of Büchi and co-Büchi GFG automata which do not contain any equivalent deterministic subautomaton. Moreover, a link between GFG and tree automata was established: an automaton for a language L of ω-words is GFG if and only if its infinite tree version accepts the language of trees that have all their branches in L. However, the problem of the gap in the number of states between deterministic and GFG automata over ω-words was left open. Indeed, for all the available examples of GFG automata, there was an equivalent deterministic automaton of the same size.

We settle this question in the present paper. We show that for Büchi automata determinisation can be done with only a quadratic state-space blow-up. The picture is very different for co-Büchi automata (and all higher parity conditions), for which for every n we give an example of a GFG automaton with 2n `1 states that does not admit any equivalent deterministic automaton with less than 2 n 2n`1 states. The lower bound for determinising co-Büchi GFG automata shows that these automata can be exponentially more succinct than deterministic ones. Therefore, it indicates possibility of avoiding exponential blow-up by using GFG automata instead of deterministic automata in the problems of containment or synthesis. On the other hand, the quadratic determinisation construction for Büchi GFG automata shows that in this case GFG automata are close to deterministic ones. Therefore, the GFG model may be considered less relevant (with respect to succinctness) for Büchi condition than for general parity condition.

We emphasize the fact that although the model of GFG automata requires the existence of a strategy resolving the non-determinism, this strategy is not used in algorithms but only in proofs. Therefore, it is not a part of the size of the input in computations based on GFG automata. This is what allows an improvement on deterministic automata: we just rely on the existence of this strategy without having to explicit it.

In the present paper we additionally consider the problem of deciding whether a given parity automaton is GFG. The problem is decidable in EXPTIME (see [HP06]) but no efficient algorithm is known. In the special case where the automaton accepts all ω-words, we show that this is equivalent to solving a parity game, so it is in PTIME for any fixed parity condition, and in NP X co-NP if the parity condition is a part of the input. The general case of deciding GFGness of parity automata is a priori more complicated. We show that it is in PTIME for co-Büchi automata, moreover the procedure involves building another automaton that could be GFG even if the input automaton is not. Therefore, this procedure could be used as a tool to produce co-Büchi GFG automata in some cases. The PTIME complexity in this case is surprising -although the required strategy can be of exponential size in the co-Büchi case, we can decide in polynomial time whether it exists. In the Büchi case we show that it is in NP to decide whether a given automaton is GFG. The problem of efficiently deciding GFGness of automata of higher parity indices remains open.

Structure of the paper. In Section 2 we briefly introduce the basic notions used in our constructions. In Section 3 we provide the lower bound on the statecomplexity of determinising co-Büchi GFG automata. Section 4 is devoted to the determinisation construction for Büchi GFG automata. In Section 5 we study the problem of deciding GFGness of a given automaton and in Section 6 we conclude. The technical details of the presented results are given in Appendix.

Definitions

By A we denote a finite alphabet, elements a P A are called letters. A ˚is the set of finite words over A and A ω is the set of ω-words over A. stands for the empty word. The successive letters of a word α are αp0q, αp1q, . . . The length of a finite word w is |w|. We use the standard notions of prefix and suffix of a word. By uα we denote the concatenation of a finite word u with a finite word or an ω-word α. If K Ď A ω and w P A ˚then we define w ´1K def " tα P A ω | wα P Ku. In our constructions it is easier to work with an acceptance condition over transitions instead of states. Clearly, the translation from the state-based acceptance to the transition-based acceptance does not influence the number of states of a parity automaton. The opposite translation may increase the number of states by the factor corresponding to the acceptance condition but this translation is still polynomial (even linear for a fixed condition). Except that, the proposed definitions are standard.

Automata over ω-words

A non-deterministic parity automaton over ω-words (shortly parity automaton) is a tuple A " A A , Q A , q A I , ∆ A , Ω A that consists of: a finite set A A called the input alphabet; a finite set Q A of states; an initial state q A I P Q A ; a transition relation ∆ A Ď Q A ˆAA ˆQA ; and a priority function Ω A : ∆ A Ñ N. If the automaton A is known from the context then we skip the superscript A.

Transitions pq, a, q 1 q P ∆ are usually noted q a ÝÑ q 1 . Similarly, if w " a 0 a 1 . . . a n and q i ai ÝÑ q i`1 is a transition of A for all i ď n then we write q 0 w ÝÑ q n`1 and call it a path in A. We additionally require that for every q P Q, a P A there is at least one transition in ∆ of the form q a ÝÑ q 1 for some q 1 P Q.

If Ω : ∆ Ñ ti, i `1, . . . , ju then we say that the parity index of A is pi, jq. An automaton of parity index p1, 2q is called a Büchi automaton and an automaton of parity index p0, 1q is called a co-Büchi automaton. If A is a Büchi automaton then we additionally define F Ď ∆ as Ω ´1p2q and call it the set of accepting transitions. Similarly, if A is a co-Büchi automaton then we define R Ď ∆ as Ω ´1p1q and call it the set of rejecting transitions.

If ∆ is such that for every q P Q and a P A, there is a unique state q 1 P Q such that q a ÝÑ q 1 then A is a deterministic automaton. In this case, we might denote its transition relation by a function δ : Q ˆA Ñ Q instead of ∆.

For an ω-word α P A ω , a run of A over α from a state q P Q is a function ρ : ω Ñ Q where for every n ě 0, we have a transition of A ρpnq αpnq ÝÑ ρpn`1q and ρp0q " q. ρ is accepting over α if5 lim sup nÑ8 Ω `pρpnq, αpnq, ρpn`1q ˘is even. In other words, the condition requires the highest priority that occurs infinitely often to be even. The priorities can be seen as positive (even) and negative (odd) events, ordered by their importance. The formula says that the most important event happening infinitely often has to be positive.

By the definition, if A is Büchi it means that the above sequence of transitions should contain infinitely many accepting transitions. Similarly, if A is co-Büchi then it should contain only finitely many rejecting transitions.

An automaton A accepts an ω-word α from q P Q if there exists an accepting run ρ of A from q over α. By LpA, qq we denote the set of all ω-words that are accepted by A from q. The language of an automaton A is LpAq def " LpA, q I q. An automaton A is Good-For-Games (GFG, for short) if there exists a function σ : A ˚Ñ Q that resolves the non-determinism of A depending only of the prefix of the input ω-word read so far: over every ω-word α, the function n Þ Ñ σ `αp0qαp1q . . . αpn ´1q ˘is a run of A from q I over α, and it is accepting over α whenever α P LpAq. Clearly, every deterministic automaton is GFG.

Co-Büchi case

In this section we provide the following result about the state-complexity of determinising co-Büchi GFG automata.

Theorem 1. For every n there exists a co-Büchi GFG automaton C n with 2n`1 states such that any equivalent deterministic automaton has at least 2 n 2n`1 states. All the automata C n for n ě 1 share the same alphabet consisting of four symbols A def " tι, σ, π, 7u. The letters of the alphabet enable to manipulate on the set t0, 1, 2, . . . , 2n ´1u: ι, σ, π are three permutations of this set such that every permutation of this set can be obtained as a composition of these three (in fact ι is the identity permutation used for padding). The symbol 7 corresponds to the identity permutation on t1, . . . , 2n ´1u but it is undefined on 0.

This way a finite word or an ω-word α over the alphabet A can be seen as a sequence of relations on the set t0, . . . , 2n ´1u as depicted on Figure 1. We will represent these relations as a graph (denoted Graphpαq). If α is finite let D " t0, 1, . . . , |α|u, otherwise D " ω. The graph is a plait of width 2n: the domain of Graphpαq is t0, 1, . . . , 2n ´1u ˆD and all the edges are of the form pi, kq Ñ pαpkqpiq, k `1q for i P t0, . . . , 2n ´1u and k, k`1 P D. The language L n contains an ω-word α P A ω if and only if Graphpαq contains at least one infinite path.

The set of states of the automaton C n is Q " tK, 0, 1, 2, . . . , 2n´1u. The states t0, . . . , 2n ´1u are deterministic: reading a P A in such a state q the automaton moves to the successive state according to the relation represented by a (or to K if a " 7 and q " 0). The state K is non-deterministic -the automaton can move from K over any letter a P A to any state q 1 P t0, . . . , 2n ´1u. Let the initial state of C n be K and the rejecting transitions be those of the form K a ÝÑ q 1 . Note that every accepting run of C n over an ω-word α indicates an infinite path in Graphpαq. Therefore, we obtain the following fact.

Fact 2. LpC n q Ď L n . Lemma 3. C n is a GFG automaton recognising the language L n .
Proof. It is enough to construct a function σ : A ˚Ñ Q that for every ω-word α P L n produces an accepting run of C n over α -it will prove that L n Ď LpC n q and that C n is GFG. We will do it inductively with σp q " K " q Cn I . Let σ follow deterministically the transitions of C n for all the states q ‰ K. It remains to define σpwaq if σpwq " K and a successive letter a is given. Assume that |wa| " k.

For every i P t0, 1, . . . , 2n ´1u let p i be the unique maximal path containing the node pi, kq in Graphpwaq. Note that each of these paths p i has a starting position -a node p ī, k i q on the path p i with a minimal moment of time k i . Clearly k i ď k. We say that p i is older than p i 1 if k i ă k i 1 -in other words, p i reaches further to the left than p i 1 .

Let σpwaq " i such that p i is the oldest among these paths (if there are two paths equally old, we move to that with smaller i).

Assume that α P L n . We need to prove that σ produces an accepting run of C n over α. Let p 1 , p 2 , . . . , p m be the set of infinite paths in Graphpαq (we know that 1 ď m ď 2n). Assume that p 1 is an oldest among them and that it starts in a moment of time k 1 . For every node pi, k 1 q for i " 0, . . . , 2n ´1 that does not belong to any of these infinite paths, the unique maximal path containing pi, k 1 q is finite. Therefore, for some k 1 ą k 1 , one of the paths p 1 , . . . , p m is the oldest among the paths intersecting the pk 1 qth moment of time. So the function σ will use at most once a rejecting transition of C n after reading the pk 1 qth symbol of α and then it will follow one of the paths p 1 , . . . , p m and accept.

We now assume for the sake of contradiction that there exists a deterministic automaton D recognising L n that has strictly less than 2 n 2n`1 states. By Theorem 4 from [BKKS13] it means that we can use D as a memory structure for the automaton C n to recognise L n . Therefore, we focus on the product C n ˆD with the acceptance condition taken from C n . What is important is that C n ˆD has to follow the transitions of C n . We know that C n ˆD is a deterministic co-Büchi automaton with strictly less than 2 n states and LpC n ˆDq " L n .

We will use the symbol ρ to denote finite and infinite runs of C n ˆD. For a given run ρ there are possibly many ω-words α that induce this run, since only the sequence of states is considered in ρ.

The rest of the argument aims at providing an ω-word α that belongs to L n but is rejected by the product automaton C n ˆD. Intuitively, the construction of α requires to balance between the two aims: we need to infinitely often force the product automaton C n ˆD to take a rejecting transition of C n but at the same time to ensure that there is at least one infinite path in Graphpαq. The ω-word α, an infinite path in Graphpαq, and the rejecting run of C n ˆD over α will be constructed as a limit of inductively constructed finite approximations. We will not control exactly the way C n ˆD works in every position of our approximation, we will be interested only in some checkpoints controlled by partial runs. Definition 4. A partial run is a finite partial mapping τ : ω á Q Cn ˆQD such that τ p0q is defined and equal to pK, q D I q. A partial run τ is rejecting if all its states are of the form pK, mq. By τ Ď ρ we denote the fact that a run ρ agrees with τ wherever τ is defined. The length of τ is the maximal moment of time k such that τ pkq is defined.

Note that the domain of a partial run τ does not have to be an initial segment of ω. The following definition is crucial. Definition 5. Let τ be a partial run of length k. We say that a value i P t0, . . . , 2n ´1u is alive in τ if there exists an ω-word α such that for the run ρ of C n ˆD over α we have τ Ď ρ and there exists a path p : t0, 1, . . . , ku Ñ t0, 1, . . . , 2n ´1u in Graphpαq that starts in the moment of time 0 and ends in the moment of time k with the value i (i.e. ppkq " i).

Note that in the above definition we actually care only about the first k letters of α. However, it is cleaner to consider ω-words α here. Fig. 2. An example of a partial run τ and an ω-word α that witnesses the fact that 2 is alive in τ . ρ is the run of Cn ˆD over α and the states of ρ and τ agree wherever defined. The dashed path is the path witnessing that 2 is alive in τ .

Figure 2 depicts a partial run and a witness that the value i " 2 is alive.

Our aim is to construct a sequence of partial rejecting runs of increasing lengths τ 0 Ă τ 1 Ă . . . such that for all P N there are at least n alive values in τ . It will give a contradiction with our assumptions by the following lemma. Lemma 6. Assume that there exists a sequence of partial rejecting runs τ 0 Ă τ 1 Ă . . . of increasing lengths such that for all P N there exists an alive value in τ . Then there exists an ω-word α P L n such that the run ρ of C n ˆD over α is rejecting.

Proof. Let k be the length of τ . Take any and assume that i is a value that is alive in τ . Observe that it is witnessed by: -an ω-word α , -a run ρ of C n ˆD over α , such that τ Ă ρ , -a path p : t0, . . . , k u Ñ t0, . . . , 2n ´1u in Graphpα q with p pk q " i . Now we take a subsequence of pα , ρ , p q PN that is point-wise convergent to a triple pα, ρ, pq P ´A ˆ`Q Cn ˆQD ˘ˆt0, . . . , 2n ´1u ¯ω, such that:

ρ is the run of C n ˆD over α, -for infinitely many we have τ Ď ρ, p encodes an infinite path in Graphpαq.

To formally construct pα, ρ, pq we can proceed similarly as in the proof of König's lemma. We fix pαpiq, ρpiq, ppiqq inductively for i " 0, 1, . . .. At each moment we require that infinitely many pα , ρ , p q agree with pα, ρ, pq on the first i positions. Since for each i there are only finitely many choices of pαpiq, ρpiq, ppiqq so we can fix these values in such a way that still infinitely many pα , ρ , p q agree with them.

By the properties of pα, ρ, pq we know that ρ is rejecting as it contains infinitely many times a state of the form pK, mq. On the other hand, α P L n because p is a witness that Graphpαq contains an infinite path.

What remains is to construct the sequence τ inductively. Our inductive assumption is that τ is a partial rejecting run and the values 1, 3, 5, . . . , 2n´1 are alive in τ (note that there is n such values). We put τ 0 " " 0 Þ Ñ pK, q D I q

‰

. Clearly τ 0 satisfies the inductive assumption (in fact all the values i " 0, . . . , 2n ´1 are alive in τ 0 ).

Let k be the length of τ . We construct τ `1 from τ by applying some words to the last state pK, m q " τ pk q of τ and observing the behaviour of C n ˆD.

Observe that there are N " 2 n words u 1 , . . . , u N P tι, σ, πu ˚that encode distinct permutations P of t0, . . . , 2n ´1u such that for all i P t0, . . . , 2n ´1u, we have ti{2u " tP piq{2u i.e. such a permutation maps t2i, 2i `1u to itself.

We can assume that all the words u 1 , . . . , u N are of equal length by padding them with ι. Since there are strictly less than N " 2 n states of C n ˆD, there are two distinct such words u, u 1 leading from pK, m q to the same state pq 1 , m 1 q of C n ˆD. By the construction of C n ˆD we know that q 1 P t0, . . . , 2n ´1u.

Assume that the permutations corresponding to u and u 1 differ on 2i `1, i.e. one of them maps 2i `1 to 2i and the other to 2i `1. Let X be the set of the values tup1q, up3q, . . . , up2n ´3q, up2n ´1q, u 1 p2i `1qu (we write here upi 1 q for the value assigned to i 1 by the permutation corresponding to u, the same for u 1 ). By the above observations X contains exactly n `1 elements.

Consider w P tι, σ, πu ˚encoding a permutation that maps:

q 1 to 0, -Xztq 1 u to 1, 3, 5, . . . , 2n´1 if q 1 P X, -X to 1, 3, . . . , 2n´1, and 2 if q 1 R X.

Since w as a permutation maps q 1 to 0, we know that after reading w7 from the state pq 1 , m 1 q the automaton C n ˆD reaches a state of the form pK, m `1q. For an illustration of these permutations, see Figure 3.

Fact 7. Consider τ `1 defined as τ Y " k `|u| `|w| `1 Þ Ñ pK, m `1q ‰
. By the definition τ Ă τ `1, τ `1 is rejecting, and all the values 1, 3, . . . , 2n ´1 are alive in τ `1 (it is witnessed by the fact that these values were alive in τ and by the words uw7 and u 1 w7).

τ `1: α{α 1 : Graphpαq: The dashed edge corresponds to the action of the word u 1 on the value 1 (u and u 1 differ on this value). X is the set of values in circles at the moment of time k `|u|. q 1 " 3 is mapped to 0 by the permutation corresponding to w, the other elements of X are mapped to 1 and 3.

ρ{ρ 1 : time: pK, m q ? ? pK, m `1q pK, m q p3, m 1 q p0, m 2 q pK, m `1q k k `|u| k `|u|`|w| k `1
Therefore, we have constructed τ `1 that satisfies the inductive invariant. This concludes the inductive construction of the sequence pτ q PN . By Lemma 6 it finishes the proof of Theorem 1.

Büchi case

In this section we discuss the quadratic upper bound for the state-complexity of determinising Büchi GFG automata, as expressed by the following theorem.

Theorem 8. For every Büchi GFG automaton there exists an equivalent deterministic Büchi automaton with quadratic number of states.

Here we provide some high level overview of the construction. A detailed description of it can be found in Appendix B.

The main part of the construction is an inductive normalisation of a given Büchi automaton A. The normalisation is guided by the powerset automaton D having sets of states of A as its states. It turns out that if A is GFG then LpAq " LpDq. During the normalisation we remove some irrelevant transitions of A and mark some existing transitions as accepting (while ensuring that we preserve the language LpAq and the fact that A is GFG).

When reaching a fixed-point of the normalisation, we know that A is in certain formal sense optimal. This optimal A needs not be deterministic. However, we can prove that there is a function σ witnessing that A is GFG that uses A as a memory structure. Therefore, by combining A with σ, we can define a structure of a deterministic Büchi automaton for LpAq over A ˆA.

We now investigate the algorithmic complexity of recognising whether a given automaton is GFG. We provide three results about general GFG-automata, Büchi GFG automata, and co-Büchi GFG-automata. Let us recall that in general, the problem of deciding if a given parity automaton is GFG was shown in [HP06] to belong to EXPTIME.

Equivalence with parity games. The following theorem shows that in general, the problem of GFGness of a given parity automaton is at least as hard as solving parity games. The later is known to be NP X co-NP but there is no PTIME algorithm known.

Theorem 9. Finding the winner of a parity game of index pi, jq is polynomially equivalent to deciding whether a given parity automaton of index pi, jq that accepts all ω-words is GFG.

Indeed, we show that given a parity game G between the players D and @, it is possible to build an automaton A accepting all ω-words, with the same parity index as G, such that A is GFG if and only if D wins G. In the initial state of A the automaton is supposed to non-deterministically guess the next letter. If the guess is correct, we move to an accepting sink state, otherwise we move to a subautomaton mimicking the game G, where moves of @ are represented by letters and moves of D are represented by a choice of transition. This way A accepts all ω-words but no GFG strategy can guarantee to reach the accepting sink state. Therefore, A is GFG only if D has a strategy to win the original game G. A polynomial reduction from the problem of GFGness of an automaton accepting all ω-words to a parity game of the same index is an easy consequence of [HP06].

A detailed construction of A and the proof of equivalence are presented in Appendix C.

Recognising Büchi GFG automata. The upper bounds given in Section 4 allow us to state the following theorem, see Appendix D for a detailed proof .

Theorem 10. It is in NP to decide whether a given non-deterministic Büchi automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent deterministic Büchi automaton in NP.

Recognising co-Büchi GFG automata.

Theorem 11. Given a non-deterministic co-Büchi automaton, we can decide whether it is GFG in polynomial time.

We will only sketch the proof here, the detailed proof is presented in Appendix E.

The cornerstone of the construction is a game called the Joker Game, defined relatively to a co-Büchi automaton A. This is a perfect information two players game played between D and @. The set of positions is Q A ˆQA , the initial position is pq A I , q A I q, and at a round n starting in pp n , q n q the following choices are made by the players:

-@ chooses a letter a n P A, -D chooses a transition p n an ÝÑ p n`1 of A, -@ chooses a transition q n an ÝÑ q n`1 of A or plays joker and chooses a transition p n an ÝÑ q n`1 of A.

After that the game moves to the position pp n`1 , q n`1 q. Player D wins an infinite play if either:

the run pp n q n of A is accepting over pa n q n , -@ played infinitely many times joker, -or the run pq n q n of A is not accepting over pa n q n6 .

Intuitively, the Joker Game forces D to produce an accepting run of A over pa n q n sequentially, whenever possible. However, since we cannot put the fact that pa n q n P LpAq into the acceptance condition (it would hide an exponential blowup in the acceptance condition). Therefore, we ask @ to concurrently produce a run of A over pa n q n . If @ manages to produce an accepting run while D fails to do so, it shows that A is not GFG. The other implication is problematic: the automaton A may not be GFG but D may win the Joker Game by relying on the choices made by @.

We start by computing in polynomial time the winner of the Joker Game (a parity game of index p0, 2q) on A. We show that if @ wins the Joker Game then A is not GFG. In the opposite case we are able to build a GFG automaton B of the same number of states as A that recognises the same language. Then, using again an appropriate game over A ˆB we can decide GFGness of A in polynomial time.

To build the automaton B, we first compute a binary relation á on the states of A. This relation is the winning region of yet another game, the safety game, which is the Joker Game where seeing a rejecting transition means immediate loss. By referring to the Joker Game we prove that for all q there is p such that p á p and p á q.

This means that we can construct a deterministic safety automaton D with states p such that p á p. Every ω-word that is accepted by A has a suffix accepted by D from some state p. It remains to add non-deterministic rejecting transitions to D in order to allow it to guess such a state p. For this, we compute an equivalence relation E on the states of A reflecting simultaneous reachability. We then use this relation to build B by connecting E-equivalent states of D using rejecting transitions. We finally show that the automaton B is GFG and recognises LpAq. The strategy witnessing GFGness of B uses the same intuition as the one in Lemma 3

The main result of this paper is a solution of the open problem asking what is the state-complexity of determinising parity GFG automata over ω-words. We prove that for co-Büchi GFG automata (and therefore all higher parity indices) the exponential blow-up cannot be avoided. For the remaining case of Büchi GFG automata we provide a construction of an equivalent deterministic automaton with quadratic number of states.

Using the tools developed to prove the above results, we are additionally able to study the complexity of the decision problem of verifying if a given parity automaton is GFG. We prove that for general parity automata the problem is at least as hard as solving parity games (for which no PTIME algorithm is known). Then we focus on the two subcases of Büchi and co-Büchi automata. In the case of Büchi automata we provide a very simple NP algorithm based on our determinisation construction. In the case of co-Büchi automata we have a bit more involved PTIME decision procedure. One of the advantages of the procedure is that, even if the automaton itself is not GFG, there could be cases when the procedure builds an equivalent GFG automaton with the same number of states. The possibilities of exploiting this fact are still to be studied.

Hopefully, the results presented in this paper will shed some light on possible efficient applications of GFG automata in the classical problems of verification.

For future research, in the Büchi case, both the exact time-complexity (between PTIME and NP) and state-complexity (between linear and quadratic) of the determinisation algorithm are still to be clarified.

The complexity of deciding GFGness for general parity automata is still open, with a lower bound of solving parity games and an EXPTIME upper bound.

A.1 Game on a single automaton

In this section we recall the construction of a game GpAq from [HP06,BKKS13] for resolving GFGness of parity automata.

Let A " A, Q, q I , ∆, Ω be a parity automaton over an alphabet A. The set of positions of the game GpAq is Q and the initial position v I is the initial state q I . In the nth round for n " 0, 1, . . . starting in a position q n first @ plays a letter a n P A and then D plays a state q n`1 such that q n an ÝÑ q n`1 is a transition of A. Consider an infinite play in which @ played an ω-word α and D played a run ρ of A over α. Such a play is won by D if either the run ρ is accepting or the ω-word α does not belong to LpAq.

Observe that the arena of the game GpAq is finite and the winning condition is ω-regular. Therefore, one of the players has a finite-memory winning strategy. It is shown in [BKKS13] that D wins GpAq if and only if A is GFG 7 .

We will also need a reformulation of Theorem 4 from [BKKS13].

Proposition 12. Assume that A is a parity GFG automaton. 

If D has a finite-memory winning strategy in

A.2 Game on two automata

Let A, B be two non-deterministic parity automata, both over an alphabet A.

We define the game GpA, Bq similarly to GpAq from the previous section, except that we require Player @ to explicitly build a run of the other automaton B. In more detail, the set of positions is Q A ˆQB , the initial position is pq A I , q B I q, and at a round n starting in pp n , q n q:

-@ chooses a letter a n P A, -D chooses a transition p n an ÝÑ p n`1 of A, 7 Originally, in [HP06] the definition of GFG automata was given by the game GpAq.

-@ chooses a transition q n an ÝÑ q n`1 of B.

After that the game moves to the position pp n`1 , q n`1 q. Player D wins an infinite play if the run pp n q n of A is accepting over pa n q n or the run pq n q n of B is not accepting over pa n q n .

The following remark follows from the existing algorithms for solving Rabin games in polynomial time for every fixed number of Rabin pairs [PP06].

Remark 1. For each fixed index pi, jq the winner of GpA, Bq can be decided in polynomial time in the number of states of automata A, B of index pi, jq.

Theorem 13. Let A be a GFG automaton and B be a non-deterministic automaton. Then D wins GpA, Bq if and only if LpAq Ě LpBq.

Proof. If LpBq Ę LpAq then playing α P LpBqzLpAq together with an accepting run of B over α is a winning strategy for @ in GpA, Bq.

On the other hand, if LpBq Ď LpAq, playing the GFG strategy of A is winning for D, since every ω-word α P LpBq will yield an accepting run of A over α via this strategy.

The following result from [HP06] provides the EXPTIME upper bound for the general GFGness problem.

Theorem 14 ([HP06]).

Let A, B be two non-deterministic parity automata such that LpAq " LpBq and B is GFG. Then D wins GpA, Bq if and only if A is GFG.

Proof. By Theorem 13, if A is GFG and LpBq Ď LpAq, Player D wins GpA, Bq. Now, assume D wins GpA, Bq using a strategy σ. We want to provide a GFG strategy

σ GFG : A ˚Ñ Q A .
The principle is simply to use the GFG strategy σ B of B to play moves of @, and answer them with a winning strategy σ to find a valid run of A. This way, if the input ω-word is in LpAq " LpBq, the correctness of σ B ensures that the run of B is accepting, and in turn the correctness of σ ensures that the run of A is accepting.

Let us describe the function σ GFG more formally. Assume that u P A ˚and the sequence of states of B produced by σ B over u is ρ 1 . Consider the play of GpA, Bq in which @ plays successive letters of u and successive states of ρ 1 . Let σ GFG puq be the state played by D according to her winning strategy after @ played u and ρ 1 .

We need to prove that if α P LpAq " LpBq then the sequence of states ρ defined by σ GFG is an accepting run of A over α. Let ρ 1 be the sequence of states of B given by σ B over α. Since α P LpBq we know that ρ 1 is an accepting run of B over α. Since ρ is the run constructed by the winning strategy σ against @ playing α and ρ 1 , we know that ρ has to be an accepting run of A over α.

B Büchi case

In this section, we prove the following theorem:

Theorem 15. For every Büchi GFG automaton there exists an equivalent deterministic Büchi automaton with quadratic number of states.

Let A " xA, Q, q I , ∆, F y with F Ď ∆ be a Büchi GFG automaton recognising a language L Ď A ω .
The crucial phase of our construction will consist of inductively modifying A while preserving L. The modifications will not influence the alphabet A nor the initial state q I . Let us put Q 0 " Q, ∆ 0 " ∆, F 0 " F , and A 0 " xA, Q 0 , q I , ∆ 0 , F 0 y. During the construction we will keep the following invariants:

q I P Q i`1 Ď Q i Ď Q, ∆ i`1 Ď ∆ i Ď ∆, F i Ď ∆ i , ∆ i`1 zF i`1 Ď ∆ i zF i , LpA i`1 q " LpA i q " L,
and additionally we will ensure that the automaton A i is GFG.

B.1 Residual languages

We will start by observing that the fact that a given automaton A i is GFG implies that the residual languages LpA i , qq of A i are in a sense simple.

Let us fix a function σ GFG

i : A ˚Ñ Q i witnessing that A i is GFG.
Definition 16. We say that A i is minimal with respect to σ GFG i if:

for every state q P Q i there is a word w such that σ GFG i pwq " q, -for every transition q a ÝÑ q 1 P ∆ i there is a word w such that σ GFG i pwq " q and σ GFG i pwaq " q 1 , i.e. the transition is used somewhere in σ GFG i . Lemma 17. We can assure that the automaton A i is minimal with respect to σ GFG i while preserving the invariants.

Proof. Let us define A 1

i as the copy of A i with all the states and transitions of A i not accessible via σ GFG i removed. Clearly after these modifications we still have LpA 1 i q " L: the Ď inclusion follows from monotonicity of the modifications and the Ě is witnessed by the strategy σ GFG i . Since σ GFG i is a complete function, the remaining A 1 i satisfies the condition that from every state there is at least one transition over every letter. Also the monotonicity constrains are satisfied. From that point on we assume that A i " A 1 i .

We will now study residuals of A i -the languages LpA i , qq for states q of A i . The following lemma shows that the residuals of A i cannot split -for every pair of transitions q a ÝÑ q 1 and q a ÝÑ q 2 of A i the residuals LpA i , q 1 q and LpA i , q 2 q are the same.

Lemma 18. If σ GFG i pwq " q and σ GFG i pwaq " q 1 then LpA i , q 1 q " a ´1LpA i , qq.

Proof. Clearly the Ď containment holds -if A i has an accepting run over α from q 1 then it has an accepting run over aα from q.

For the Ě containment take α P A ω such that aα belongs to LpA i , qq. Since σ GFG i pwq " q we know that q I w ÝÑ q. Therefore, there exists an accepting run of A i over waα from q A I (i.e. waα P LpA i q). It means that the run constructed by σ GFG i over waα is also accepting. But σ GFG i pwaq " q 1 , therefore this run witnesses that there is an accepting run of A i over α from q 1 . Therefore, α P LpA i , q 1 q.

Corollary 19. If q a ÝÑ q 1 is a transition of A i then LpA i , q 1 q " a ´1LpA i , qq. If q u ÝÑ q 1 is a path in A i then LpA i , q 1 q " u ´1LpA i , qq. If q u ÝÑ q 1 and q u ÝÑ q 2 are paths in A i then LpA i , q 1 q " LpA i , q 2 q.
Proof. The first claim follows from Lemma 18 and minimality of A i with respect to σ GFG i .

The second claim follows from the first one by induction over u. The third claim follows directly from the second one.

Intuitively this corollary guarantees that we can always make finitely many bad non-deterministic choices over an ω-word α P LpA i q and still accept it.

B.2 A simple deterministic automaton D i for L

Now we will construct an exponential but simple deterministic Büchi automaton for L. Let us fix an arbitrary total order ă Q on the set of states Q of the original automaton A.

Let us define

M i " m Ď Q i | m ‰ H ^@q, q 1 P m. LpA i , qq " LpA i , q 1 q ( . ( 1 
)
The set of states of D i is M i and the initial state is tq I u. Let the transition function of D i for m P M i , a P A be defined as:

δ Di pm, aq " # min ă Q tq P Q i | Dp P m. pp, a, qq P F i u ( if such q exists tq P Q i | Dp P m. pp, a, qq P ∆ i u otherwise
In other words, if any of the transitions from m over a is accepting (i.e. in F i ), we move to the singleton of the minimal state accessible by such a transition. Otherwise, we just proceed as in the standard powerset construction. Note that by Corollary 19 we know that the successive set of states of A i is also an element of M i . The accepting transitions F Di of D i are the transitions of the first type (notice that their target is always a singleton). Summing up,

D i " xA, M i , tq I u, δ Di , F Di y is a deterministic Büchi automaton.
See Figure 4 for a depiction of a run of D i over an ω-word. In this section we follow the convention that accepting transitions are dashed. The following lemma implies that the automaton D i is equivalent to A i in a strong sense.

Lemma 20. If m P M i and q P m then LpD i , mq " LpA i , qq.

In particular, LpD i q " LpA i q and if m Ď m 1 for m, m 1 P M i then LpD i , mq " LpD i , m 1 q.

Proof. Clearly an accepting run of D i over α from m encodes an accepting run of A i over α from a state q 1 P m, i.e. α P LpA i , q 1 q. By (1) it means that also α P LpA i , qq. Therefore LpD i , mq Ď LpA i , qq.

Consider an ω-word α P LpA i , qq. We need to prove that D i accepts α from m. We will proceed by induction showing that D i uses infinitely many accepting transitions in its run over α.

It will be achieved by the following inductive claim.

Claim. If q P m P M i and α P LpA i , qq then D i uses an accepting transition when reading α from m.

We start by proving why this claim finishes the proof of the lemma. Take q P m P M i and α P LpA i , qq. Let m w ÝÑ m 1 be the execution of D i from m over a prefix w of α that contains an accepting transition given by the above claim. Let α " wα 1 . For every q 1 P m 1 there is a path q 2 w ÝÑ q 1 in A i with q 2 P m. By the definition of M i we know that α P LpA i , q 2 q and by Corollary 19 we know that α 1 P LpA i , q 1 q. Therefore, we can apply the above claim inductively for q 1 P m 1 P M i and α 1 P LpA i , q 1 q. This way we prove that the run of D i over α from m contains infinitely many accepting transitions.

For the proof of the claim assume contrarily that the run of D i over α from m does not contain any accepting transition. In that case for every n the state m n of D i after reading αp0q . . . αpn ´1q from m is

tq 1 | q αp0q...αpn´1q ÝÑ q 1 in A i u.
Consider an accepting run ρ " pq 0 , q 1 , . . .q of A i over α from q. Let the first accepting transition in this run be q n αpnq ÝÑ q n`1 . Since q αp0q...αpn´1q ÝÑ q n in A i we know that q n P m n and therefore the transition of D i when reading αpnq from m n is accepting.

Figures 5 and6 present the two possibilities for the run of D i from m to have an accepting transition if ρ is an accepting run of A i over α from q P m. 

B.3 Combinement of A i and D i

We can now define formally the parity game G i that combines the automata A i and D i . Let W i Ď Q i ˆMi contain all pairs pq, mq such that LpA i , qq " LpD i , mq.

(2)

The set of positions of G i is of the form W i \ W i ˆA. The positions from W i belong to @ and the remaining ones to D. The edges are of the following two kinds: pq, mq Ñ pq, m, aq for all a P A, pq, m, aq Ñ pq 1 , m 1 q for all transitions q a ÝÑ q 1 of A i and m 1 " δ Di pm, aq.

The priorities of the transitions of the first kind are 0. The priority of a transition of the second kind is either:

-0 if both transitions q a ÝÑ q 1 of A i and m a ÝÑ m 1 of D i are not accepting, -2 if the transition q a ÝÑ q 1 of A i is accepting, -1 otherwise (i.e. if the transition of A i is not accepting but the transition of D i is).
Fact 21. Consider a play of G i starting from a position pq, mq P W i in which @ proposed a sequence of letters α and D proposed a sequence of states ρ of A i . Let k be the lim sup of priorities of edges during this play. The following cases can occur (recall (2)):

k " 0 and α R LpA i , qq, k " 1 and α P LpA i , qq, but the run ρ is not accepting over α, k " 2 and the run ρ is accepting over α (it witnesses the fact that α P LpA i , qq).

Summing up, D wins such a play if either α R LpA i , qq or she managed to produce an accepting run ρ of A i over α from q.

The following lemma follows directly from the fact that A i is GFG.

Lemma 22. For every pair pq, mq P W i D has a winning strategy in G i from pq, mq.

Proof. By our assumptions on minimality of A i there is a word w P A ˚such that σ GFG i pwq " q. Consider the following strategy of D in G i : after @ playing a sequence of letters v P A ˚, D moves to the state σ GFG i pwvq. By the assumptions on σ GFG i and Lemma 20 this is a correct play in G i . Consider a play in which @ played α P A ω . Assume for contradiction that the lim sup of the priorities in this play is 1. By Fact 21 it means that α P LpA i , qq but the run constructed by σ GFG i is not accepting over α. But in that case wα P L but the run constructed by σ GFG i over wα is not accepting. A contradiction with the assumptions on σ GFG i .

In particular pq I , tq I uq P W i is a winning position of D. Note that W i may contain some pairs pq, mq where q R m, such pairs will be essential in our construction (see e.g. Definition 30).

B.4 Optimal strategy

We now recall some simple variant of the theory of ranks (or signatures) in parity games. The definitions will be specialised for the game G i with priorities t0, 1, 2u.

Let us recall that a positional strategy is uniform, if it wins from all the winning positions in the game. By [EJ91,Mos91] parity games are uniformly positionally determined. Since D wins from all the positions W i , a uniform positional strategy of D in G i is a function σ : W i ˆA Ñ W i . Note that if σpq, m, aq " pq 1 , m 1 q then by the definition of G i we have δ Di pm, aq " m 1 .

We will additionally require our strategy to be optimal with respect to ranks defined as follows.

Definition 23. Let σ be a winning strategy of D in G i from a position pq, mq. We say that rankpσ, q, mq is k if k is the maximal number of edges of priority 1 taken before the first8 edge of priority 2 is taken in plays consistent with σ. Now we can ask for optimal ranks of given positions.

Definition 24. For pq, mq P W i let rank i pq, mq be the minimal rankpσ, q, mq ranging over winning strategies σ of D from pq, mq.

Let opt i pqq be the minimal rank i pq, mq ranging over m such that pq, mq P W i .

The following proposition states that there exists a winning strategy optimising the values rank i in all positions, see [SE89,Wal02].

Proposition 25. There exists a uniform positional winning strategy τ i of D in G i such that for every position pq, mq P W i we have rankpτ i , q, mq " rank i pq, mq

(3)

Sketch of a proof. Having computed the values rank i we can let the strategy τ i move from pq, m, aq to the position pq 1 , m 1 q of minimal rank i among the available successive positions. This way τ i is a winning strategy because whenever it takes an edge of priority 1 the current value of rank i decreases. Consider (3). First τ i witnesses the ě inequality. But since τ i follows the optimal values of rank i , the ď inequality also holds.

From that point on we work with a fixed optimal uniform positional strategy τ i : W i ˆA Ñ W i . Let us additionally assume that all the ambiguous choices in the construction of τ i are resolved using the order ă Q . This way we guarantee that if the automaton A i 1 is the same as A i then the strategy τ i 1 is the same as τ i . Figure 7 presents an automaton A i and a strategy τ i in a schematic way. The following lemma summarises the monotonicity properties of rank i .

Lemma 26. Consider pq, mq P W i and a P A. Assume that τ i pq, m, aq " pq 1 , m 1 q and q a ÝÑ q 1 is not an accepting transition of A i . Then:

-rank i pq, mq ě rank i pq 1 , m 1 q, -if m a ÝÑ m 1 is a non-accepting transition of D i then we have rank i pq, mq ą rank i pq 1 , m 1 q.

B.5 Inductive normalisation

We will now perform a sequence of modifications on A i to obtain A i`1 . During these modifications we will preserve certain properties witnessing that our current automaton is still GFG. Let us introduce these concepts more formally. Consider an automaton A 1 " xA, Q i , q I , ∆ 1 , F 1 y with set of states Q i and set of transitions ∆ 1 Ď ∆ i . The set of accepting transitions F 1 can be any subset of transitions ∆ 1 .

Assume that τ : W i ˆA Ñ W i is a function such that for all pq, mq P W i and a P A we have τ pq, m, aq " pq 1 , m 1 q with: q a ÝÑ q 1 is a transition of A 1 (i.e. also a transition of A i ), -if the above transition is non-accepting in A i then rank i pq, mq ě rank i pq 1 , m 1 q.

For each finite or infinite word α P A ˚\ A ω and pq, mq P W i such a function τ induces a sequence (finite or infinite) of pairs τ " q, m ‰ ¨α def " pq 0 , m 0 q, pq 1 , m 1 q, . . . defined inductively: pq 0 , m 0 q " pq, mq and pq n`1 , m n`1 q " τ `qn , m n , αpnq ˘. Note that in that case the sequence q 0 , q 1 , . . . is a (finite or infinite) run of A 1 over α from q. This sequence is called the τ -run of A 1 over α from pq, mq.

Definition 27. For A 1 and τ as above we say that τ is a GFG-witness for A 1 if:

1. for every q P Q i we have

LpA 1 , qq Ď LpA i , qq, (4)

2. for every pq, mq P W i and α P LpA i , qq, the τ -run of A 1 over α from pq, mq contains at least one accepting transition of A 1 .

Lemma 28. Assume that A 1 is as above and τ is a GFG-witness for A 1 . Then:

for every pq, mq P W i and α P LpA i , qq, the τ -run of A 1 over α from pq, mq is accepting (with respect to the accepting transitions of A 1 ), -for every q P Q i we have LpA 1 , qq " LpA i , qq, -the automaton A 1 is a GFG automaton for our language L.

Proof. The first claim follows from the inductive application of Item 2 from Definition 27: we start by finding one accepting transition q n αpnq ÝÑ q n`1 in the run. Then we observe that pαpn `1q, αpn `2q, . . .q P LpA i , q n`1 q by Corollary 19 and we can proceed inductively.

The second claim follows from the first one and (4). For the last it is enough to observe that τ " q I , tq I u ‰ ¨α constructs letter-by-letter an accepting τ -run of A 1 over α, for every α P L. Now we can prove the following lemma.

Lemma 29. τ i is a GFG-witness for A i .

Proof. It is enough to prove Item 2 from Definition 27. We will in fact prove that the run contains infinitely many accepting transitions.

Consider pq, mq P W i and α P LpA i , qq. By (2) we know that α P LpD i , mq. Consider the play of G i starting in pq, mq in which @ proposes successive letters of α and D plays according to τ i . The sequence of positions from W i visited in this play is exactly the sequence τ i " q, m ‰ ¨α. Since α P LpD i , mq, the priority at least 1 is visited infinitely often in this play. Since τ i is a winning strategy, also priority 2 has to be seen infinitely often. But it means that τ i constructs an accepting run of A i over α. This run is the τ i -run of A i over α from pq, mq.

Overview of the steps

The construction of A i`1 from A i will be done in four steps: we will define A pjq i and τ pjq i for j " 1, 2, 3, 4. The steps of the construction are illustrated on Figures 8,9, 10, and 11. The convention for these figures is as explained in Figure 7. Note that during the following four steps of the construction we consider the original values rank i pq, mq and opt i pqq (they are not recomputed).

Let us overview the four steps that we will perform:

1. A i to A p1q i : determinise transitions q a ÝÑ q 1 if rank i pq, tquq " 0, see Figure 8, 2. A p1q i to A p2q i : determinise accepting transitions q a ÝÑ q 1 , see Figure 9, 3. A p2q i to A p3q i : ensure that if q a ÝÑ q 1 is
non-accepting then opt i pqq ě opt i pq 1 q, see Figure 10,4. A p3q i to A p4q i : make all transitions q a ÝÑ q 1 with opt i pqq ą opt i pq 1 q accepting, see Figure 11.

Determinising self-dependent states

The first step is focused on the socalled self-dependent states. The dependency relation is defined as follows. It will play crucial role in defining the polynomial deterministic automaton equivalent to A.

Definition 30. If pq, tq 1 uq P W i and rank i pq, tq 1 uq " 0 we say that q depends on q 1 and denote it q ãÑ i q 1 (or q ãÑ q 1 if i is known from the context).

At this point of the construction we will turn deterministic all non-accepting transitions from a state q whenever rank i pq, tquq " 0 (i.e. q ãÑ i q is selfdependent). Note that by the definition we always have pq, tquq P W i .

Let A p1q i be the automaton A i with the following modification: if q a ÝÑ q 1 is a non-accepting transition of A i , rank i pq, tquq " 0, and τ i pq, tqu, aq " pq 1 , m 1 q then remove all the transitions q a ÝÑ q 2 with q 2 ‰ q 1 . Let τ p1q i " τ i except for the values pq, mq P W i , a P A when τ i pq, m, aq " pq 2 , m 2 q and the transition q a ÝÑ q 2 has been removed. Then let τ p1q i pq, m, aq " τ i pq, tqu, aq. See Figure 8 for an illustration of the performed modifications.

To prove that the above operation guarantees that τ p1q i is a GFG-witness for A p1q i we will use the following notion. i . The pair pq, tquq has ranki equal 0 and therefore triggers removal of all other transitions q a ÝÑ q 2 . τ p1q i maps all the values pq, m 2 q from the removed transition to pq 1 , m 1 q " τipq, tqu, aq.

A p1q i , τ p1q i a q q 2 q 1 A p2q i , τ p2q i a q q 2 q 1 Fig. 9. The step from from A p1q i , τ p1q i to A p2q i
to τ p2q i . The transition q a ÝÑ q 1 is accepting, it triggers removal of the transition q a ÝÑ q 2 and modification of τ p1q i on the two upper pairs of the form pq, mq. For these pairs any value m 1 such that pq 1 , m 1 q P Wi is used. ÝÑ q 1 and q a ÝÑ q 2 are non-accepting. The transition q a ÝÑ q 2 increases the value of opt i and therefore is removed. The mapping by τ p2q i is modified appropriately. ÝÑ q 1 and q a ÝÑ q 2 were non-accepting. The transition q a ÝÑ q 1 decreases the value of opt i and after the modification the it is made accepting. Definition 31. For q P Q i let L fin pA i , qq be the set of finite words w P A ˚such that there exists a finite run of A i over w from q that contains at least one accepting transition of A i .

A p2q i , τ p2q i a q q 2 q 1
A p3q i , τ p3q i a q q 2 q 1 5 4 3 2 2 5 4 2 2 1 2 2 1 A p4q i , τ p4q i a q q 2 q 1
Note that except the accepting transitions of A i , the automaton D i operates as the standard powerset construction. Therefore, we obtain the following fact. The second part of the fact follows from the definition of the ranks.

Fact 32. If pq, mq P W i , q P m, and w P L fin pA i , qq then the finite run of D i over w from m contains at least one accepting transition of D i .

If rank i pq, mq " 0, q P m, and w P L fin pA i , qq then the τ i -run of A i over w from pq, mq contains an accepting transition of A i .

Lemma 33. τ p1q i is a GFG-witness for A p1q i .
Proof. First observe that by monotonicity we know that LpA p1q i , qq Ď LpA i , qq for every q P Q i , since we just removed transitions. Therefore, it is enough to prove Item 2 of Definition 27.

For the sake of the contradiction assume that for pq, mq P W i and α P LpA i , qq the τ p1q i -run of A p1q i over α from pq, mq does not contain any accepting transition. Since τ i is a GFG-witness for A i , it means that in the above run over α infinitely many times a triple pq, m, aq appears with τ i pq, m, aq ‰ τ p1q i pq, m, aq " τ i pq, tqu, aq.

Moreover, notice that if no accepting transition is witnessed in A p1q i , then the invariant that q P m is preserved by all other transitions (of two types: powerset transitions and new transitions). Therefore, we can start our considerations from such a triple with rank i pq, mq " 0 and q P m.

Since α P LpA i , qq, there exists a finite prefix w of α such that w P L fin pA i , qq.

The contradiction follows from the following claim.

Claim. If pq, mq P W i , rank i pq, mq " 0, q P m, and w P L fin pA i , qq then the τ p1q i -run of A p1q i over w from pq, mq contains an accepting transition of A p1q i .

Note that the claim holds for w " as R L fin pA i , qq for every q. The proof of the claim is inductive in the length of w. Assume that w " av and the claim holds for all words of length at most |v|. Let pq 1 , m 1 q " τ p1q i pq, m, aq. Note that either pq 1 , m 1 q " τ i pq, m, aq or pq 1 , m 1 q " τ i pq, tqu, aq with rank i pq, tquq " 0. In the latter case we can assume without loss of generality that m " tqu and thus τ p1q i pq, m, aq " τ i pq, m, aq (the τ p1q i -runs over w from pq, mq and from pq, tquq are the same except the first state).

If the transition q a ÝÑ q 1 is accepting in A i then the claim clearly holds. Assume the opposite. Since rank i pq, mq " 0, the transition m a ÝÑ m 1 is a nonaccepting transition of D i . Therefore, q 1 P m 1 and rank i pq 1 , m 1 q " 0. Thus, it remains to prove that v P L fin pA i , q 1 q and use the inductive assumption.

By Fact 32 we know that the τ i -run of A i over av from pq, mq contains an accepting transition. But this run starts with the non-accepting transition q a ÝÑ q 1 , therefore it witnesses the fact that v P L fin pA i , q 1 q. See Figure 12 for an illustration of this proof.

Ai, τ 12. The inductive proof of Lemma 33. By the assumption that w " av P L fin pAi, qq we know that the upper path exists in Ai and contains an accepting transition. The value m is fixed such that q P m, rankipq, mq " 0, and τ p1q i pq, m, aq " τipq, m, aq " pq 1 , m 1 q. If the transition q a ÝÑ q 1 is not accepting then τi constructs a run from pq 1 , m 1 q over v that contains an accepting transition (lower path). This path witnesses the fact that v P L fin pAi, q 1 q.

p1q i a q q 2 q 1 v 0 m m 1 v Fig.
Deterministic accepting transitions Now we will enforce that if A p1q i can perform from a state q an accepting transition over a: q a ÝÑ q 1 then this is the only transition from q over a. Let A p2q i be obtained from A p1q i by consequent picking an accepting transition q a ÝÑ q 1 and removing all other transitions (both accepting and non-accepting) q a ÝÑ q 2 with q 2 ‰ q 1 . The order in which we pick the accepting transitions is not relevant. Now we need to define a new function

τ p2q i . Let τ p2q i equal τ p1q i
except for the values pq, mq P W i , a P A such that τ p2q i pq, m, aq " pq 2 , m 2 q with the transition q a ÝÑ q 2 removed from A p1q i . In such a case let q a ÝÑ q 1 be the accepting transition that triggered the removal and let m 1 be any value such that pq 1 , m 1 q P W i . Let us put τ p1q i pq, m, aq " pq 1 , m 1 q instead of pq 2 , m 2 q. See Figure 9 for an illustration of the construction of τ Proof. First observe that by monotonicity we know that LpA p2q i , qq Ď LpA i , qq for every q P Q i , since we only removed transitions. Therefore, it is enough to prove Item 2 of Definition 27.

Consider a pair pq, mq P W i and an ω-word α P LpA i , qq. Let

τ p1q i " q, m ‰ ¨α " pq 0 , m 0 q, . . . τ p2q i " q, m ‰ ¨α " pq 1 0 , m 1 0 q, . . .
We will prove that the run q 1 0 , q 1 1 , . . . contains at least one accepting transition. Indeed, the first place where the runs pq 1 n q n and pq n q n can differ is, by the definition of τ p2q i , an accepting transition in pq 1 n q n . If the runs do not differ then pq 1 n q n is accepting because pq n q n was accepting (τ p1q i was a GFG-witness for A p1q i ).

Decreasing opt i pqq

We now want to modify A p2q i and τ p2q i in such a way to guarantee that if q a ÝÑ q 1 is a non-accepting transition of A p2q i then opt i pqq ě opt i pq 1 q. What we know is that the values of rank i decrease along such transitions, see Lemma 26. It does not imply that the values of opt i decrease, see the left-hand part of Figure 10.

Let

τ p3q i " τ p2q i
except for pq, mq P W i and a P A such that τ p2q i pq, m, aq " pq 2 , m 2 q and opt i pqq ă opt i pq 2 q. For such values, let m q be a value realising the minimal rank i in q, i.e. pq, m q q P W i and rank i pq, m q q " opt i pqq. In that case put τ p3q i pq, m, aq " τ p2q i pq, m q , aq " pq 1 , m 1 q, see Figure 10. Also, remove from A p2q i all the non-accepting transitions q a ÝÑ q 2 such that opt i pqq ă opt i pq 2 q and obtain A p3q i . Note that for the values pq, mq P W i and a P A where τ p2q i pq, m, aq ‰ τ p3q i pq, m, aq " pq 1 , m 1 q as above, we have: rank i `τ p3q i pq, m, aq ˘" rank i pq 1 , m 1 q by the definition of τ p3q i ď rank i pq, m q q because τ p2q i pq, m q , aq " pq 1 , m 1 q " opt i pqq by the choice of m q ă opt i pq 2 q by the assumption Proof. As before, by monotonicity we know that LpA p3q i , qq Ď LpA i , qq for every q P Q i , since we only removed transitions. Therefore, it is enough to prove Item 2 of Definition 27.

ď rank i pq 2 ,
Assume contrarily, that there exists pq, mq P W i and α P LpA i , qq such that the τ p3q i -run over α from pq, mq does not contain any accepting transition. Let

τ p3q i " q, m ‰ ¨α " pq 1 0 , m 1 0 q, pq 1 1 , m 1 1 q, . . . .
For every n P N there are two possibilities:

-

τ p2q i pq 1 n , m 1 n , αpnqq " pq 1 n`1 , m 1 n`1 q (i.e. τ p2q i
and τ p3q i agree in that case)

-τ p2q i pq 1 n , m 1 n , αpnqq ‰ pq 1 n`1 , m 1 n`1 q " τ p3q i pq 1 n , m 1
n , αpnqq because of the above modification.

In the first case rank

i pq 1 n , m 1 n q ě rank i pq 1 n`1 , m 1 n`1 q because the transition q 1 n αpnq ÝÑ q 1 n`1 is non-accepting in A p3q i
and therefore also in A i and τ p2q i is a GFGwitness. In the second case we know that rank i pq 1 n , m 1 n q ą rank i pq 1 n`1 , m 1 n`1 q by (5). Therefore, the second case can happen only finitely many times (ranks are non-negative). It means that from some point on, the τ p3q i -run over α agrees with the τ p2q i -run over some suffix of α and thus is accepting (see the first item in Lemma 28).

More formally, let N be a number such that for all n ě N only the first case above happens. Let

τ p2q i " q 1 N , m 1 N ‰ ¨`αpN q, αpN `1q, . . . ˘" pq N , m N q, pq N `1, m N `1q, . . . .
It means that for n ě N we have:

pq 1 n , m 1 n q " pq n , m n q.
Since τ p2q i is GFG-witness and `αpN q, αpN `1q, . . . ˘P LpA i , q N q we know that the run pq N , q N `1, . . .q is an accepting run of A p3q i over `αpN q, αpN `1q, . . . ȃnd so is the original run pq 1 0 , q 1 1 , . . .q.

Let us note that the construction of A p3q i guarantees the following fact.

Fact 36. If q a ÝÑ q 1 in A p3q i is a non-accepting transition of A p3q i
then opt i pqq ě opt i pq 1 q.

Adding Büchi transitions

We can now proceed to the crucial step of the modifications of A i -we will add some new Büchi transitions to it. Because of a special care that will be taken, we will ensure that the added transitions do not enlarge the language recognised by the automaton. Intuitively, the values of rank i`1 computed with respect to this enriched automaton will be smaller -it will be easier to use an accepting transition of A i`1 and thus take an edge of priority 2 in G i`1 .

Let

τ p4q i " τ p3q i
and A

p4q i be the automaton A p3q i with all the transitions q a ÝÑ q 1 such that opt i pqq ą opt i pq 1 q made accepting. Figure 11 illustrates the modifications.

Lemma 37. τ p4q i is a GFG-witness for A p4q i .
Proof. It is enough to prove that for q P Q i we have LpA

p4q i , qq Ď LpA p3q i , qq.
Let ρ be an accepting run of A p4q i over an ω-word α from q P Q i . Of course ρ is also a run of A p3q i over α from q. We want to prove that ρ is also accepting with respect to A p3q i . Assume contrarily that ρ does not contain any accepting transition of A p3q i (as before, we inductively focus on this case). Let ρ " pq 0 , q 1 , . . .q. Observe that by Fact 36 we know that opt i pq 0 q ě opt i pq 1 q ě . . .. By the con-

struction of A p4q i if the transition q n αpnq ÝÑ q n`1 is accepting in A p4q i but not in A p3q i
then opt i pq n q ą opt i pq n`1 q. Therefore, there may be only finitely many such transitions in ρ and therefore ρ is rejecting with respect to A p4q i as well.

Defining A i`1 We now define A i`1 " A p4q i and since τ p4q i is a GFG-witness for A p4q i
we know that it is a GFG automaton recognising our language L. Clearly the invariants stated at the beginning of Section 4 are preserved by all the steps of our construction. This way we have completed the definition of A i`1 from A i .

B.6 Monotonicity

We will now show that there is some form of monotonicity of the values of rank i pq, mq with respect to the set of states m, as expressed by the following lemma. Figure 13 shows that if we skip the assumption that rank i pq, mq " 0 then the monotonicity does not hold any more.

Lemma 38. Assume that pq, mq P W i and rank i pq, mq " 0. If H ‰ m 1 Ď m then pq, m 1 q P W i and rank i pq, m 1 q " 0.

Proof. The fact that pq, m 1 q P W i follows from the definition of W i . To prove that also rank i pq, m 1 q " 0 we will use Proposition 25 -it is enough to provide a winning strategy σ of D in G i from pq, m 1 q that stays within the winning region (i.e. the whole set W i ) and does not visit any edge of priority 1 before the first edge of priority 2. Recall that the only choice of D in G i is which state of A i to choose (the successive state of D i is taken deterministically). 

Fig. 13.

An ω-word α witnessing that rankipq0, m 1 0 q ě 3 and rankipq0, m0q ě 1 with m 1 0 Ď m0. The states in circles are elements of m0, m1, . . . , the states in squares are elements of m 1 0 , m 1 1 , . . . . We assume that q0 " q 1 0 , τipqn, mn, αpnqq " pqn`1, mn`1q, τipq 1 n , m 1 n , αpnqq " pq 1 n`1 , m 1 n`1 q, and the runs pqnq, pq 1 n q over α do not contain any accepting transitions of Ai. Then, the run pmnq over α contains one accepting transition of Di while the run pm 1 n q over α contains three accepting transitions of Di.

Let σ play from pq, m 1 q as would play τ i from pq, mq, i.e. after @ played w P A ˚let pq w , m w q be the successive state according to τ i and let D play q w (the successive state will in that case be pq w , m 1 w q for m 1 w possibly different than m w ). When the first accepting transition of A i is taken let σ follow some winning strategy from a given position.

Clearly, since τ i does not visit any accepting transition of D i before an accepting transition of A i is taken, during this simulation we always preserve that m 1 w Ď m w . Therefore, we do not visit any accepting transition of D i before the first accepting transition of A i in all the plays consistent with σ from pq, m 1 q.

Lemma 39. Assume that pq, mq P W i and pq 1 , m 1 q P W i such that q 1 P m. Then pq, m 1 q P W i and if rank i pq, mq " rank i pq 1 , m 1 q " 0 then also rank i pq, m 1 q " 0.

Proof. The fact that pq, m 1 q P W i follows directly from the definition of W i . Similarly as above we will provide a winning strategy σ of D from pq, m 1 q that guarantees not visiting any accepting transition of D i before an accepting transition of A i is visited.

This claim can be proved inductively: it is enough to provide a response q 1 for one letter a played by @ from the position pq, m 1 q. We need to guarantee that we do not pass through an accepting transition of D i before we take an accepting transition of A i .

First assume that there is an accepting transition of A i of the form q a ÝÑ q 1 . In that case just take it and stay within the winning region W i .

Assume that there is no such transition and τ i moves over a: from pq, mq to pq 1 , m 1 q and from pq 1 , m 1 q to pq 1 1 , m 1 1 q, see Figure 14. Since rank i pq, mq " 0, the transition m a ÝÑ m 1 of D i is not accepting, in particular the transition q 1 a ÝÑ q 1 1 of A i is not accepting (recall that q 1 P m). By monotonicity of rank i over non-accepting transitions of A i we know that rank i pq 1 , m 1 q " rank i pq 1 1 , m 1 1 q " 0. By the definition of m 1 we know that q 1 1 P m 1 . Let σ move from pq, m 1 q over a to q 1 . By repeating the above construction we preserve the invariant that rank i pq n , m n q " rank i pq 1 n , m 1 n q " 0 and q 1 n P m n , therefore the strategy σ is a witness that rank i pq, m 1 q " 0.

a q q1 0 q 1 P m 0 m1 Q q 1 1 a q 1 q 1 1 0 m 1 0 m 1 1 Fig.
14. An illustration of the proof of Lemma 39. We know that q 1 P m and rankipq, mq " rankipq 1 , m 1 q " 0. The arrows are actions of τi. The implications go as follows: the transition q a ÝÑ q1 is not accepting so the transition m a ÝÑ m1 is not accepting so the transition q 1 a ÝÑ q 1 1 is not accepting so the transition m 1 a ÝÑ m 1 1 is not accepting. Therefore, rankipq1, m1q " rankipq 1 1 , m 1 1 q " 0 and q 1 1 P m1. Note that m 1 is one of the dots in the state q but we do not care what is the value τipq, m 1 , aq.

B.7 Stabilisation point

The above inductive construction of A i`1 from A i is monotone with respect to the set of states Q i , set of transition ∆ i , and set of non-accepting transitions ∆ i zF i (see the invariants at the beginning of Section 4). Therefore, there exists I such that A I`1 " A I . We will prove the following lemma. It says that in the limit we succeed with diminishing the ranks to 0 (at least the opt I ones).

Lemma 40. If A I`1 " A I and q P Q A I then opt I pqq " 0.

Proof. Assume contrarily that there exists a state q P Q I such that opt I pqq ą 0. Let m be a memory value such that pq, mq P W I and rank I pq, mq " opt I pqq ą 0. Consider a play consistent with τ I in G I that witnesses this fact: an ω-word α such that there is at least one edge of priority 1 taken before the first edge of priority 2 is taken. Let τ I " q, m ‰ ¨α " pq n , m n q nPN be the sequence of positions visited during the play. Assume that m N αpN q ÝÑ m N `1 is the first accepting transition of D I in this play and all the transitions q n αpnq ÝÑ q n`1 for n ď N are non-accepting in A I .

Our aim is to prove that for some transition q n αpnq ÝÑ q n`1 with n ď N we have opt I pq n q ą opt I pq n`1 q. In that case this transition should be made accepting by the step performed in Section B.5. Observe that opt I pq n q ě opt I pq n`1 q for n ď N , otherwise some transition would be removed by the step performed in Section B.5.

By Lemma 26 we know that rank I pq N , m N q ą rank I pq N `1, m N `1q. Therefore we obtain opt I pq 0 q " rank I pq 0 , m 0 q ě rank I pq N , m N q "

" rank I pq N , m N q ą rank I pq N `1, m N `1q ě opt I pq N `1q.
It means that on the traversed path from q 0 to q N `1 the value opt I pq n q has to strictly decrease, see Figure 15.

pq0, m0q

pqN , mN q pqN`1, mN`1q Fig. 15. An illustration of the proof of Lemma 40. The path is the plot of values of rankI pqn, mnq for n ď N `1. The gray rectangles denote the range of values rankI pqn, m 1 q for possible values m 1 . At the beginning opt I pq0q " rankI pq0, m0q and then rankI pqN , mN q ą rankI pqN`1, mN`1q. The horizontal dashed line marks the difference between rankI pqN , mN q and rankI pqN`1, mN`1q. Therefore, somewhere on the path there is the first rectangle crossing the dashed line (i.e. a transition qn αpnq ÝÑ qn`1 with opt I pqnq ą opt I pqn`1q).

Let us recall the dependency relation from Definition 30: q depends on q 1 (denoted q ãÑ q 1 ) if pq, tq 1 uq P W I and rank I pq, tq 1 uq " 0. The following lemma summarises the properties of the dependency relation using the results of Section B.6.

Lemma 41. The following conditions hold: 1. For every q P Q I there exists q 1 P Q I such that q ãÑ q 1 . 2. If q ãÑ q 1 and q 1 ãÑ q 2 then q ãÑ q 2 . 3. For every q P Q I there exists q P Q I such that q ãÑ q and q ãÑ q. 4. If q ãÑ q, a P A, and τ I pq, tqu, aq " pq 1 , m 1 q such that q a ÝÑ q 1 is a nonaccepting transition of A I then q 1 ãÑ q 1 . Proof. For the first claim observe that by Lemma 40 we know that opt I pqq " 0. Let m be the value such that pq, mq P W i and rank I pq, mq " 0. Since m ‰ H, we can choose q 1 to be any element of m. By Lemma 38 we know that rank I pq, tq 1 uq ď rank I pq, mq " 0. Now take q ãÑ q 1 and q 1 ãÑ q 2 . In that case q 1 P tq 1 u so Lemma 39 applies and rank I pq, tq 2 uq " 0 (i.e. q ãÑ q 2 ).

For the third claim it is enough to apply the previous two inductively and use the fact that Q I is finite.

Consider q P Q I such that q ãÑ q and let τ i pq, tqu, aq " pq 1 , m 1 q. In that case we know that rank I pq 1 , m 1 q " 0 and q 1 P m 1 therefore by Lemma 38 we know that also rank I pq 1 , tq 1 uq " 0 and q 1 ãÑ q 1 .

B.8 Construction of B

Now we move to the construction of a small deterministic Büchi automaton B recognising L. We start by defining a GFG-witness for A I that will involve only polynomially many pairs pq, mq P W I . Let τI " τ I for all values pq, mq P W I , a P A such that τ I pq, m, aq " pq 1 , m 1 q with the transition q a ÝÑ q 1 non-accepting in A I . If the above transition is accepting in A I , let τI pq, m, aq " pq 1 , t q1 uq where q1 is the state given by Item 3 of Lemma 41.

Lemma 42. The function τI is a GFG-witness for A I .

Proof. It is enough to verify Item 2 of Definition 27. Since the action of τI differs from τ I only on accepting transitions of A I , this modification cannot lead to a non-accepting τI -run over α P A ω .

We will now define the automaton B. Let the set of states of B be the subset of elements W I accessible from pq I , t qI uq via τI . The transition function of B is given by τI , the accepting transitions are those of the form pq, mq a ÝÑ pq 1 , m 1 q " τI pq, m, aq with q a ÝÑ q 1 an accepting transition of A I . This way B is a deterministic Büchi automaton.

Lemma 43. If pq, mq is a state of B then m is a singleton.

Proof. We will in fact prove that if pq, mq is a state of B then m " tq 1 u with q 1 ãÑ q 1 . It is enough to prove that τI preserves this property. Clearly the initial state of B is of this form and the states obtained via accepting transitions of B are of this form. Consider a transition pq, tq 1 uq a ÝÑ pq 1 , m 1 q " τI pq, tq 1 u, aq of B such that q a ÝÑ q 1 is not an accepting transition of A I . By the assumption that q 1 ãÑ q 1 we know that rank I pq 1 , tq 1 uq " 0. In the step performed in Section B.5 we have determinised all the transitions of the form q 1 a ÝÑ q 1 1 with q 1 ãÑ q 1 . It means that m 1 " δ Di ptq 1 u, aq is a singleton. Since q 1 1 P m 1 , m 1 " tq 1 1 u. By Item 4 of Lemma 41 we know that in that case also q 1 1 ãÑ q 1 1 so the invariant is preserved.

Corollary 44. The number of states of B is at most |Q

A | 2 .
Lemma 45. The language LpBq is equal to the language L.

Proof. Clearly LpBq Ď LpA I q " L because of the definition of B. It remains to prove that if α P LpA I q then B accepts α. But this follows directly from the fact that τI is a GFG-witness for A I .

Therefore, we have completed the proof of Theorem 15 by constructing a deterministic Büchi automaton B recognising L that has at most |Q A | 2 states. The construction presented in this section is effective but not efficient. In Section 5 we discuss how to determinise a Büchi GFG automaton efficiently.

B.9 Example of the determinisation procedure

In this section we provide an example of the application of our determinisation procedure to a particular automaton A. The automaton comes from [BKKS13] and it is GFG but not DBP (determinisable by pruning), i.e. it does not contain any equivalent deterministic subautomaton. The automaton A is depicted on Figure 16. It recognises the language

L " rpxa `xbq ˚pxaxa `xbxbqs ω .
The accepting transitions A 2 a ÝÑ I and B 2 a ÝÑ I are marked by dashed edges. For the sake of readability the sink state K and some of the transitions to it (i.e. I a ÝÑ K) are not presented. The only non-determinism is in the state I when the letter x is read. In that case the automaton has to guess whether the successive letter will be a or b. One of the strategies for resolving this non-determinism is to move to A or B depending on the previous letter (a or b). Correctness of this strategy relies on the fact that the language recognised by the automaton requires that infinitely many times the previous letter a or b reappears.

Figure 17 presents the automaton A 0 " A together with the data values M 0 and a GFG-witness τ 0 . The red edges are transitions of A 0 while the black edges are transitions of τ 0 . Dashed red edges are accepting transitions of A 0 and dashed black edges correspond to the accepting transitions of D 0 . The numbers denote rank 0 pq, mq and opt 0 pqq respectively. Only the relevant pairs pq, mq are presented.

The only freedom in the choice of the strategy τ 0 is in the position pq, mq " pI, tIuq when the letter x is played. The depicted strategy moves then to A. The choice that from the position pI, tI, A 1 uq the strategy moves to A over x (and dually for b) follows from the fact that the strategy is optimal with respect to the ranks (see Proposition 25).

In the first step of the construction the following steps are performed. The only modification of A 0 is done in the last step.

all the transitions from the self-dependant states are already deterministic, -all the accepting transitions are already deterministic, -no non-accepting transition increases opt 0 pqq, -the transitions A a ÝÑ A 1 and B b ÝÑ B 1 are made deterministic because they decrease opt 0 pqq. This way the automaton A 1 is obtained, see Figure 18. In this automaton all the states q satisfy opt 1 pqq " 0. Further steps of the construction do not modify the automaton A 1 and therefore I " 1.

The following dependencies are important when constructing the deterministic automaton B:

I ãÑ A 1 A 1 ãÑ A 1 I ãÑ B 1 B 1 ãÑ B 1 . The states A 1 , B 1 , A 2 , B 2 are self-dependant.
There is a freedom in choosing Ī: it can either be A 1 or B 1 , we assume that it is A 1 . Figure 19 presents the automaton B obtained via our construction. 

I A B A 1 B 1 A 2 B 2

C Reduction to parity games

In this section we prove Theorem 9.

Theorem 9. Finding the winner of a parity game of index pi, jq is polynomially equivalent to deciding whether a given parity automaton of index pi, jq that accepts all ω-words is GFG.

Proof. First, if we are given a parity automaton of index pi, jq that accepts all ωwords then deciding whether it is GFG is a parity game of index pi, jq: @ chooses letters, D chooses transitions, and D wins if the resulting run is accepting over the given ω-word. Therefore, solving this parity game allows us to decide whether the input automaton is GFG, provided this automaton accepts all ω-words.

Conversely, let G " xV D , V @ , v I , Γ, Ω G y be a parity game of index pi 0 , j 0 q. We build an automaton A " xA, Q, q I , ∆, Ω A y where the non-determinism corresponds to the choices of D, while the choices of @ lie in the input alphabet. The set of states Q is V \tJu and q I " v I . We define the alphabet A def " Γ XV @ ˆV -the edges that can be taken by @ (we assume that there are at least two edges that can be taken by @ in G). The state J is a sink accepting state with only self-loops J a ÝÑ J of even priority. Finally, we define the set of transitions ∆ of A for states other than J:

for v P V @ and a " pv, v 1 q P A let ∆ contain the transition v a ÝÑ v 1 , -for v P V @ and a " pv 1 , v 2 q P A with v 1 ‰ v let ∆ contain the transition v a ÝÑ J, -for v P V D and any a P A let ∆ contain all the transitions v a ÝÑ v 1 for pv, v 1 q P Γ (in that case a does not play any role). This way the games G and GpAq are equivalent -in positions v P V @ D has no choice in GpAq because there is a unique transition to take and in positions v P V D the letters chosen by @ in GpAq does not play any role. If A accepts all ω-words then the winning condition of GpAq requires that the run proposed by D is accepting and therefore is equivalent to the winning condition of G.

The priority Ω

A of a transition v a ÝÑ v 1 with both v, v 1 different than J is Ω G pv, v 1 q. 1 I 1 A 1 B 0 A 1 0 B 1 0 A 2 0 B 2 1 I tIu 1 tI, B 1 u 1 tI, A 1 u 1 tA, Bu
0 I 0 A 0 B 0 A 1 0 B 1 0 A 2 0 B 2 0 I tIu 1 tB 1 u 0 tA 1 u 0 tA, Bu
However, if A does not accept all ω-words then D may lose the game G but the automaton A might still be GFG for a smaller language. To avoid this, we need to build another automaton B which accepts all ω-words in any case but is GFG if and only if D wins G.

We fix an arbitrary letter a P A and build an automaton B " xA, Q \ tq i , q a , q a u, q i , ∆ 1 , Ω 1 y. We build ∆ 1 from ∆ by adding the following transitions: q i A ÝÑ q a , q i A ÝÑ q a , q a a ÝÑ J, q a a ÝÑ q A I , and for all b ‰ a, q a b ÝÑ J and q a b ÝÑ q A I . First, it is clear that LpBq " A ω : every ω-word can be accepted by guessing if the second letter is a, and reaching the accepting sink state J. We claim that B is GFG if and only if D wins G. Assume B is GFG with a function σ : A ˚Ñ Q B witnessing that. Then, there is a letter b P A such that σpabq " q A I (take b ‰ a if σpaq " q a and b " a otherwise). Let σ 1 : abw Þ Ñ σpwq be the GFG strategy starting in q A I . Since all ω-words are in LpBq, σ 1 must accept every ω-word α, and therefore corresponds to a winning strategy in G. Conversely, every winning strategy in G can be turned into a GFG strategy in B, by adding an arbitrary choice at the beginning between q a and q a . Finally, we showed that from a parity game G, we can build an automaton B with same parity index, such that G is winning for D if an only if B is GFG. Moreover, the language of B is A ω .

D Recognising Büchi GFG automata

We give the detailed proof of the following theorem:

Theorem 10. It is in NP to decide whether a given non-deterministic Büchi automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent deterministic Büchi automaton in NP.

Proof. Let A be an input Büchi automaton and let Q be its set of states. By Theorem 15, if A is GFG, it is witnessed by a strategy τI with memory M of size |Q A |. Therefore, we can guess such a structure M , and build the deterministic automaton B " A ˆM , where runs of A are guided by the current memory state in M . The acceptance component is inherited from A, and therefore we have LpBq Ď LpAq, since every accepting run of B contains in particular an accepting run of A. It remains for the algorithm to check LpAq Ď LpBq, which can be done in polynomial time because B is deterministic. More precisely, we can complement B in B c and check for emptiness of LpAq X LpB c q.

Conversely, if such a memory structure M is guessed by the non-deterministic algorithm, it is a witness that A is GFG. Therefore, this non-deterministic polynomial algorithm is correct. Clearly if A is GFG then a side-effect of a successful run of the algorithm is an equivalent deterministic automaton B.

E Recognising co-Büchi GFG automata

In this section, we show that for the particular case of co-Büchi automata, the problem of deciding GFGness is in PTIME.

Theorem 11. Given a non-deterministic co-Büchi automaton, we can decide whether it is GFG in polynomial time.

Let A " A, Q, q I , ∆, R be a non-deterministic co-Büchi automaton.

E.1 Normalised automata

The following notion will be important when we will consider the safety game G safe . Definition 46. A co-Büchi automaton is normalised if for any path p w ÝÑ q without rejecting transition there is a path q w 1 ÝÑ p without rejecting transition.

Lemma 47. co-Büchi automaton A can be turned into an equivalent normalised automaton N pAq by changing some transitions to rejecting. This can be done in polynomial time.

For every α, the sets of accepting runs of A and N pAq over α coincide. In particular LpA, pq " LpN pAq, pq for every p P Q.

Proof. We start by computing the strongly-connected components (SCC) of the graph of the automaton without rejecting transitions. Then, all transitions that change SCC are switched to rejecting.

The accepting runs are preserved, because if an infinite path contains infinitely many new rejecting transitions, it also contains infinitely many original rejecting transitions. We get a normalised automaton, because the graph of the automaton restricted to non-rejecting transitions is a disjoint union of stronglyconnected components.

E.2 Joker game

The crucial ingredient of the construction is the Joker Game, as defined below.

Definition 48. The Joker Game on A (denoted G Joker , A is fixed in this section) is defined on the set of positions Q ˆQ. The initial position is pq I , q I q. The game is played in rounds n " 0, 1, . . ., in a round n starting in a position pp n , q n q the following actions are performed:

-@ chooses a letter a n P A, -D chooses a transition p n an ÝÑ p n`1 of A, -@ either:

' chooses a transition q n an ÝÑ q n`1 of A, ' or plays joker and chooses a transition p n an ÝÑ q n`1 of A.

After such a round the game moves to the position pp n`1 , q n`1 q. Now, the priority of an edge corresponding to a round as above is either:

-2 if @ played joker, -otherwise 2 if the transition q n an ÝÑ q n`1 is rejecting in A, -otherwise 1 if the transition p n an ÝÑ p n`1 is rejecting in A, -otherwise 0.

An infinite play of the above game produces: an ω-word α " a 0 a 1 . . ., a run ρ " p 0 p 1 . . . of A, and a pseudo-run τ " q 0 q 1 . . . -each time @ plays joker, the successive state q n`1 may not be accessible from q n via a transition of A. However, since the acceptance condition is prefix-independent, if @ played only finitely many times joker then it makes sense to ask whether the pseudo-run τ is accepting over α.

Note that there are the following possibilities for the limes superior of the priorities of edges during this play:

-0 and both ρ and τ are accepting over α, -1 and the pseudo-run τ is accepting over α but ρ is not, -2 and either @ played infinitely many times joker or τ is not accepting over α.

Therefore, we obtain the following fact.

Fact 49. D wins a play as above if and only if either:

-@ played joker infinitely many times, τ is not accepting over α, or ρ is accepting over α.

A variant of the Joker Game with a bounded number of times @ could play joker would be enough for our purposes. However, the unbounded variant presented above allows us to provide more elegant proofs.

Lemma 50. If the automaton

A is GFG then D wins G Joker .
Proof. Assume that A is GFG and let use the function witnessing that A is GFG as her strategy in the game G Joker , regardless of the current value q n . We will prove that this strategy is winning. Assume contrarily and consider a play α, ρ, τ in which @ won. Therefore, there exists n such that in the nth round @ played joker for the last time (or he did not play joker at all and n " 0). After that he managed to propose an accepting run of A over α 1 " pαpnq, αpn `1q, . . .q from the state ρpnq. In means that α 1 P LpA, ρpnqq. Since ρp0q αp0q...αpn´1q

ÝÑ

ρpnq, we know that also α P LpA, ρp0qq " LpAq. Therefore, the run constructed by the function witnessing that A is GFG has to be accepting in A. So D won this play.

Therefore, we can start our procedure by verifying (in polynomial time) if D wins G Joker . If she loses then A is not GFG. From that point on we assume that D wins this game and W J Ď Q ˆQ is her winning region. Let Q J be the projection of W J onto the first coordinate -the set of states p such that D can win from some position of the form pp, qq. The winning condition of G Joker is a parity condition so we can fix a uniform positional winning strategy of D of the form σ J D :

W J ˆA Ñ Q J (6)
We say that a transition p a ÝÑ p 1 is used by σ J D if there exists a position pp, qq P W J such that σ J D pp, q, aq " p 1 . Let A J be the non-deterministic co-Büchi automaton obtained by restricting A to the set of states Q J and transitions used by σ J D , and by normalising the resulting automaton using Lemma 47. Notice that normalising does not change the winning region, as the accepting runs are unchanged. The strategy σ J D witnesses that if p P Q J and α P LpA, pq then also α P LpA J , pq (in particular, LpA J q " LpAq).

E.3 Structure of A J

Now we will study the structure of the automaton A J . Lemma 51. If p P Q J then pp, pq P W J .

Proof. Let pp, qq P W J be a witness that p is used in σ J D . It is enough to observe that every strategy of @ from pp, pq can be also used by @ from pp, qq at the cost of playing joker at the first round of the play. Therefore, if D wins from pp, qq then she wins from pp, pq as well.

Lemma 52. If p a ÝÑ p 1 is a transition of A J then LpA, p 1 q " a ´1LpA, pq.

Proof. The Ď containment is trivial. For the Ě consider an ω-word aα P LpA, pq. We need to prove that α P LpA, p 1 q. Let τ be an accepting run of A over aα from p. Assume that the transition p a ÝÑ p 1 is used by σ J D from a position pp, qq P W J . Consider the play of G Joker from pp, qq in which D plays according to σ J D and @ plays: in the first round the letter a and then joker to use the transition p " τ p0q a ÝÑ τ p1q; and in further rounds successive letters of α and successive transitions of τ . Since σ J D is winning and the run τ proposed by @ is accepting over aα, also the run ρ constructed by D has to be accepting over aα. But the first transition of this run is p a ÝÑ p 1 , therefore the run witnesses that α P LpA, p 1 q.

Similarly as in Section B.1 we can obtain a variant of Corollary 19 for A J .

E.4 Equivalence relation

We define an equivalence relation E Ď Q J ˆQJ that will keep track of states that are accessible in A J via the same word from a common state. Definition 53. Let E Ď Q J ˆQJ be the smallest equivalence relation on Q J such that for any pp, qq P E and a P A, if there are transitions p a ÝÑ p 1 and q a ÝÑ q 1 in A J then pp 1 , q 1 q P E.

The relation E can be computed in polynomial time via a standard saturation algorithm.

Remark 2. By Lemma 52, for all pp, qq P E we have LpA, pq " LpA, qq.

E.5 Safety game

We will now consider a variant G safe of the game GpA J , A J q where the first rejecting transition is losing for the respective player. Let the set of positions of G safe be E Ď Q J ˆQJ . In such a position pp, qq the following choices are done:

first @ proposes a letter a P A, -then D proposes a transition p a ÝÑ p 1 of A J , -then @ proposes a transition q a ÝÑ q 1 of A J .

If the transition p a ÝÑ p 1 (resp. q a ÝÑ q 1 ) is rejecting in A J then D (resp. @) immediately loses (if both transitions are rejecting then @ immediately loses). All the infinite plays are won by D.

Let W S Ď E be the winning region of D and let σ S D : W S ˆA Ñ Q J be a uniform positional winning strategy of D in her winning region of G safe .

For each p P Q, we now define the language L safe pA J , pq as the set of ω-words α such that there exists a run of A J from p over α that does not contain any rejecting transition of A J .

The winning region W S provides us a dependency relation on Q J . Let us write p á q if pp, qq P W S . This relation will be essential in the rest of the construction.

Lemma 54. For every q P Q J there exists p P Q J such that p á q.

Proof. Assume contrarily that there exists q P Q J such that for no p P Q J we have p á q.

We will inductively construct a play of G Joker from pq, qq. Let us start with p 0 " q. The invariant is that pp n , qq P Q J ˆQJ belongs to W J X E. Lemma 51 implies that for n " 0 the invariant holds. Assume that n steps of the construction have been done and a state p n is defined. Since p n á q does not hold, @ has a winning strategy σ S @ in G safe from pp n , qq. Consider the play of G safe resulting from @ playing σ S @ and D using her strategy σ J D from G Joker . Since σ S @ is winning, after a finite word w n has been played the two constructed runs are p n wn ÝÑ p 1 n and q wn ÝÑ q 1 n with the first path containing a rejecting transition of A J and the second one not containing any rejecting transition of A J . Since the automaton A J is normalised, we know that there exists a path q 1 n w 1 n ÝÑ q without any rejecting transition. Let @ proceed along this path and D play using σ J D : p 1 n w 1 n ÝÑ p n`1 . After this finite play we reached the position pp n`1 , qq and the invariant that pp n`1 , qq P W J X E holds because we simulated the winning strategy σ J D of D, and only took transitions of A J . After infinitely many steps of the above construction we obtain a play of G Joker that is consistent with σ J D . In this play @ never plays joker, the constructed ω-word α is w 0 w 1 0 w 1 w 1 1 . . ., the pseudo-run τ over α does not contain any rejecting transition of A J while the run ρ over α contains infinitely many rejecting transitions of A J . Therefore, τ is an accepting run over α of A as well and ρ is not accepting. Therefore, we obtain a contradiction with the fact that σ J D is winning.

Lemma 55. If p á q and q á r then p á r.

Proof. We need to provide a winning strategy of D in G safe from the position pp, rq. Since the winning condition of G safe is safety, it is enough to show how D can survive one round. The invariant is that pp, qq P W S , pq, rq P W S , and the current position is pp, rq. Assume that @ plays a letter a P A. We will simulate two plays of G safe from pp, qq and pq, rq. Let the strategy σ S D move from pp, qq over a to p 1 and from pq, rq over a to q 1 . Let D play from pp, rq the state p 1 and assume that @ replied by r 1 .

Since q a ÝÑ q 1 so q 1 is a valid reply of @ in the play from pp, qq. Similarly, r a ÝÑ r 1 so r 1 is a valid reply in the play from pq, rq. The only possibility for D to lose in this round would be if the transition r a ÝÑ r 1 was non-rejecting in A J but the transition p a ÝÑ p 1 was rejecting in A J . But in that case, the transition q a ÝÑ q 1 cannot be rejecting in A J (otherwise pq, rq R W S ) and therefore neither p a ÝÑ p 1 can be rejecting in A J (otherwise pp, qq R W S ). Therefore, D did not lose in this round, pp 1 , q 1 q P W S and pq 1 , r 1 q P W S so the invariant holds.

The following corollary follows directly from the two above lemmas and the fact that Q J is finite.

Corollary 56. For every q P Q J there exists p P Q J such that p á p and p á q. Lemma 57. If p á q then L safe pA J , pq Ě L safe pA J , qq.

Proof. Consider α P L safe pA J , qq and a play of G safe from pp, qq where D plays according to her winning strategy and @ plays α together with a run τ of A J from q over α that does not contain any rejecting transition. Since D plays according to her winning strategy, we know that the run ρ over α proposed by D neither contains a rejecting transition. Therefore, α P L safe pA J , pq.

E.6 Deterministic part

Now we will focus on states p P Q J such that p á p. Similarly as in Section B.5 we will define a structure of a deterministic automaton D on this set of states. The automaton will be a safety automaton -this time we allow its transition function to be partial, and we consider the run non-accepting if it is finite and accepting if it is infinite. Notice that we could equivalently define D as a co-Büchi automaton by adding a sink state with rejecting self-loop, and all other transitions non-rejecting.

We will use D def " tp P Q J | p á pu as the set of states of D.

Lemma 58. If p P D and σ S D pp, p, aq " p 1 with the transition p a ÝÑ p 1 not rejecting in A J then p 1 P D (i.e. p 1 á p 1 ).

Proof. If @ plays a in the position pp, pq of G safe then the reply of σ S D is p 1 as above. This round can be finished by @ playing p 1 as well and reaching the position pp 1 , p 1 q. If the transition p a ÝÑ p 1 is non-rejecting in A J then this round does not finish the game and therefore D is able to win from pp 1 , p 1 q (i.e. pp 1 , p 1 q P W S and therefore p á p). This deterministic automaton D has safety condition, meaning a run is accepting if and only it is infinite. The initial state q D I of D is any state p such that p á q A I (such a state exists by Lemma 54).

Lemma 59. For all p P D we have L safe pA J , pq " LpD, pq.

Proof. Clearly the Ě containment is trivial -an accepting run of D from p over α is a run of A J from p over α that does not contain any rejecting transition. It remains to prove that if α P L safe pA J , pq then α P LpD, pq. The proof is inductive proving that D does not get blocked when reading α from p. The invariant is that D is in a state p P D and α P L safe pA J , pq.

Let α " aα 1 and ρ be a run of A J from p over α witnessing that α P L safe pA J , pq. Now let p 1 " δ D pp, aq and q 1 " ρp1q. Since ρ 1 does not contain any rejecting transition over aα, we know that the transition p a ÝÑ q 1 is a non-rejecting transition of A J . Since p á p, the transition p a ÝÑ p 1 cannot be rejecting, otherwise D would lose in the position pp, pq of G safe . What remains is to prove that α 1 P L safe pA J , p 1 q. But α 1 P L safe pA J , q 1 q and since pp, pq P W S , also pp 1 , q 1 q P W S (i.e. p 1 á q 1 ) as @ can lead the strategy of D from pp, pq to pp 1 , q 1 q. Therefore, by Lemma 57 we know that α 1 P LpA J , p 1 q. Thus, the invariant holds.

E.7 Building a GFG automaton

We will now build a co-Büchi GFG automaton B on top of D, recognising LpAq. The set of states of B is D and the initial state is q D I . Consider a state p P D and a letter a P A. For each transition p a ÝÑ q 1 of A J and each pp 1 , q 1 q P D ˆQJ X E we have a transition p a ÝÑ p 1 in ∆ B . Moreover, if δ D pp, aq " p 1 (in particular it is defined) then the transition is non-rejecting, otherwise it is rejecting. Note that if δ D pp, aq " p 1 is defined then by the definition of E there is a (non-rejecting) transition p a ÝÑ p 1 in B.

Intuitively, the automaton B follows D as long as possible, and at any time it can jump to any E-equivalent state via a rejecting transition.

By the definition of B we obtain the following fact.

Fact 60. For every p P D we have L safe pB, pq " LpD, pq.

Lemma 61. The following relations between paths in A J and B hold.

1. Assume that pp, qq P D ˆQJ X E and there is a path q u ÝÑ q 1 in A J with u ‰ then tp 1 P D | p u ÝÑ p 1 is a path of Bu " tp 1 P D | pp 1 , q 1 q P Eu ‰ H.

2. Conversely, if pp, qq P D ˆQJ X E and there is a path p u ÝÑ p 1 in B then there exists q 1 P Q J and a path q u ÝÑ q 1 in A J such that pp 1 , q 1 q P E.

In particular, the above properties hold for p " q B I and q " q A I because pq B I , q A I q P E. Proof. Both items are proved by induction on u. In Item 2 it is important that A J can always perform at least one transition from a given state q P Q J over a letter a P A.

Lemma 62. LpBq " LpAq.

Proof. Let α P LpAq " LpA J q. We know that there exists a decomposition α " uα 1 and a path q A I u ÝÑ q 1 in A J such that α 1 P L safe pA J , q 1 q. Let p 1 P D such that p 1 á q 1 (in particular pp 1 , q 1 q P E). By Lemma 57 we have α 1 P L safe pA J , p 1 q. Therefore, by Lemma 59 we know that α 1 P LpD, p 1 q and by Fact 60 also α 1 P L safe pB, p 1 q. Item 1 of Lemma 61 implies that there exists a path q B I u ÝÑ p 1 in B. This path together with the fact that α 1 P L safe pB, pq provides an accepting run of B over uα 1 " α.

Conversely, let α P LpBq. Since the acceptance condition of B is co-Büchi, we know that there exists a state p 1 P D and a decomposition α " uα 1 such that q B I u ÝÑ p 1 and α 1 P L safe pB, p 1 q. In particular α 1 P L safe pA J , p 1 q Ď LpA J , p 1 q. Item 2 of Lemma 61 implies that there exists a path q A I u ÝÑ q 1 in A J with q 1 P Q J and pp 1 , q 1 q P E. Since pp 1 , q 1 q P E, we know that α 1 P LpA J , q 1 q. Therefore, we can find an accepting run of A J over uα 1 " α that starts with the path q A I u ÝÑ q 1 . This run is an accepting run of A J over α and therefore α P LpAq.

E.8 B is GFG

We now define a strategy σ GFG in the game GpBq proving that B is in fact GFG. Intuitively, the strategy will try the non-rejecting paths in B (we can deterministically follow these paths as in D) one after another. Consider the memory structure M " D ď|D| zt u -finite non-empty sequences of states from D. The invariant of our strategy is that if we are in a position p of GpBq and our memory state is m " d 0 . . . d then:

p " d 0 , -each state appears at most once in m, -for all i, j ď we have pd i , d j q P E.

The initial memory value is m 0 " tq B I u. The memory states m can be seen as a simplification of the structure of Last-Appearance-Record from [Büc83].

Consider a position p in GpBq when the memory state is m " d 0 d 1 . . . d P M and @ plays a letter a P A. For each i " 0, . . . , let us define d 1 i as: -if δ D pd i , aq " K, -if δ D pd i , aq is among d 1 j for j ă i, δ D pd i , aq otherwise.

Let p 1 " σ S D pp, p, aq and let r P D ˚be a list of all states q P D such that pp 1 , qq P E and q is not any of d 1 i . Now m 1 " d 1 0 . . . d 1 ¨r (clearly p 1 appears in this list, either as d 1 0 or later if d 1 0 " ). By the construction, each state in m 1 appears at most once and all of them are E-equivalent. Now let D move in such a case to the position m 1 p0q and set the memory state to m 1 . By Lemma 61 and the fact that all d 1 i are E-equivalent we know that there exists a transition p a ÝÑ m 1 p0q of B.

Note that the transition taken by D according to the above strategy may be rejecting in B if δ D pd 0 , aq " K. Clearly if d appears in m at a position i and δ D pd, aq " d 1 ‰ K then d 1 appears in m 1 at a position i 1 such that i ě i 1 . If the transition played by D in the given round is rejecting in B then i ą i 1 .

Lemma 63. The strategy σ GFG is a winning strategy in GpBq.

Proof. Consider a play in which @ proposed an ω-word α and D produced an infinite run ρ of B over α. Assume that α P LpBq, in particular α " uα 1 with q B I u ÝÑ p a path in B and α 1 P L safe pB, pq. Let ρ be a run of B from p over α witnessing that α 1 P L safe pB, pqρ does not contain any rejecting transition of B. Therefore, ρ is an accepting run of D from p over α.

For n " 0, . . . let m n be the memory state of the above strategy of D after @ has played uαp0q ¨αpn ´1q. By Lemma 61, we know that the state p " ρp0q appears in m 0 at some position i 0 . By the definition of σ GFG it will always be there -for every n the state ρpnq appears in m n at a position i n . As we observed above, we know that i n ě i n`1 and whenever D plays a rejecting transition of B then i n ą i n`1 . Therefore, there can be at most i 0 such transitions played after @ has played the word u.

E.9 Deciding GFGness of A

Putting together the results from this section, we get the following theorem: Theorem 64. Given a co-Büchi automaton A, there is a polynomial time algorithm that either answers "A is not GFG" (if @ wins the Joker game G Joker ) -builds a co-Büchi GFG automaton B in polynomial time, of the same size and language as A.

Now Theorem 11 follows by applying Theorem 14 to the automata A and B in the second case above.
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 1 Fig. 1. The infinite sequence of relations on the set t0, . . . , 3u (i.e. n " 2) represented by an ω-word α P A ω .
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 3 Fig.3. The behaviour of Cn ˆD over uw7 and u 1 w7. The alive values are in circles, only edges between the alive values are drawn. The dashed edge corresponds to the action of the word u 1 on the value 1 (u and u 1 differ on this value). X is the set of values in circles at the moment of time k `|u|. q 1 " 3 is mapped to 0 by the permutation corresponding to w, the other elements of X are mapped to 1 and 3.

  GpAq with M memory states then there exists a deterministic parity automaton recognising LpAq with |Q A | ¨M states. 2. If D is a deterministic parity automaton recognising LpAq then D has a finite memory winning strategy in GpAq with |Q D | memory states.
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 4 Fig. 4. The behaviour of Di over an ω-word α. Dots correspond to states of Ai. Nodes in circles belong to the current state of Di. Dashed edges are accepting transitions of Ai, normal edges are normal transitions of Ai. Transitions from states of Ai outside the current state of Di are omitted. The order ăQ on the states of A is from top to the bottom.
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 5 Fig.5. The execution of Di over α -the states in circles belong to the current state m of D, the run ρ of Ai is boldfaced, the dashed boldfaced edge is the first accepting transition in the run ρ over α. This transition is also the source of the first accepting transition in the run of Di over α.
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 6 Fig.6. The execution of Di over α -the states in circles belong to the current state m of D, the run ρ of Ai is boldfaced, the dashed boldfaced edge is the first accepting transition in ρ. The automaton Di performs an accepting transition before the first accepting transition is taken in the run ρ over α. The state m 1 " tq1u of Di after its first accepting transition does not contain the respective state in ρ. However, by the equivalence of residuals we know that α 1 P LpAi, q1q.
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 7 Fig. 7. An illustration of Ai and τi. The rectangles are states q of Ai, the dots inside them are respective values m such that pq, mq P Wi. The straight edges are mappings by the function τi under a, the bent edges are transitions of Ai over a. The accepting transitions of Ai are dashed. The number next to each dot is the value of rankipq, mq and the number at the bottom of the rectangle is the value of opt i pqq.
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 8 Fig. 8. The step from A, τi to A p1q i , τ p1q

  Fig. 10. The step from from A p2q i , τ p2q i to A p3q i to τ p3q i . Both transitions q a

  Fig. 11. The step from A p3q i , τ p3q i to A p4q i to τ p4q i . Both transitions q a
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 16 Fig. 16.The automaton A -an example of a Büchi GFG automaton that is not DBP.
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 17 Fig. 17. The automaton A0 together with τ0.
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 1819 Fig. 18. The automaton A1 together with τ1.
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 20 Fig. 20. The construction of the automaton B simulating a parity game G. The subautomaton A corresponds to G while the rest guarantees that LpBq " A ω .

  Now we define the transitions of the automaton D: let pp, aq P D ˆA, we define δ D pp, aq def " σ S D pp, p, aq if p a ÝÑ σ S D pp, p, aq is non-rejecting, and δ D pp, aq undefined (noted K) otherwise.

Note that whether a run ρ is accepting over α depends on the ω-word α.

Formally, only the suffix of pqnqn after the last joker played by @ is a run of A over the suffix of panqn.

If there is no such edge then we count all the edges of priority 1 in a given play.
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Appendix

A Game approach

Games on finite arenas will play a central role in our study of the parity GFG automata. We will be mainly interested in two types of games, as defined in the following subsections.