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ABSTRACT

The development of high-dimensional generative models has recently gained a
great surge of interest with the introduction of variational auto-encoders and gen-
erative adversarial neural networks. Different variants have been proposed where
the underlying latent space is structured, for example, based on attributes describ-
ing the data to generate. We focus on a particular problem where one aims at gen-
erating samples corresponding to a number of objects under various views. We
assume that the distribution of the data is driven by two independent latent fac-
tors: the content, which represents the intrinsic features of an object, and the view,
which stands for the settings of a particular observation of that object. There-
fore, we propose a generative model and a conditional variant built on such a
disentangled latent space. This approach allows us to generate realistic samples
corresponding to various objects in a high variety of views. Unlike many multi-
view approaches, our model doesn’t need any supervision on the views but only on
the content. Compared to other conditional generation approaches that are mostly
based on binary or categorical attributes, we make no such assumption about the
factors of variations. Our model can be used on problems with a huge, potentially
infinite, number of categories. We experiment it on four image datasets on which
we demonstrate the effectiveness of the model and its ability to generalize.

1 INTRODUCTION

Multi-view learning aims at developing models that are trained over datasets composed of multiple
views over different objects. The problem of handling multi-view inputs has mainly been studied
from the predictive point of view where one wants, for example, to learn a model able to pre-
dict/classify over multiple views of the same object (Su et al.|(2015); Q1 et al.| (2016)). For example,
using deep learning approaches, different strategies have been explored to aggregate multiple views
but a common general idea is based on the (early or late) fusion of the different views at a particular
level of a deep architecture. Few other studies have proposed to predict missing views from one or
multiple remaining views as in|Arsalan Soltani et al.| (2017).

Recent research has focused on identifying factors of variations from multiview datasets. The under-
lying idea is to consider that a particular data sample may be thought as the mix of a content infor-
mation (e.g. related to its class label like a given person in a face dataset) and of a side information,
the view, which accounts for factors of variability (e.g. exposure, viewpoint, with/wo glasses...). All
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samples of a given class share the same content information while they differ on the view informa-
tion. A number of approaches have been proposed to disentangle the content from the view, also
referred as the style in some papers (Mathieu et al.|(2016); Denton & Birodkar|(2017)). For instance,
different models have been built to extract from a single photo of any object both the characteristics
of the object but also the camera position. Once such a disentanglement is learned, one may build
various applications like predicting how an object looks like under different viewpoints (Mathieu
et al.|(2016);|Zhao et al.|(2017)). In the generative domain, models with a disentangled latent space
(Louizos et al.|(2015)); [Edwards & Storkey|(2015)) have been recently proposed with applications to
image editing, where one wants to modify an input sample by preserving its content while changing
its view (Lample et al.|(2017); |[Kim et al.|(2017b)) (see Section @

Yet most existing controlled generative approaches have two strong limitations: (i) they usually
consider discrete views that are characterized by a domain or a set of discrete (binary/categorical)
attributes (e.g. face with/wo glasses, the color of the hair, etc.) and could not easily scale to a large
number of attributes or to continuous views. (ii) most models are trained using view supervision
(e.g. the view attributes), which of course greatly helps learning such model, yet prevents their use
on many datasets where this information is not available. Recently, some attempts have been made
to learn such models without any supervision (Chen et al.| (2016); Higgins et al.| (2016)), but they
cannot disentangle high level concepts as only simple features can be reliably captured without any
guidance.

In this paper, we are interested in learning generative models that build and make use of a disen-
tangled latent space where the content and the view are encoded separately. We propose to take an
original approach by learning such models from multi-view datasets, where (i) samples are labeled
based on their content, and without any view information, and (ii) where the generated views are not
restricted to be one view in a subset of possible views. Following with our same example above, it
means first, learning from a face dataset including multiple photos of multiple persons taken in var-
ious conditions related to exposure, viewpoint etc. and second, being able to generate an infinity of
views of an imaginary person (or the same views of an infinity of imaginary persons) — see Figure[T]
This contrast with most current approaches that use information about the style, and cannot generate
multiple possible outputs.

More precisely, we propose two models to tackle this particularly difficult setting: a generative
model (GMV - Generative Multi-view Model) that generates objects under various views (multi-
view generation), and a conditional extension (C-GMYV) of this model that generates a large number
of views of any input object (conditional multi-view generation). These two models are based on
the adversarial training schema of Generative Adversarial Networks (GAN) proposed in|Goodfellow
et al.| (2014)). The simple but strong idea is to focus on distributions over pairs of examples (e.g.
images representing a same object in different views) rather than distribution on single examples as
we will explain later.

Our contributions are the following: (i) We propose a new generative model able to generate data
with various content and high view diversity using a supervision on the content information only.
(i) We extend the model to a conditional model that allows generating new views over any input
sample. (iii) We report experimental results on four different images datasets that show the ability
of our models to generate realistic samples and to capture (and generate with) the diversity of views.

The paper is organized as follows. We first remind useful background on GANs and their conditional
variant (Section [2). Then we successively detail our proposal for a generative multiview model
(Section and for its conditional extension (Section ). Finally, we report experimental results
on the various generative tasks allowed by our models in Section[5.2]

2 BACKGROUND

Our work is inspired by the Generative Adversarial Network (GAN) model proposed in|Goodfellow
et al.| (2014). We briefly review the principle of GAN and of one of its conditional versions called
Conditional GAN (CGAN) (Mirza & Osindero| (2014)) that are the foundations of this work.
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Figure 1: Samples generated by our model GMV on the 3DChairs and on the CelebA datasets. All
images in a row have been generated with the same content vector, and all images in a column have
been generated with the same view vector.

2.1 GENERATIVE ADVERSARIAL NETWORK

Let us denote X an input space composed of multidimensional samples x e.g. vector, matrix or
tensor. Given a latent space R™ and a prior distribution p,(z) over this latent space, any generator
function G : R® — X defines a distribution pg on X which is the distribution of samples G(z)
where z ~ p,. A GAN defines, in addition to G, a discriminator function D : X — [0; 1] which
aims at differentiating between real inputs sampled from the training set and fake inputs sampled
following pg, while the generator is learned to fool the discriminator D. Usually both G and D
are implemented with neural networks. The objective function is based on the following adversarial
criterion:

rrgn mngxwpx log D(x)] + Ez~p, [log(1 — D(G(2)))] (1

where px is the empirical data distribution on X'.

It has been shown in|Goodfellow et al.|(2014) that if G* and D* are optimal for the above criterion,
the Jensen-Shannon divergence between pg+ and the empirical distribution of the data px in the
dataset is minimized, making GAN able to estimate complex continuous data distributions.

2.2 CONDITIONAL GENERATIVE ADVERSARIAL NETWORK

A conditional version of GAN (CGAN) has been proposed in Mirza & Osindero| (2014]). Instead of
learning from an unsupervised dataset composed of datapoints x, a CGAN is learned to implement a
conditional distribution p(x|y) using a training set that consists of pairs of inputs/conditions (x,y)
where x is a target and y is the condition. The conditionality of a CGAN is obtained by defining a
generator function G that takes as inputs both a noise vector z and a condition y. A target x from
a given input y may be obtained by first sampling the latent vector z ~ p,, then by computing
G(y,z). The discriminator in a CGAN takes as inputs both the condition y and the (generated or
real) datapoint z. It is learned to discriminate between fake input/target pairs (where the target is
sampled using the generator) from real pairs drawn from the empirical distribution. The objective
function can be written as:

mGirn mgXE(x,y)pr,y [IOgD(X7 Y)] + ]EZNPz [log(l - D(G(y’ Z)))] (2)

where px y stands for the empirical distribution on (x,y). As with regular GAN, with optimal
G and D denoted respectively G* and D*), the distribution p¢, fits the true empirical conditional
distribution of the input/target pairs. Unfortunately, many studies have reported that on when dealing
with high-dimensional input spaces, CGAN tends to collapse the modes of the data distribution,
mostly ignoring the latent factor z and generating x only based on the condition y, exhibiting an
almost deterministic behavior. In most cases, CGAN is unable to produce targets with a satisfying
diversity (see Section[5.2).
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3 GENERATIVE MULTI-VIEW MODEL

3.1 OBIECTIVE AND NOTATIONS

We consider the multi-view setting where data samples represent a number of objects that have been
observed in various views. The distribution of the data x € X is assumed to be driven by two latent
factors: a content factor denoted ¢ which corresponds to the invariant proprieties of the object,
and a view factor denoted v which corresponds to the factor of variations. Typically, if X is the
space of people’s faces, c stands for the intrinsic features of a person’s face while v stands for the
transient features and the viewpoint of a particular photo of the face, including the photo exposure
and additional elements like a hat, glasses, etc.... We assume that these two factors ¢ and v are
independent. This is a key property of the factors we want to learn.

We focus on two different tasks: (i) Multi View Generation: we want to be able to sample over
X by controlling the two factors ¢ and v. Said otherwise, we want to be able to generate different
views of the same object, or the same view of different objects. Given two priors, p(c) and p(v), this
sampling will be possible if we are able to estimate p(x|c, v) from a training set. (ii) Conditionnal
Multi-View Generation: the second objective is to be able to sample different views of a given
object. For instance, it can be different views of a particular person based on one of his photos.
Given a prior p(v), this sampling will be achieved by learning the probability p(c|x), in addition to
p(x|c, v).

The key issue for tackling these two tasks lies in the ability to accurately learn generative models able
to generate from a disentangled latent space where the content factor and the view factor are encoded
(and thus sampled) separately. This would allow controlling the sampling on the two different axis,
the content and the view. The originality of our work is to learn such generative models without
using any view labeling information.

Let us denote by N the set of different objects and n; the number of views available for object
number 7 (not necessarily the same sets of views nor number of views for every object) such that
{af,ab, ..., x}, } is the set of views for object i € [1; N]. Moreover, we consider that x is a tensor
(e.g. an image) and c and v are (latent) vectors in RC and RV, C and V being the sizes of the
content and view latent spaces. Note that this setting is not restrictive and corresponds, for instance,
to categorization datasets where multiple photos of objects are available.

3.2 GENERATIVE MULTIVIEW MODEL

Let us consider two prior distributions over the content and view factors denoted as p. and py,, these
distributions typically being isotropic Gaussian distributions. These two distributions correspond
to the prior distribution over content and latent factors. Moreover, we consider a generator G that
implements a distribution over samples x, denoted as pg by computing G(c¢,v) with ¢ ~ p, and
v ~ Dpy. Our objective is to learn this generator so that its first input ¢ corresponds to the content of
the generated sample while its second input v, captures the underlying view of the sample. Doing
so would allow one to control the output sample of the generator by tuning its content or its view
(i.e. cand v).

Yet it is expected that learning G using a standard GAN approach would not allow to accurately
disentangle the latent space. Indeed, without constraint, the content and view factors are going to
be diluted in the input latent factor z of the GAN, with no possibility to know which dimensions of
z capture the content and which capture the view factor. We propose a novel way to achieve this
desired feature.

The key idea of our model is to focus on the distribution of pairs of inputs rather than on the
distribution over individual samples. We explain now which pairs we are talking about and why
considering pairs might be useful.

First, which pairs are we considering? When no view supervision is available the only valuable
pairs of samples that one may build from the dataset consist of two samples of a given object under
two different views. Indeed, choosing randomly two samples of a given object will most of the time
correspond to different views of this object, especially when considering continuous views as we
do. Fortunately, considering a generator G as discussed above (operating on a couple of a content
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Figure 2: Overview of the GMV model. The generator G produces an image given a content vector
c and view vector v. A pair of images is generated by sampling a common content factor ¢ ~ p.
but two different views factors vq ~ py, and va ~ py,.. The discriminator D is learned to distinguish
between such pairs of generated images and real pairs of samples corresponding to a same object
under different views. Real pairs are built by choosing at random two training samples of the same
object. Those samples should most of the time correspond to two different views. No information
on the views is used here.

vector ¢ and of a view vector v), one can generate corresponding artificial (fake) pairs of samples
by sampling a single content vector ¢ ~ p. to combine with two different view vectors vq ~ py
and vy ~ py, i.e. constructing G(c, v1) and G(c, v2) — see Figure2]

Second, why working on such pairs would be interesting? Following the GAN idea, we propose
to learn a discriminator to distinguish between such real and fake pairs. To be able to fool the
discriminator, the generator then has to achieve three goals. (i) As in regular GAN, each sample
generated by G needs to look realistic. (i1) Moreover, because real pairs are composed of two views
of the same object, the generator should generate pairs of the same object. Since the two sampled
view factors vy and v are different, the only way this can be achieved is by encoding the invariant
features into the content vector c. (iii) Finally, it is expected that the discriminator should easily
discriminate between a pair of samples corresponding to the same object under different views from
a pair of samples corresponding to a same object under the same view. Because the pair shares the
same content factor c, this should force the generator to use the view factors v; and v to produce
diversity in the generated pair.

The Generative Multiview Model’s (GMV) architecture is detailed in Figure 2} It is learned by
optimizing the following adversarial loss function:

rrgn mrz)ix IExl,Xaprll(xl)zl(xZ) [log D(x1,x2)] +Ev; varpy cnpe [log(1—D(G(c,v1),G(c,v2)))]
3)

where [(x) stands for the label of x (e.g. a particular person in a face dataset). Note that, since
the proposed model can be seen as a particular GAN architecture over pairs of inputs, the global
minimum of the learning criterion is obtained when the model is able to sample pairs of views over
a similar object.

Using the Model at inference: As discussed above the training of the discriminator on pairs
of samples introduce useful constraints on how the content and the view information are used to
generate samples. Once the model is learned, we are left with a generator G that generates single
samples by first sampling ¢ and v following p. and py, then by computing G(c, v). By freezing ¢
or v, one may then generate samples corresponding to multiple views of any particular content, or
corresponding to many contents under a particular view. One can also make interpolations between
two given views over a particular content, or between two contents using a particular view (See
examples in Figure[d).
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Figure 3: The conditional generative model C-GMYV. Content vectors are not randomly sampled
anymore, but are induced from real inputs through an encoder E. The discriminator is provided
two types of negative examples: examples of the first type are pairs of generated samples using a
same content factor but with two different views (left). The second type of negative examples is
composed of pairs of a real sample x and of a generated sample built from x using a CGAN like
approach (right). This artificial sample corresponds to the same content as in input sample x but
under a different view. Note that the left part of the architecture is crucial for the model to take into
account the view factor, and thus to generate diversity which cannot be obtained using the C-GAN
component only.

4 CONDITIONAL GENERATIVE MODEL (C-GMV)

The GMV model allows one to sample objects with different views, but it is not able to change the
view of a given object that would be provided as an input to the model. This, however, might be of
interest in particular applications like image editing. This section aims at extending our generative
model the ability to extract the content factor from any given input and to use this extracted content
in order to generate new views of the corresponding object. To achieve such a goal, we must add to
our generative model an encoder function denoted E : X — R that will map any input in X’ to the
content space R (see Figure .

To do so we take inspiration from the CGAN model (Section[2:2). We will encode an input sample
x in the content space using an encoder function, noted E (implemented again as a neural network).
This encoder serves to generate a content vector ¢ = E(x) that will be combined with a randomly
sampled view v ~ p, to generate an artificial example. The artificial sample is then combined with
the original input x to form a negative pair. This is illustrated in the extreme right part of Figure
[3] which exactly corresponds to a CGAN architecture. Yet CGAN has severe weaknesses and are
known to easily miss modes of the underlying distribution. The generator enters in a state where
it ignores the noisy component v (see results in Figure[/). To overcome this phenomenon, we use
the same idea as in GMV. We build negative pairs (G(c, v1), G(c, v2)) by randomly sampling two
views v1 and vg that we combine to a unique content c. This time, however, c is not sampled
according to a noise distribution but it is computed from a sample x using the encoder E, i.e. ¢ =
E(x).

By doing so, we preserve the ability of our approach to generating pairs with view diversity. Since
this diversity can only be captured by taking into account the two different view vectors provided to
the model (v; and v2), this will encourage G(c, v) to generate samples containing both the content
information c, and the view v. As it was done for the GMV model, positive pairs are sampled from
the training set and correspond to two views of a given object.
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number of samples | Number of objects Views per object
Dataset train | test train | test min | mean | max
CelebA (Liuetal|(2015)) 198791 3808 9999 178 1 19.9 35
3DChairs (Aubry et al|2014)) 80600 5766 1300 93 62 62 62
MVC cloth {Liu et at)2016) 159128 2132 37004 495 4 43 7
102flowers (Nilsback & Zisserman|(2008)) 8189 - 102 - 40 80.3 258

Table 1: Datasets Statistics: Train and Test data include samples corresponding to different objects.
GMYV and CGMV are trained on the train part. The test part contains the images that are used as
inputs of CGMV and CGAN.

gggag

DCGAN x2 DCGAN x4 DCGAN x8

Figure 4: Samples generated by the DCGANx2, DCGANx4 and DCGANx8 models. These samples
have to be compared to the ones presented in Figure[T]

In this setting, the resulting adversarial loss function can be written as:
min max Eay xampsli(ea) =1(x2) 108 D (%1, X2)]

G D
FEvi varpy xope [108(1 = D(G(E(x), v1), G(E(x), v2)))
+Evepy xpx [10g(1 — D(G(E(x), V), X))

At inference time, as we did with the GMV model, we are interested in getting the encoder E and the
generator G. These models may be used for generating new views of any object which is observed
as an input sample x by computing its content vector E(x) , then sampling v ~ p, and finally by
computing the output G(E(x), v).

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL PROTOCOL

Datasets:  In order to evaluate the quality of our two models, we have performed experiments
over four image datasets of various domains. The statistics of the dataset are given in Table[T} Note
that when supervision is available on the views (like CelebA for example where images are labeled
with attributes) we do not use it for learning our models. The only supervision that we use is if two
samples correspond or not to the same object.

Model Architecture: = We have used the same architectures for every dataset. The images were
rescaled to 3 x 64 x 64 tensors. The generator G and the discriminator D follow that of the DCGAN
implementation proposed in |[Radford et al.| (2015). For the conditional model, the encoder E is
similar to D except for the first layer that includes a batch normalization and the last layer that
doesn’t have a non-linearity. Following the article, an implementation of our algorithms is freely
availabld']

Learning has been made using classical GAN learning techniques: we used Adam optimizer
(Kingma & Ba (2014)) with batches of size 128. Following standard practice, learning rate in the

'https://github.com/mickaelChen/GMV
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Figure 5: Samples generated by the GMV model on the MVC Cloth and on the 102flowers datasets

by GMV model. All images in a row have been generated with the same content vector, and all
images in a column have been generated with the same view vector.

GMV experiments are set to 11072 of G and 2-10~* for D. For the C-GMV experiments, learning
rates are set to 5 - 107°. The adversarial objectives are optimized by alternating gradient descent
over the generator/encoder, and over the discriminator.

Baselines: We compare our proposal with recent state-of-the-art techniques. However, most ex-
isting methods are learned on datasets with view labeling. To fairly compare with alternative models
we have built baselines working in the same conditions as our models. In addition we compare our
models with the model from Mathieu et al.[(2016). We report results gained with two implemen-
tations, the first one based on the implementation provided by the authorsEl (denoted
(2016)), and the second one (denoted Mathieu et al| (2016) (DCGAN) ) that implements the same
model using architectures inspired from DCGAN |Radford et al|(2015)), which is more stable and
that we have carefully tuned to allow a fair comparison with our approach.

For pure multi-view generative setting, we compared our generative model (GMV) with standard
GANSs that are learned to approximate the joint generation of multiple samples: DCGANX2 is
learned to output pairs of views over the same object, DCGANx4 is trained on quadruplets, and
DCGANXS on eight different views. To be more detailed, for instance the generator of a DCGANx2
model takes as input a sampled noise vector and outputs 2 images, while its discriminator is learned
to distinguish these pairs of images as negative samples from positive samples which are built as for
the GMV model, i.e. pairs of samples in the dataset that corresponds to the same object. The main
difference with GMV is that the above GAN-based methods do not explicitly distinguish content
and view factors as it is done in GMV.

Likewise, for conditional generation, we compared our approach C-GMV with CGAN models that
we briefly introduced in Section 2.2] and with the two variants of the model from
(2016) that we just mentioned.

5.2 EXPERIMENTAL RESULTS
GENERATING MULTIPLE CONTENTS AND VIEWS

We first evaluate the ability of our model to generate a large variety of object and views. Figure [I]
shows examples of generated images by our model and Figure[d]shows images sampled by DCGAN-
based models (DCGANx2, DCGANx4, and DCGANx8) on 3DChairs and CelebA datasets (more
results are provided in the Appendix). For GMV generated images, a row shows a number of
samples that have been generated with the same sampled content factor ¢ ~ p. but with various
sampled view factors v ~ p., while the same view factor v is used for all samples in a column.
Figure [5] shows additional results, using the same presentation, for the GMV model only on two
other datasets.

One sees on these figures that our approach allows to accurately generate the same views of multiple
objects, or alternatively the multiple views of a single object. The generated images are of good

https://github.com/MichaelMathieu/factors-variation
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Figure 6: Samples generated by the GMV model by using interpolation on the content (left) or on
the view (right) for 3DChairs (up) and CelebA datasets (bottom). Within each of the four boxes,
each row is independent of the others. For the two left boxes: The left and right column correspond
to generated samples with two sampled content factors, while the middle images correspond to the
samples generated by using linear interpolated content factors between the two extreme content fac-
tors while the view factor remains fixed. The two right boxes are built the same way by exchanging
the roles of view and content.

quality, and the diversity of the generated views is high, showing the ability of our model to capture
the diversity of the training dataset in terms of possible views.

Figure ] shows similar results for GAN-based models. For images generated by these models a row
corresponds to the multiple images produced by the model for a given sampled noise vector. When
comparing GMV generated images to those generated by GAN-based models, one can see that the
quality of images produced by DCGANX2 is comparable to the ones we obtain with GMV showing
our approach has the same ability as a GAN to generate good outputs. But DCGANX2 is only able
to generate two views of each object since it does not distinguish content and view factors. For the
same reason, the images in the same column (for different objects) do not necessarily match the
same view. While DCGANx4 or DCGANXxS8 could have the ability to generate more views for each
object, the learning problem is more difficult due to the very high-dimensionality of the observation
space, and the visual qualities of the generation degrade.

Figure [6] shows generated samples obtained by interpolation between two different view factors
(left) or two content factors (right). It allows us to have a better idea of the underlying view/content
structure captured by GMV. We can see that our approach is able to smoothly move from one con-
tent/view to another content/view while keeping the other factor constant. This also illustrates that
content and view factors are well independently handled by the generator i.e. changing the view
does not modify the content and vice versa.

GENERATING MULTIPLE VIEWS OF A GIVEN OBJECT

The second set of experiments evaluates the ability of C-GMYV to capture a particular content from
an input sample, and to use this content to generate multiple views of the same object. Figure [7]
and [§]illustrate the diversity of views in samples generated by our model and compare our results
with those obtained with the CGAN model and to models from [Mathieu et al.| (2016)). For each row
the input sample is shown in the left column. New views are generated from that input and shown
on the right. Concerning the CGAN approach, the mode collapse phenomenon that we previously
described clearly occurs: the model does not take into account the view factor and always generate
similar samples without any view diversity. The C-GMV model demonstrates here that it is able to
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Figure 7: Samples generated by conditional models. The images on the left are generated by C-GMV
while the images on the right are generated by a single CGAN. The leftmost column corresponds
to the input example from which the content factor is extracted, while other columns are images
generated with randomly sampled views.
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Figure 8: Samples generated by conditional models: CGMV and CGAN (top), Mathieu et al.|(2016)
and DCGAN variant (bottom). The figure shows samples generated from four input images (leftmost
column) by computing their content factors and by randomly sampling one view factor per column.

10




Published as a conference paper at ICLR 2018

| Dataset [[ Number of objects [ Accontest [ Accon E(z) [ Accon G(E(x),v) withv ~ p,

3D chairs 93 96.7% 93.6% 61.3%
MVC cloth 495 452 % 31.5% 27.1%

Table 2: Classification results: Acc is the accuracy of the classifier on test images, encoded images,
and generated views.

extract the content information, and to generate a large variety of views of any object for which we
have one image.

One can see that the quality of the CGMYV images clearly outperforms the quality of CGAN images.
Moreover, mode collapse of CGAN can be observed, making this model unable to generate diversity.
Finally, comparison with the closest work from Mathieu et al.|(2016) shows that images generated
by the CGMYV model have a better quality and are more diverse.

To do so, we estimate the performance of simple classifiers operating on images, either true samples
or generated. We consider two subsets of objects S and S; with a null intersection. We then train
a C-GMV model on training samples from S;. We then use this model on test samples from S5,
yielding both generated images corresponding to objects in Sy but with new views, and content
vectors for these images. We then evaluate the performance of two classifiers. One is learned and
tested on content vectors. The other one is trained on real images and tested on generated images.
The latter is also evaluated on real images on the test set of .S, for reference.

Table 2] reports such classification results obtained over two of the studied datasets. On these two
datasets, one can see that the accuracy of the classifiers operating on true images and on content
latent factors are close, showing that our model has actually captured the category information in
E(x) as it is desired. Moreover, although the accuracy of the classifier learned on real images is
lower when computed on generated samples, which is, of course, expected, the drop of performances
seems reasonable and shows that C-GMYV is able to reconstruct the content information well.

5.3 EVALUATION OF THE QUALITY OF THE GENERATED SAMPLES

The next sets of experiments aimed at evaluating the quality of the generated samples. They have
been made on the CelebA dataset and evaluate (i) the ability of the models to preserve the identity of
a person in multiple generated views, (ii) to generate realistic samples, (iii) to preserve the diversity
in the generated views and (iv) to capture the view distributions of the original dataset.

IDENTITY PRESERVATION

We propose a set of experiments to measure the ability of our model to generate multiple views of
the same image i.e. to preserve the identity of the person in two generated images. In order to
evaluate if two images belong to the same person, we extracted features using VGG Face descriptor
(Parkhi et al.), which has been proposed for person reidentification task. The proximity between
the face descriptors computed from two images reflects the likeness of the persons in these images.
Tables [3] and [4] illustrate the AUC obtained by the different models. This AUC corresponds to the
probability that a positive pair (i.e. a pair with two images of the same person) is associated with a
lower distance than a negative pair. This AUC has been computed using 15 000 positive pairs and
15 000 negative ones. An AUC of 100% corresponds to a perfect model. We compute the AUC
using generated positive pairs and generated negative pairs as a global estimation of the quality of
our model. We also compute two additional AUC score by comparing generated positive pairs with
negative pairs sampled from the dataset, and comparing real positive pairs with generated negative
pairs, to better characterize the behavior of the models.

First, one can see that when pairs of images are sampled directly from the dataset (Table 3] first
column), our classifier obtains an AUC of 93.3% (and not 100 %). This is due to the imperfection
of the identity matching model that we use. This value can thus be seen as an upper bound of
the expected performance of the different models. When comparing generative models (Table [3|
columns 2 to 5), the GMV model obtains an AUC of 76.3 % which significantly outperforms the
other generative models (GANx2, GANx4, and GANx8) that are less able to generate images of the
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| positive pair negative pair [ CelebA [ GMV | GANx2 | GANx4 | GANx8 |
generated  vs generated 933% | 763% | 720% | 742 % | 57.5%
generated  vs real 933% [ 929% | 982% | 99.1% | 99.9%
real Vs generated 933% | 787 % | 51.5% | 47.8% 13.3%

Table 3: Identity preservation AUC of generative models. The CelebA column is the AUC obtained
when positive pairs correspond to two images of the same person sampled from the test set, and
negative pairs to images of two different persons.

positive pair negative pair || CGMV | Mathieu Mathieu (2016) | CGAN
(2016) (DCGAN)

input and generated vs  generated pair || 67.2% | 50.6% 77.3 % 69.8 %

generated pair vs generated pair || 75.1% | 61.2 % 84.2 % 100 %

Table 4: Identity preservation AUC of conditional models. The first line corresponds to the distance
computed between a real image, and an image generated using this real image as an input (positive
pairs) or another image (negative pairs). The second line compares two generated images based on
the same input image (positive pairs) or based on two different images (negative pairs).

same person. It means that 76.3 % of the pairs generated with the same content vector c (but random
view vectors) have a lower distance than pairs generated with two randomly sampled content vectors
c1 and co. More specifically, while all models are able to consistently generate positive pairs (Table
[3line 2), only the GMV can reliably generate negative pairs (Table [3|line 3). This hints at a lack of
diversity in the image generated by the other models.

When comparing conditional models, the pair of images is generated based on a given input image.
The AUC thus measures the ability of the models to generate new views while preserving the identity
of the input person. We compare the CGMV model with the two implementations of the model by
Mathieu et al.[(2016) that we mentioned previously.

One can see on Table [ (first line) that the Mathieu et al.| (2016) (DCGAN) model outperforms our
proposed CGMYV model, obtaining an AUC of 77.3 % while our approach obtains 67.2 %. It thus
means that Mathieu et al.| (2016) is better to generate a view of an input image while preserving the
identity of the person. When comparing two generated images, the AUC of Mathieu et al.| (2016) is
85.4% while CGMYV obtains an AUC of 76.1%. At first glance, it gives the impression that Mathieu
et al. (2016) is better than our approach. Yet, looking at the CGAN score, one can see that this last
model obtains a 100% AUC (second line). In fact, this score is due to the fact that the CGAN model
is unable to generate diversity in the generated views, and thus generates two images that are exactly
the same and that thus are easy to classify as belonging to the same person. This means that we also
have to evaluate the different models in terms of output quality (evaluate if the generated images
are of good quality), and in terms of diversity (i.e. the generated views are different, and accurately
capture the dataset distribution). This is the focus of the next sections.

QUALITY AND DIVERSITY OF THE GENERATED IMAGES

To deeply evaluate the quality of generative models we studied the distribution of generated samples
by our models and by the baselines on the Celeba dataset. The idea is that a good generative model
should generate samples with a distribution on attributes that is close to the one in the training set
(while it is not actually included in the objective criterion).

A first measure of the quality of the generated samples is based on the blurry attribute of the CelebA
dataset. This attribute identifies blurry images in the dataset i.e. images that are less realistic.
We have used this attribute to train a blurry-detection classifier that has been used to evaluate the
quantity of blurry generated images (Table [3), the idea being that a good method would generate
the same proportion of blurry samples than the proportion of blurry images in the dataset. The
results are illustrated in Table 5] While the Blurry attribute has probability 0.05 according to the
true empirical distribution (this probability being estimated as 0.08 using attribute classifiers), it
goes up to more than 0.99 with CGAN and Mathieu et al.| (2016) and it is above 0.5 for all GANx
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CGAN | GANx2 | GANx4 | GANx8 | Mathieu | Mathieu GMYV | CGMV | celebA | Real
(2016) (2016) Dist. Dist.
(DC-
GAN)
| 99.8 % [ 52.5 % [ 82.4 % [ 98.6 % [ 99.9 % [ 74% [ 28.9% [ 37.2 % [ 8.61% [ 5.1% |

Table 5: Evaluation of the blurry character of generated images. The ”CelebA’ column is the value
obtained by the Blurry-detection classifier on the test set, while the ”Real Dist.” column corresponds
to the proportion of images labeled as ”’blurry” in the original test dataset.

models and about 0.75 for [Mathieu et al.| (2016) (DCGAN), while it remains limited at most at
0.4 for GMV and CGMYV. GMV and CGMYV models clearly generate less blurry images than the
GAN/CGAN/Mathieu et al.| (2016) models giving the intuition that the generated images are more
realistic using our technique. Even if the evaluation method is imperfect, it tends to assess that the
CGMYV and GMV methods are better able to generate interesting outputs.

We also studied the distribution of generated samples by our models and by our baselines on 40
binary attributes of the CelebA dataset. To understand the behavior of a generative model we gen-
erated a set of samples with it, from which we computed the distribution of generated samples with
respect to each of the 40 attributes (see Table[8), and we finally computed a distance between this
distribution and the true dataset distribution. Note that, as the ground truth on attributes is not avail-
able for generated samples, we used attribute labels provided by classifiers, one for every attribute,
that have been learned on the Celeba training set to infer the values of the 40 attributes of a sample.
The distribution of generated samples is then estimated by using these classifiers and data generated
from 3800 samples corresponding either to the 3800 test samples with randomly sampled view vec-
tor (for conditional models such as CGMV and Mathieu) or to 3800 randomly generated samples
for pure generative models (such as GMV). The estimated true distribution is estimated by using the
40 classifiers on 3800 test samples, it is noted the Celeba distribution hereafter. For information we
also provide the true empirical distribution (abusively noted as Real distribution hereafter) computed
from the available attribute labels of the test samples. All estimated distributions are detailed in the
supplementary material.

We observed that many rare attributes were completely ignored (i.e. no occurrence in generated
samples) by models such as [Mathieu et al.| (2016), CGAN, GANx8 and that, on the contrary, com-
mon attributes were sometimes over generated by such models (e.g. Young). Globally one sees
strong differences between models with GMV and CGMV seeming to better capture the dataset
distribution, which next statistics reveal better.

Next, we computed a score for each generative model that is based on these distributions. For
each model and for each attribute we computed the Bhattacharyya distance (with value in [0, 0c])
between the distribution yielded by a model and the estimated true distribution. We report the sum
over attributes of these distances in Table @ As may be seen, the distance computed between the
estimated true distribution and the ones yielded by models GMV and CGMYV are very low, below
0.1, actually lower than the distance between the true empirical distribution and the estimated true
distribution. Moreover the distance computed for Mathieu et al.| (2016) and [Mathieu et al.| (2016))
(DCGAN) models, CGAN and all GANx models are clearly higher than those of our models.

To conclude on this set of experiments, the GMV and CGMV models seem to be the best trade-off
between identity preservation and diversity in the generated views. While Mathieu et al. and CGAN
tend to have a better identity preservation ability, it is at the price of generating samples with a much
lower diversity than our approach which is the most able to capture the dataset distribution.

The above results show clear differences between GMV and CGMYV models and state of the art
methods such asMathieu et al.[(2016) and CGAN. Yet it does not fully inform about the diversity of
generated samples which is a key feature for such generative models, either purely generative or con-
ditional. We conducted the following experiment which aims at evaluating the diversity through the
number of unique combinations of the 40 attributes that occur in a set of generated samples. Again
to fairly compare results we use our attribute classifiers learned on the training set to label sample
images according to the 40 attributes. Looking at the true distribution of the test samples there are
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CGAN | GANx2 | GANx4 | Mathieu | Mathieu | GMV | CGMYV | celebA | Real
(2016) (2016) Dist. Dist.
(DC-
GAN)
D2T | 1.8 0.66 0.74 1.97 0.89 0.31 0.42 0 0.25
D2E | 1.3 0.25 0.43 1.37 0.39 0.06 0.09 0.25 0

Table 6: Bhattacharyya distance between attributes distribution of generated samples by few gen-
erative models and the true empirical distribution (Real Distribution) in line D2T or the Estimated
distribution (Celeba) in line D2E (see text) computed by the use of the 40 classifiers over the dataset.
The higher the distance is, the lesser the model is able to capture the distribution of the different at-
tributes.

Mathieu! | [Mathieu CGMV | GMV | CGAN | CelebA [ Real
et al. | let al.| (2016) Dist. Dist.
©016) | (DCGAN)

3% 19% 43% 46% 9% 47% 57 %

Table 7: Ratio of unique combinations of attributes in generated images (see text). GMV and CGMV
are the only models able to generate a diversity close to the diversity observed in the dataset.

about 1795 unique combinations amongst the 3800 test samples, i.e. a ratio of 47 % of unique com-
binations (which is actually 57 % on the 200k samples of the training set). For conditional models
we generated samples by computing the content vector of the 3800 test samples, then by randomly
sampling 3800 view vectors and finally generating 3800 samples. We then computed the attribute
labels of these samples and count the number of unique combinations of the 40 attributes amongst
the 3800 images. For pure generative models we randomly sampled 3800 pairs of content and view
vectors and computed the same statistic (note that results for pure generative and conditional models
are not fully comparable since a number of test samples correspond to a same individual). Table
compares the obtained results. These results clearly show the behavior of CGAN and Mathieu et al.
(2016) models which fully ignore a number of rare attributes (see also Table [§|in Appendix) hence
yield very poor diversity. While Mathieu et al.[(2016) (DCGAN) is better than the original Mathieu
et al.| (2016)) model, it does not reach the diversity obtained with either GMV and CGMYV models
which are close to the estimated true empirical diversity.

6 RELATED WORK

Learning generative models using three sets of latent variables to describe a pair of objects has
been proposed a long time ago and is known as inter-battery factor analysis (IBFA) Tucker (1958));
Klami et al.| (2013) . Such methods are very related to Canonical Correlation Analysis (CCA) and
have been used to deal with multiview data to infer one view from another one and/or to improve
classification systems. To do so nonlinear variants have been proposed such as [Tang et al.[(2017);
Li et al.| (2015). Our approach is based on the same assumptions as these methods i.e. each view is
generated based on one common latent factor describing the “content” of the object and with its own
”view” latent factor responsible for the difference between two observations. The main difference
comes from the way the model is learned: while IBFA methods usually rely on regularization terms
and on particular factorization functions to capture these factors (e.g. Damianou et al.| (2012)), our
model is much simpler (allowing scaling to large datasets) and makes use of a discriminator function
to capture common and specific information based on a pair of observations.

Another family of related methods casts the problem as a domain transfer task. Different views
are considered as different domains, and the problem becomes to project any image from a source
domain to a target domain. Most of those approaches combine a prediction or auto-encoding loss
(¢1) with an adversarial loss that is tasked to enforce a good visual quality, a technique used in
Isola et al.|(2016). The discriminators also serve to ensure that the produced output is in the correct
domain, meaning that a discriminator must be learned for each domain. However, those methods
are powerful as they can discover an alignment between two unpaired datasets, as shown in |Kim
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et al.| (2017a)); Zhu et al| (2017); [Liu et al.| (2017) using a cycle consistent auto-encoding loss. A
third family of models, perhaps closer to our work, considers the problem of editing images based
on manipulating the attributes. In this setting, most of the models consider a learning dataset where
some factors of variation are labeled for each sample. Those labels can be used to disentangle
between content and view. For example, the model proposed in|Lample et al.|(2017) trains an auto-
encoder simultaneously with a discriminator used to remove the labeled information at a latent level.
The model presented in [Zhao et al.| (2017) uses a variational auto-encoder framework instead. The
attribute is given as a word in input and the disentanglement is ensured by a conditional discriminator
at output level. The model proposed in Kim et al.|(2017b) revisits the cycle approach by learning to
generate outputs images with a given set of attribute values, and then to go back to the initial image.

In those last approaches, domain transfer and attribute manipulation, while GAN is used to ensure
visual quality, most approaches are not generative in the sense that one input in the source domain
always produces the same output in the target domain. Also, in these settings, one usually makes the
assumption that the number of domains (or varying attributes) is very limited, as additional networks
must be trained for each new domain. Our approach is original as we don’t use information on the
views, but instead, we just use the fact that two training samples represent the same content. This
allows our approach to handle continuous view and content latent spaces, and thus to generate as
many contents as needed and any number of views over these contents.

Other works have aimed at disentangling content and view/style without any supervision, i.e. based
on unlabeled samples. In the Info-GAN model (Chen et al.|(2016))), a code is passed along a random
noise to generate an image. An encoder is then used to retrieve the code so that the mutual infor-
mation between the generated image and the code is maximized. The beta-VAE model proposed in
Higgins et al.|(2016) is based on the VAE model, where the dimensions of the latent representation
are forced to be as independent as possible using a strong regularization. The independent dimen-
sions can then correspond to independent factors of the outputs. For these two models, the ability to
disentangle content and view is not obvious since there is no supervision that can guide the learning.
More specifically, these models disentangle low-level visual attributes but struggle to grasp higher
level concepts.

The work closest to ours is the model proposed in Mathieu et al.| (2016) in which they use an
encoder to extract both view and content vectors from a datapoint and a decoder that combines both
vectors to produce an output. They use both a reconstruction loss and a discriminator that serves
multiple purpose. However, this work is mostly centered on disentangling the factors, and their
purely generative abilities are limited.

7 CONCLUSION

We have proposed a generative model operating on a disentangled latent space which may be learned
from multiview data without any view supervision, allowing its application to many multiview
dataset. Our model allows generating realistic data with a rich view diversity. We also proposed
a conditional version of this model which allows generating new views of an input image which
may again be learned without view supervision. Our experimental results show the quality of the
produced outputs, and the ability of the model to capture content and view factors. They also il-
lustrate the ability of GMV and CGMV to capture the diversity over the CelebA dataset, and to
generate more realistic samples than baseline models. In a near future, we plan to investigate the use
of such an approach for data augmentation. Indeed, when only a few training data are available, one
elegant solution for learning a model could be to generate new views of the existing data in order
to increase the size of the training set. This solution will be explored in both semi-supervised and
one-shot/few-shot learning settings.

ACKNOWLEDGMENTS

This work was supported by the French project LIVES ANR-15-CE23-0026-03.

REFERENCES

Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D Kulkarni, and Joshua B Tenenbaum. Syn-
thesizing 3d shapes via modeling multi-view depth maps and silhouettes with deep generative

15



Published as a conference paper at ICLR 2018

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1511-1519, 2017.

Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic. Seeing 3d chairs:
exemplar part-based 2d-3d alignment using a large dataset of cad models. In CVPR, 2014.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2172-2180, 2016.

Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, and Neil D. Lawrence. Manifold rele-
vance determination. In Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled representations from
video. arXiv preprint arXiv:1705.10915, 2017.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary. arXiv preprint
arXiv:1511.05897, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. arXiv preprint arXiv:1703.05192,
2017a.

Taeksoo Kim, Byoungjip Kim, Moonsu Cha, and Jiwon Kim. Unsupervised visual attribute transfer
with reconfigurable generative adversarial networks. arXiv preprint arXiv:1707.09798, 2017b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Arto Klami, Seppo Virtanen, and Samuel Kaski. Bayesian canonical correlation analysis. Jour-
nal of Machine Learning Research, 14(1):965-1003, 2013. URL http://dl.acm.org/
citation.cfm?id=2502612.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and
Marc’ Aurelio Ranzato. Fader networks: Manipulating images by sliding attributes. arXiv preprint
arXiv:1706.00409, 2017.

Annan Li, Shiguang Shan, Xilin Chen, Bingpeng Ma, Shuicheng Yan, and Wen Gao. Cross-pose
face recognition by canonical correlation analysis. CoRR, abs/1507.08076, 2015. URL http:
//arxiv.org/abs/1507.08076.

Kuan-Hsien Liu, Ting-Yen Chen, and Chu-Song Chen. Mvc: A dataset for view-invariant clothing
retrieval and attribute prediction. In Proceedings of the 2016 ACM on International Conference
on Multimedia Retrieval, pp. 313-316. ACM, 2016.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
arXiv preprint arXiv:1703.00848, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), 2015.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.

16


http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2502612
http://dl.acm.org/citation.cfm?id=2502612
http://arxiv.org/abs/1507.08076
http://arxiv.org/abs/1507.08076

Published as a conference paper at ICLR 2018

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and Yann
LeCun. Disentangling factors of variation in deep representation using adversarial training. In
Advances in Neural Information Processing Systems, pp. 5040-5048, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes.
In Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recognition.

Charles R Qi, Hao Su, Matthias NieBiner, Angela Dai, Mengyuan Yan, and Leonidas J Guibas.
Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5648-5656, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE international
conference on computer vision, pp. 945-953, 2015.

Qingming Tang, Weiran Wang, and Karen Livescu. Acoustic feature learning via deep variational
canonical correlation analysis. CoRR, abs/1708.04673, 2017. URL http://arxiv.org/
abs/1708.04673.

Ledyard R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23(2):111-136, Jun
1958. ISSN 1860-0980. doi: 10.1007/BF02289009. URL https://doi.org/10.1007/
BF02289009.

Bo Zhao, Xiao Wu, Zhi-Qi Cheng, Hao Liu, and Jiashi Feng. Multi-view image generation from a
single-view. arXiv preprint arXiv:1704.04886, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

17


http://arxiv.org/abs/1708.04673
http://arxiv.org/abs/1708.04673
https://doi.org/10.1007/BF02289009
https://doi.org/10.1007/BF02289009

Published as a conference paper at ICLR 2018

APPENDIX

r

4

> Bo

N s

4

Figure 9: Additional results on GMV: All images in a row have been generated with the same content
vector, and all images in a column have been generated with the same view vector
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Figure 11: Additional interpolation on GMV: Each block is generated with the same content vector.
The left columns and right columns are generated views. Images in between are interpolated
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Figure 12: Additional results on C-GMYV on the MVC cloth dataset
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Attribute CGAN GANx2 GANx4 GANx8 Mathieu Mathieu GMV  CGMV CelebA Real
et al. et al Dist.
(DC-
GAN)
50 Clock | 0.0820 0.0041 0.0098 0.2302  0.0000 0.0003 0.0077 0.0048 0.0103 0.1117
Shadow
Arched Eye- | 0.0040  0.1196 0.0608 0.0000  0.0003 0.1540 0.2152  0.2159  0.2182 0.2666
brows
Attractive 0.0008  0.2726 0.1484 0.0000  0.0016 0.2254 0.4721 0.4423  0.5961 0.5112
Bags Under | 0.0050  0.0051 0.0188 0.0139  0.0000 0.0011 0.0191  0.0111 0.0374  0.2054
Eyes
Bald 0.0000  0.0065 0.0029 0.0000  0.0005 0.0069 0.0074  0.0021 0.0053  0.0227
Bangs 0.1542  0.0767 0.0728 0.0755  0.0000 0.0177 0.1128  0.1534  0.1903 0.1505
Big Lips 0.0005  0.0104 0.0069 0.0000  0.0000 0.0011 0.0206  0.0238  0.0347  0.2406
Big Nose 0.0209  0.0119 0.0316 0.0405  0.0000 0.0013 0.0254 0.0138  0.0437 0.2363
Black Hair 0.4733  0.1131 0.1704 0.1615  0.0246 0.1302 0.2297  0.2296  0.3937 0.2372
Blond Hair 0.0119  0.1201 0.0761 0.0000  0.0071 0.0698 0.1456  0.1074  0.1008  0.1487
Blurry 0.9984  0.5249 0.8238 0.9857  0.9995 0.7405 0.2895 0.3722  0.0861 0.0510
Brown Hair 0.0013  0.0014 0.0104 0.0000  0.0000 0.0000 0.0272  0.0225 0.0589 0.2061
Bushy Eye- | 0.0135  0.0156 0.0296 0.0000  0.0000 0.0042 0.0338  0.0228  0.0647  0.1420
brows
Chubby 0.0003  0.0011 0.0024 0.0000  0.0000 0.0013 0.0040  0.0011 0.0118  0.0576
Double 0.0000  0.0004 0.0010 0.0000  0.0000 0.0000 0.0020  0.0011 0.0029  0.0471
Chin
Eyeglasses 0.0029  0.0393 0.0502 0.0004  0.0000 0.0034 0.0381 0.0257 0.0384 0.0655
Goatee 0.0045  0.0070 0.0244 0.0038  0.0000 0.0003 0.0225  0.0061 0.0282  0.0633
Gray Hair 0.0000  0.0023 0.0070 0.0005  0.0000 0.0016 0.0089  0.0011 0.0021  0.0426
Heavy 0.0013  0.1304 0.0976 0.0000  0.0003 0.1317 0.3336  0.3085 0.3897  0.3869
Makeup
High 0.0243  0.2491 0.2169 0.0000  0.1098 0.3209 0.3494 03892  0.3374 0.4568
Cheek-
bones
Male 0.4862  0.3711 0.4102 0.8821  0.4032 0.2135 0.3054 0.2354  0.3071 0.4185
Mouth 0.0614  0.3391 0.2964 0.2042  0.0841 0.2206 0.3926 0.3918 0.3621  0.4846
Slightly
Open
Mustache 0.0013  0.0056 0.0126 0.0000  0.0000 0.0000 0.0182 0.0053 0.0163 0.0417
Narrow 0.0159  0.0214 0.0276 0.0000  0.0212 0.0595 0.0786 0.0944 0.0816 0.1126
Eyes
No Beard 0.6198  0.9513 0.8631 0.1651  0.9952 0.9976 0.9360 09669  0.9408 0.8341
Oval Face 0.0000  0.0079 0.0008 0.0000  0.0000 0.0042 0.0416  0.0296  0.1074 0.2842
Pale Skin 0.0040  0.0111 0.0115 0.0000  0.0000 0.0061 0.0195 0.0352 0.0303 0.0426
Pointy Nose | 0.0000  0.0166 0.0520 0.0000  0.0013 0.0280 0.1700  0.1085  0.1363 0.2788
Receding 0.0000  0.0472 0.0290 0.0000  0.1270 0.0839 0.0521  0.0217  0.0292  0.0802
Hairline
Rosy 0.0000  0.0000 0.0001 0.0000  0.0000 0.0000 0.0034  0.0011 0.0050  0.0661
Cheeks
Sideburns 0.0442  0.0024 0.0178 0.1187  0.0000 0.0000 0.0123  0.0032  0.0155 0.0569
Smiling 0.1418  0.4043 0.3956 0.0829  0.3151 0.4058 0.4606 0.4979 0.3953 0.4830
Straight 0.0003  0.0864 0.0138 0.0000  0.0132 0.0804 0.0984 0.0672  0.2882 0.2073
Hair
Wavy Hair 0.2595  0.0044 0.1663 0.0984  0.0000 0.0000 0.1111  0.1082  0.0939  0.3200
Wearing 0.0000  0.0013 0.0001 0.0000  0.0000 0.0101 0.0209  0.0071 0.0321  0.1893
Earrings
Wearing Hat | 0.0021 0.0261 0.0312 0.0000  0.0000 0.0029 0.0324  0.0283  0.0426 0.0484
Wearing 0.0127  0.2923 0.2287 0.0000  0.0132 0.3156 0.4738 0.4971 0.5568 0.4715
Lipstick
Wearing 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0011  0.0008  0.0003 0.1231
Necklace
Wearing 0.0000  0.0080 0.0024 0.0000  0.0000 0.0053 0.0095 0.0026  0.0153 0.0733
Necktie
Young 0.9183  0.9068 0.8170 0.4186  0.9307 0.9214 0.8941 09328 0.9292 0.7723

Table 8: Distribution of the different attributes over generated samples. For example, 3.8 % of the
samples generated by the GMV model exhibit th&é’Eyeglasses” attribute.
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