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Abstract—Drone-cell technology is emerging as a solution to
support and backup the cellular network architecture. cell-drones
are flexible and provide a more dynamic solution for resource
allocation in both scales: spatial and geographic. They allow
to increase the bandwidth availability anytime and everywhere
according the continuous rate demands. Their fast deployment
provide network operators with a reliable solution to face sudden
network overload or peak data demands during mass events,
without interrupting services and guaranteeing better QoS for
users. With these advantages, drone-cell network management
is still a complex task. We propose in this paper, a multi-
agent reinforcement learning approach for dynamic drones-cells
management. Our approach is based on an enhanced joint action
selection. Results show that our model speed up network learning
and provide better network performance.

I. INTRODUCTION

The continuous growth of data demand and the increase in
wireless traffic rates in new mobile networks needs intelligent
and dynamic technologies for telecommunication manage-
ment. Recent studies predict that the new generation cellular
standards (like 5G) will rely much more heavily on a dense
and less power consuming networks to serve dynamically
requested data rates to the user [1]. Small cells mounted on
unmanned aerial vehicles (UAVs) or drones (we call them
drone-cells hereafter) are proposed, as an alternative to fixed
femto-cells, to support existing macro-cell infrastructure. The
deployment of these mobile small cells consists on move these
small cells toward a target positions (usually within the range
of the macro-cell to support) based on the decision made
by a mobile network operator. Since drone operation costs
money, the drone-cells movement toward adequate positions
must be correlated with the amount of data requests, i.e.
drone-cells should support overloaded cells (Figure 1). Hence,
an intelligent entity should be added to the network that
instantly monitors the network state and finds the optimal
decision to control drone-cells. Several studies have discussed
the theoretical ability of cellular networks to use drone-cells to
support their existent macro-cells [2], [3] but the readiness of
those networks to integrate such dynamic entities has not been
discussed. For example, drone-cells require coordinated inser-
tion to the network infrastructure while serving subscribers
and smooth de-association at the end of their activity (low
battery, low data demand ...). This requires capabilities for
efficient network configuration and management flexibilities.
It needs self-organizing capabilities for the networks. Massive

amounts of information about users behavior and network load
must be continuously collected and analyzed by intelligent
algorithms. This should trigger the usage of UAVs on field.
On the other hand, the promising development of artificial
intelligence techniques and machine learning tools may speed
up the development of cellular networks and leed to develop
such dynamic and self-adaptive tools that help the network op-
erators to better manage their infrastructure and integrate new
techniques. Machine learning techniques have the advantage of
exploiting the plethora of data generated by cellular networks
to improve these dynamic deployment techniques [4].

In this work, we propose a dynamic reinforcement learning
solution for drone-cells networks that exploits real traces of de-
mand profiles and adapts in real time the deployment of drone-
cells according these demands. We choose an efficient machine
learning paradigm instead of classical linear programming
models. Our solution is based on a multi-agent reinforcement
learning (MARL) approach which is applied in two steps: an
off-line exploration step and an on-line one. The off-line step
consists in a learning phase where the drone-cells of the multi-
agent topology learn, in a cooperative reinforcement learning
context, how to react and move according to different scenarios
of bandwidth demands. Real Traces of network time-series
load are used for this phase. In the on-line phase, the pre-
learning agents demonstrate how they are adapted instantly on
a real scenario of load peak signaled by the STAD framework.
The cooperative reinforcement learning is based on a joint
action selection that aims to choose the optimal set of agents
action. We propose a joint action selection algorithm and we
compare it against the classical grid selection algorithm.

The paper is organized as follows. In section 2 we present
related work, while in section 3 we present a highlight of
multi-agent reinforcement learning approach. Section 4 devel-
ops our MARL-based model. Section 5 presents simulations
uses-cases and results and we conclude in section 6.

II. RELATED WORK

Smart deployment of drone-cells has been a topic of recent
research; examples of such works include [5], where the
authors use binary integer linear programming (BILP) to
selectively place drone-cells in networks and integrate them
to an existent cellular network infrastructure while temporal
increase of user demands occurs. They design the air-to-
ground channel for drone-cells as the combination of two



Figure 1: Graphical illustration of a Drone-assisted network

components: a non-line-of-sight (NLoS) and one for a line-
of-sight (LoS) communication. Authors in [3] investigate the
adequate number and the 3D placement topology for drone-
cells formation. The study aims to optimize the geographic
coordinates of drone-cells and their total number while serving
users. In [6], authors propose a framework for drone-cells
formation. The framework aims to optimize the coverage (by
increasing or decreasing the drone altitude) in order to remove
dead zones and reach network capacity goals.

In contrary to previous studies that aim to optimize the
placement of drone-cells before deployment, [7] investigates
path optimization issues during drone-cells formation.

Our proposed contribution develops new methods not only
in optimal network deployment for drone-cells, but also in how
to dynamically manage this deployment in order to enhance
the existent infrastructure using a multi-agent reinforcement
learning approach.

III. REINFORCEMENT LEARNING

In this section, we introduce the background on “multi-
agent” reinforcement learning. We also discuss using multi-
agent approach in our contribution and we present its bene-
fits/advantages against a simple single-agent.

A. Multi-agent reinforcement learning approach

A typical agent has its set of states, actions and rewards.
As the wireless topology is composed of multiple drone-cells,
and since modeling a single reinforcement learning model for
each single drone-cell leads to an exponential growth in the
(state, action, reward) space, we prose to employ a multi-
agent reinforcement learning model. It will reduce the space
and have a better global federated goal.

The multi-agent reinforcement learning approach [8] , [4],
is a generalization of the single model and is modeled by a
stochastic game. The multi-agent RL employs a joint action,
which is the combination of actions to be executed by each
agent at state k.

The stochastic game is represented by the tuple <
X, A1, ..., An, f , r1, ..., rn > with n is the total number of agents.
Ai with 1 ≤ i ≤ n is the set of possible actions of agent i.
So we can define the joint action as A : A1 × A2 × ... × An.
r i : X × A × X → R is the reward function of agent i that

is assumed to be bounded. f : X × A × X → [0, 1] is the
transition probability function. In the multi-agent approach,
the transitions between states are the result of a joint action
of all the agents which is expressed as: jak = [a1,k, ..., an,k]
where ai,k ∈ An. The reward ri,k+1 (r i(xk) = ri,k+1) resulting
from executing the action ai,k is computed according to the
joint policy jh and the joint expected return is expressed as
follows:

R jh
i (x) = E

{ ∞∑
i=1
(γkrk+1 |x0 = x, jh)

}
(1)

The Q − learning function depends also on the joint action
and the joint policy and it is expressed as follows:

(2)
Q jh

k+1(xk, jak) = Qk(xk, jak) + αk[rk+1 +

γmax
ja′

Qk(xk+1, ja′)Qk(xk, jak)]

In our model, we are adopting the fully coordinated multi-
agent RL, and in this case all reward functions are the same
for all agents, r1 = ... = rn = r

B. Motivations of using MARL approach

Along with advantages due to the distributed feature of the
multi-agent systems [9], as the acceleration become possible
by parallelizing the computation, MARL approaches emerge
with the benefit of sharing experiences between agents. Ex-
perience sharing helps agents to learn faster and reach better
performances. Hence, the agents can communicate between
each other to share experience and learning so that the better
learned agents may speed up the learning phase of other
agents. Moreover, multi-agent systems facilitate the insertion
of new agents into the system which leads to came up
with scalability issues affecting classic method such as linear
programming.

IV. DRONE-CELLS NETWORK AGENT MODEL

In this section we present our proposed model for drone-
cells optimization and management and we explain the map-
ping between our model parameters and the theoretical model
presented in the previous section.

A. Model Framework Description

Our drone-assisted network model is based on a centralized
multi-agent reinforcement learning approach. The framework
consists of a multi-agent system implementation based on
MESA package. It is composed of entities that describe the
system parameters and manage the interaction between the
different agents. The framework is described in figure 2.

Since the approach is centralized, we need a coordinator
agent that collects information from different agents and
intervenes in the actions selection process. In our framework,
this coordinator agent is represented by the network operator
agent (which can be also a centralized entity in the network
architecture). The framework is composed also of a set other
agents. We distinguish two types of agents: Active agents
executing the model actions and passive agent that participate



in the system interaction but without executing any action. The
active agents are the drone-cells that are represented by the
drone entity in our framework. The action to be executed by a
drone is either to move to a cell location in order to serve it or
to go back to the facility location (in case of battery running
out or no cell left to serve). This entity defines the battery
level BTd,t of a drone d at time-stamp t, the bandwidth offer
level BWd,t , the status of drone d (whether is serving, idle or
charging) and other parameters.

The passive agents are the cell (represented by Cells entity)
and the facility (represented by Facility entity) agents. The
cell agent entity defines the bandwidth demand rate at each
time-stamp, the geographic location of the cell and the status
of the cell (whether is served or not). The facility agent
constitutes the initial location of all drones and where drones
can be charged. If a drone is not serving a cell must move to
the facility location. We suppose that the facility location is
situated in the middle of the service area in order to optimize
the flight time toward cells.

Figure 2: Graphical illustration of the MARL Drone-assisted
network Framework and the relationship between the Agents

B. Model States

The model states provide information about the network
status at each time-stamp t such as drones parameters, Facility
actual capacity or cells demand rates. In our MARL model,
each drone agent d has it own state St which describes the
actual parameters at time t. These parameters are the drone
battery level BTd,t , the bandwidth offer capacity level BWd,t .

Moreover, each cell agent C state is represented by the
aggregated throughput demand TdC,t at time t that exceeds
the maximum capacity of the macro base station that covers it,
and that should be assisted by drones. The facility agent state
is also described by the current number drone that are placed
in it and either they are charged or not. All these information
are gathered by the network operator agent (The coordinator
agent) in order to choose the joint action to take for all drones
in order to maximize the total network’ QoS.

C. Model Actions

The action that can a drone agent execute, at each state, is
either to move and serve a cell and serve it or to move to
the facility (to charge its battery or in case of no cell left to
serve). Unlike single agent models, the action of each drone
agent is taken by the coordinator (centralized approach) to
maximize the global network QoS. Hence, it is not always

straightforward that the chosen agent action maximize its own
reward. Otherwise, the coordinator agent choose a joint action
(set of action for all drones) that maximize the global network
performance.

D. Reward function

The reward function for each drone agent is measured at
each state and after choosing the action to execute. The reward
function measures the the local network service ratio (NSR)
and it is the fraction of the served throughput by the drone d
at time t and the throughput request of the cell to be served
by d at the same time. Its expression is as follows:

(3)rd,t =
BandwidthServedd,t

BandwidthRequestC,t

E. Coordinated multi-agent RL

Choosing the optimal joint action is a critical step for the
multi-agent RL model. The criteria of choosing a better joint
action helps to reduce the computational cost of searching the
joint actions, which is exponentially proportional to the agent
number and to provide a better performance. We present in
this section the hill climbing search algorithm (HCS) which
is proposed in [10]. Then, we propose an enhancement of the
Hill climbing search algorithm for an opltimal joint action
selection (eHCS) algorithm that speeds up the action search.
The model is then compared to the HCS algorithm.

1) Hill climbing search algorithm: The main objective
of hill climbing algorithm is to examine the neighboring
agents one by one and to select the first neighboring agent
action which optimizes the current reward as next node. The
algorithm is resumed by the following steps:

1- Initialization step: Select an initial joint action JA by
picking the action of each agent that maximize the reward.

2- Choosing randomly an agent and its action in the previous
JA is changed by a neighboring action.

3- The new formed action is evaluated. If it provides better
network service ratio (NSR) so it is stored as optimal JA.

4- Repeat steps 2 and 3 until testing all combinations.
2) Enhanced Joint optimal action selection algorithm :

Our multi-agent reinforcement learning model is based on
a semi-centralized cooperative solution. The centralized part
consists of adding a coordinator agent (Which is the network
operator agent here) which is able to collect all drone agents
and other model agents information in order to select the “joint
optimal action” to be executed by drones. The centralized
approach reduces then the complexity of the system, speed
up the selection process and alleviate the system information
sharing among all agent. Unlike the distributed approach
which consists on forwarding all information between all
agents, that may be a time consuming. Plenty of centralized
joint action selection algorithms exists in the literature such
as hill climbing search [10], Stackelberg Q-Learning [11] etc.
In our model we propose a modified version of hill climbing
search algorithm which fit our drone actions selection problem.

The main objective of this algorithm is described as follows:
At first, each drone agent, At a state St at time-stamp t, choose



its own optimal action to execute without taking into con-
sideration other drones configuration. Then, the coordinator
agent collected all drone information (Battery level, remaining
bandwidth) as well as their chosen actions. It collects also
cells and facility agents information. After that, the coordinator
sorts decreasingly the set of cell demands (respectively the
set of drone offers). Then, it tries, at each iteration, to find
a match between the drone actions (the position to move
toward) and the demand positions (cell positions) and assign
the adequate drone to the cell. Then, if the cell is totally
served, the coordinator looks for drone agents whose action is
identical to the served cell position and re-select a new action
for the drone according a new Q-table. The new Q-table is
formed with the remained possible actions (except the selected
priorly).

The coordinator repeat the same process over all drones.
This selection method avoid assigning many drones to the
cells with higher demand and try to share drones all over the
network.

The semi-centralized joint action selection algorithm is
presents in algorithm 1.

Algorithm 1 Centralized Joint action selection

1: Input: (Action,State) space, Q-tables, ServedCell˙list
2: Output: Joint Action J At

3: Collect system in f ormation
4: for d in Drones do:
5: if Actiond,t ∈ ServedCell list then
6: E xtractNewQ − table(d)
7: ActionSelection(NewQ table(d))
8: Verify NewAction(d,t)
9: Find MatchAction(Cell)

10: if Matched Action then
11: Actualize ServedCell list
12: Add NewAction(d) to JAction List

return JAction List

Note that the joint action selection algorithms are used only
during the exploration phase (training phase). Once the Q-
tables are calculated and their entries are the optimal values,
they are used for the online exploitation phase.

V. SIMULATION AND RESULTS

A. Use-case Scenario

We validate our framework by using real datasets of cell
demand time-series extracted from the Milan CDRs dataset.
We reproduce in this contribution a mass event where macro-
cells are assisted by drone-cells managed by our framework in
order to cover the unusual peaks of cellular user demands. As
shown and analyzed aforementioned, we detected some unua-
sual behavior of demand arround the SanSiro stadium during
football match compared to workdays. Figure 3 represents the
cells segmentation of the Sansiro stadium and areas around.
Figure 4 depicts the daily demands time-series of these cells
and we can notice that the SanSiro stadium cells have a high
peak of user demand around 8pm (football match time) while

Figure 3: Graphical illustration of cell segmentation of SanSiro area

nearby cells have two peaks: one before the match and another
after it. This behavior may correspond to the arrival time of
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Figure 4: Example of demand time-series of SanSiro areas cells

supporters and their departure time after the match. We can
notice that these cells are covering a parking area and some
metro stations which make our assumptions believable. We
apply our framework to these demand time-series in order to
manage the abnormal increase of users demand during this
period of the day and we show results in the next part.

B. Results
The framework is applied on cell demands between 6pm

and 11pm, a period of time when the abnormal demand peak
are occurring. During this period, drone-cells will attempt to
assist the existent macro-cell and serve the additional demand.
Table 1 resumes the simulation parameters.

Table I: Simulation Parameters and Values

Parameters Values
Drone-cells max battery 100
Drone-cells max rate 50 Mb/s
Cell max rate demand at peak hours 120 Mb/s
Battery life-time factor 0.5
Number of cells 6
Learning rate 0.75
Learning period (exploration) 300
exploitation period 50

As performance metric, we choose to use the network
service ratio (NSR) which is defined as follows:

(4)NSR =
TotalBandwidthserved
Totalbandwidthdemand



where TotalBandwidthserved is the sum of the served band-
width by all drones and Totalbandwidthdemand is the sum
of all cell demands.

Our MARL model based on the enhanced hill climbing
algorithm is compared also to a MARL model with the
classic hill algorithm. Figures 5-10 shows the simulations and
comparison results between both models. Figure 5 depicts the
scenario simulation at 6pm (Fig 5a) and 7 pm (Fig 5b), the
time of supporters arrival before starting the football match.
We use in this scenario only 8 drones to cover the area for
both models. We can notice that after finishing the learning
period (after 300 steps) the network service ratio converges
to 1. During the learning period, the drones are exploring
several options of possible actions and communicating their
decisions to the coordinator. At the end of this period, the
coordinator selects the optimal joint action for all drones.
All cells are fully served. We also notice that 8 drones are
sufficient for our eHCS˙based model, to serve the network.
Whereas, the concurrent model based on HCS performs worse
than our model. We notice that in this scenario, and after
the exploration phase, the model fails to converge to 1 and
the network service ratio converges to 0.9 and 0.6 at 6pm
and 7pm respectively. Hence, the HCS based model performs
10% lower than our model at 6pm and %40 lower at 7pm,
when demand is much higher. So, we can say that our model
performs much better than the other model during peak hours.
Moreover, the exploration period was not sufficient for the
HCS based model to achieve the optimality and we conclude
that our model is faster with 8 drones for the period between
6pm and 7pm. Figures 6-10 show simulation and comparison
results using 14 drones. We notice that for all time periods,
the network service ratio converges to 1 after the learning
period for our model (the learning is very fast in this situation).
Whereas, the HCS based model success to converge to 1
only for three time periods; at 6pm, 7pm and 11pm while its
network service ratio is lower than 1 for the rest of periods.
Furthermore, for scenarios at 6pm, 7pm and 11pm, even that
the HCS based model converges to 1 after the exploration
period, it is slower that our model.

Globally, we notice that the HCS model fails to reach an
optimal steady state contrary to our model. The exploration
period was not sufficient to learn and to find the optimal joint
actions within these periods. The other model does not manage
battery in a performant way. Most of drone batteries are lost
in an unefficient way (Battery life-time is 2 slots and they
need one time slot to recharge). That is why the other model
reaches optimality at 11pm again (after recharge). Hence, in
order to satisfy the global demand during the exploration
period with the same period size, the HCS based model
needs more drones to serve all demands. MARL learns these
constraints and succeeds to efficiently serve the network. With
this configuration, our enhanced model only needs 11 drones at
total to cover the whole area during the football match event.
These 11 drones alternate to serve the requested amount of
data according to their battery life level.

Figure 11 depicts the deployment of drone-cells using our
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Figure 5: Network service ratio evolution in function of
execution steps using 8 drones
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Figure 6: Network QoS evolution in function of execution steps with
14 drones and at 6pm
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Figure 7: Network QoS evolution in function of execution steps with
14 drones and at 8pm

enhanced model at 9pm , time-slot corresponding to a heavy
demand behavior. The colors represents the demand intensity
at each cell. We can notice that 9 drones of 14 are deployed
at cell locations that guarantee serving the total required
bandwidth. Note that at this time 4 drones are out of charge
while 1 drone is not serving at all.
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Figure 8: QoS, 14 drones, 9pm
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Figure 9: Network QoS evolution in function of execution steps with
14 drones and at 10pm
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with 14 drones and at 11pm

Figure 11: Illustration of drone-cells deployment at 9pm

VI. CONCLUSION

Drones-cells management is still complex and needs ad-
vanced and intelligent algorithms. Even with their fast deploy-
ment, drone-cells networks suffer from coordination issues. On
the other hand, battery technology is still limited and since it

is split between navigation and antenna beaming/transmission,
energy presents a major constraints for drones-cells deploy-
ment. We present in this paper a solution based on drone-
cells to support macro cells of the classic cellular network
during mass events when data rate demand explodes. We
solve this complex navigation/coverage management by a
multi-agent reinforcement learning approach for this dynamic
network deployment. We also propose an enhanced joint action
selection algorithm to alleviate the coordination complexity
between drone-cells agents and also speed up the search phase
of the optimal joint action. Our model takes into consideration
the battery life constraints while aiming to maximize the
network service ratio. Our solution is validated with real
network traces and we provide a bench marking analysis. Our
model based on the enhanced joint action selection that we
propose is compared with a model based on hill climbing
search algorithm. Results show that our model outperforms
the second model not only when the rate demand is lower but
especially at peak time service.

Our model offers hence a better solution for network op-
erators to dynamically manage their network and to provide
efficiently a better QoS for users during mass events. A
future perspective will introduce the deep aspect that can add
classification and memory of early situations to the multi agent
system.
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