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Abstract 

This paper deals with mechanical fault diagnosis in induction machines from stator current 

measurements. Mechanical faults lead to amplitude or phase modulations on stator currents 

that induce different time-frequency signatures. However, the time-frequency 

representations apply on complex signals for a univocal phase and modulus definition. 

When modulation frequencies are lower than the carrier frequency, this complex signal is 

the analytic signal obtained through the Hilbert transform of the real measured signal. 

However, bearing faults, for instance, may produce high frequency modulations. An 

alternative is to obtain the complex signal through the Concordia transform that takes 

advantage of the additional information available using two of the three phases of an 

electrical machine. 

However, Concordia Transform requires the previous validation of a particular stator 

current model in three phase machine in case of mechanical faults. This paper uses the 

argument of the Fourier Transform for the validation of the model. Using the Hilbert and 

Concordia transforms of the proposed model, the Wigner-Ville distribution of narrow-band 

and wide-band frequency modulated signal is expressed. Finally, this paper applies the two 

transforms on simulated and experimental signals and provides a diagnosis of amplitude or 

phase modulation in various conditions.  
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1. Introduction

Monitoring techniques are intensively investigated to increase the reliability and safety of 

industrial systems using induction motors. Mechanical faults such as eccentricity and load 

http://www.maintenance.org.uk/
http://www.wmeng.co.uk/
http://www.wmeng.co.uk/
http://www.wmeng.co.uk/


torque oscillations have been shown to produce respectively amplitude and phase 

modulation of the stator current [1]. The Wigner distribution allows to detect and classify 

the faults through their time-frequency signatures in steady state operation as well as at 

variable speed, and thus time-varying carrier frequency [2]. Through time-frequency 

analysis, the study of amplitude and phase modulations requires a rigorous definition of 

instantaneous amplitude and phase. For that purpose, a complex signal must be associated 

to the real measured one. The complex signal is classically obtained through the Hilbert 

transform of the real measured signal [3]. In case of wide-band modulations, the spectral or 

time-frequency signature can thus be misleading. As a contrary, using the Concordia 

transform, which is often used in electrical engineering for control purposes [4], a space 

vector can be built, that allows to diagnose amplitude and phase modulations [5].  

This paper proposes a comparative study of the Wigner distribution derived from the 

Concordia space vector and the Hilbert analytic signal in steady-state and variable 

frequency applications. Section 2 presents and validates a stator current model in case of 

two elementary mechanical faults: airgap length variations and load torque oscillations. 

Section 3 recalls the Hilbert and Concordia transforms. Section 4 compares Wigner 

distributions obtained with the Hilbert analytic signal and Concordia space vector narrow 

and wide-band modulations using simulated and experimental stator currents. A diagnosis 

of amplitude or phase modulations is then provided. 

 

2.  Stator current model under mechanical faults 

 
In three-phase machines, three current measurements with a phase separation of one-third 

cycle (120° or 2/3 rad) are available and can be written in the simple form: 

 

                                                 ( )kk ttati  −= )(cos)()( , k=1,2,3 (1) 

 

The healthy machine is characterized by: 

        Ita =)(  

         02)(  += tft s  

 

where I denotes the stator current amplitude, fs the machine supply frequency and 0 is the 

initial phase. Mechanical faults lead to particular expressions of a(t) and (t). Airgap length 

variations and load torque oscillations are the main effects of mechanical faults [1]. They 

can be considered separately but a general default model involves their combination. 

 

2.1 Amplitude modulations of stator currents 

 

In case of dynamic eccentricities (the center of the rotor turns around the geometrical stator 

center) or geometrical deformations of the rotor, the point of minimum airgap length is not 

stationary [6] The time varying airgap permeance causes an amplitude modulation (AM) of 

the stator current with carrier frequency fs such as [1]: 

 

       ( ) amamtfIta  ++= 2cos1)(                               (2) 

      02)(  += tft s  



where  denotes the AM index, fam the AM frequency and am the AM initial phase. One 

can notice that the AM caused by a geometrical deformation of the rotor may be such as 

fam>fs. In this situation, the dynamic eccentricity is said to cause wide-band AM. 

 

2.2 Phase modulations of stator currents 

 

When submitted to periodic oscillations, the mechanical torque can be approached by the 

first term of its Fourier series decomposition: 

 

                                                     ( )tft pmcload 2cos)( 0 +=  (3) 

 

where c is the amplitude of the load torque oscillation and fpm the oscillation frequency. 

The stator current can be approached by a phase modulated (PM) signal [1], [7] such as: 

 

                                              Ita =)(                                                                            (4) 

( ) 02cos2)(  +++= pmpms tftft  

 

where fpm is the PM frequency, pm is the PM phase,  is the PM index function of c, fpm 

and fs [8]. In case of bearing or gear box faults for instance, the load torque oscillation 

frequency is a high multiple of the rotating frequency leading to wide-band PM of the 

measured stator current. 

 

2.3 Signal model validation 

 

One can consider the general expression of the phase and/or amplitude modulated stator 

current (1), resulting from both airgap length variations and load torque oscillations. Using 

the Jacobi-Anger expansion [9] of ik(t) leads to: 
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where Jn() denotes the n-th order Bessel function of the first kind. For a very low index 

modulation (≈0), the infinite sum can be approximated by the sum for n{-1,0,+1}. 

Moreover, the associated Fourier Transform (FT) of stator current Ik(f) along the frequency 

f is considered: 
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where * denotes the convolution product and with: 
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Finally, Ik(f) is considered for f=fs+fpm i.e. at the upper PM sideband component: 
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The difference between consecutive argument values obtained for k=1,2,3 allows to check 

that the phase shift is 2/3. Then, the three stator currents have been measured on the 

induction machine in case of load torque oscillations. The supply frequency of the motor 

equals fs=50Hz and the load torque oscillation frequency equals fpm=21.2Hz. Thus, the 

stator currents are phase modulated and the major harmonics set at fs-fpm=28.8Hz, fs=50Hz 

and fs+fpm=71.2Hz. The phase shift between each stator current component at fs+fpm 

frequency is computed and compared to the theoretical value 2/3. The results are given in 

table 1. 

 

Table 1. Phase shifts between the three upper PM sideband components at fs+fpm 

frequency 

 

 Phase shift in rad 
Absolute value of the relative 

error to 2/3 in % 

 2mod12 −  2.088 0.27 

 2mod23 −  2.10 0.30 

 2mod31 −  2.106 0.57 

 

These results provide a validation for the stator current model (1) in case of load torque 

oscillations. A similar analysis is achieved for stator currents in case of dynamic 

eccentricity and proves that the model in valid. 

 

3.  The need for a complex signal representation 

 
The study of AM and/or PM requires the definition of the Instantaneous Amplitude (IA) 

and the Instantaneous Phase (IP). For a univocal definition, a complex signal has to be 

associated to the real observed signal [10]. Indeed, for a given real signal x(t) there exists an 

infinite number of pairs [A(t),(t)] such as x(t)=A(t)cos[(t)]. The definition of IA and IP 

requires the construction of a canonical pair i.e. in one-to-one correspondence with x(t). 

 

3.1 Analytic signal via the Hilbert transform 

 

The classical way to define the IA and IP is to associate a complex signal to the measured 

real signal through the Hilbert Transform (HT). Let X(f) denote the Fourier transform (FT) 

of x(t). The analytic signal FT XHT(f) is given by [3]: 

 



                           )()()()( fXfjHfXfX HT +=  with: )()( fsignjfH −=                       (9) 

 

where: 

        1+  for f>0 

                                                          0)( =fsign  for f=0 

        1−  for f<0 

 

H(f) is the Hilbert filter transfer function. One can notice that the HT amounts to the 

cancellation of negative frequency components. When a modulation transfers significative 

components into the negative frequencies, the HT may yield misleading interpretations 

[11]. 

Indeed, the HT is submitted to the Bedrosian theorem conditions in case of modulated 

signals; the time-varying amplitude should have the characteristics of a low-pass signal 

whereas cos[(t)] should be a high-pass signal [12]. Moreover, the bandwidth of cos[(t)] 

has to be relatively small. Under the Bedrosian theorem conditions, the HT provides 

AHT(t)=a(t) as the IA and (t)=(t) as the IP. Thus, the IA (respectively IP) carries 

information about the AM (respectively the PM). Under Bedrosian theorem conditions, the 

HT allows to compute a component in quadrature with the real observed signal. One can 

notice that the PM is preferentially studied through the Instantaneous Frequency (IF) 

defined by: 
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3.2 Space vector via the Concordia Transform 

 

In case of three-phase electrical machines, the three stator current measurements i1(t), i2(t) 

and i3(t) can be represented by a set of three coplanar vectors with a phase shift of -2/3 

rad. The CT is a linear transform which defines an orthogonal basis i.e. two components in 

quadrature (i,i) from the three previous vectors [4]. Assuming t , i1+i2+i3=0, this linear 

transform can be expressed with the normalized Concordia matrix: 
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The complex space vector is defined by iCT(t)=i(t)+j i(t). The CT is widely implemented 

in electrical drives for control purposes [4] and monitoring applications. For the three stator 

currents expressed according to (1), it can be easily shown from (11) that iCT(t)=a(t)ej(t).  

 

3.3 Comparison of Hilbert analytic signal and Concordia space vector 

 

The frequency contents of the IA and the IF obtained through HT and CT have been 

theoretically demonstrated in [5] for the stator in case of narrow-band and wide-band AM 



and PM. The CT and HT provide the same complex signal when the Bedrosian theorem 

conditions are valid. However, when the Bedrosian theorem conditions are not valid, in 

case of wide-band modulations, extra harmonics appear in the IA and IF derived through 

HT. These extra harmonic may lead to a misleading diagnosis since AM appears as a PM 

and reciprocally. For this reason CT should be preferred to diagnose Am and PM on stator 

currents of a three-phase machine. 

 

4.  Application to time-frequency diagnosis through Wigner distribution 
 

4.1 Definition 

 

The Wigner Distribution (WD) is a time-frequency energy distribution. The WD Wz(t,f) of 

a complex signal z(t) is defined as: 
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where z  denotes the conjugate of z. The WD is the FT of the kernel Kz(t,) with respect to 

the delay variable : 
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The WD is of strong interest for detection and diagnosis purposes in electrical drives either 

in steady state or at variable speed. Indeed, contrarily to IA and IF spectra, the WD can be 

used in a non stationary context i.e. at variable speed or variable carrier frequency. 

Moreover, AM and PM (i.e. airgap length variations and load torque oscillations) can be 

distinguished from the phase analysis of the WD interference structure [1, 2] 

 

4.2 Wigner distribution of steady state narrow-band PM and AM currents 

 

First a pure narrow-band PM with 0=0 and pm=-/2 can be considered as a 

simplification. In case of narrow-band PM, the HT and CT complex signals are equal and 

such as: 
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Assuming <<1, according to Bessel function properties, the associated WD can be derived 

using the Jacobi-Anger expansion:  
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Thus the narrow-band PM current WD is characterized by a fundamental component at fs 

and periodic sidebands at fs±fpm/2 with frequency fpm. One can notice that in case of PM, the 

sidebands are in phase opposition. 

Now a pure narrow-band AM signal with 0=am=0 can be considered as a simplification. 

The HT and CT are such as: 
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Considering <<1, straightforward derivations lead to the associate WD: 
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The narrow-band AM WD is characterized by a fundamental component and periodic 

sidebands at frequencies at fs±fam/2 with frequency fam corresponding to the WD 

interference structure. One can notice that these components are in phase. The phase shift 

between interference terms can be used to distinguish narrow-band AM and PM. 

 

4.3 Wigner distribution of steady state wide-band PM and AM currents 

 

According to section 3.3, in case of wide-band PM or AM, the diagnosis of modulation 

type cannot be performed. For instance, in the case of wide-band PM, the HT leads to an 

asymmetric interference structure with components at frequencies fs+fpm/2 and fpm/2 and 

respective oscillating frequencies fpm and 2fs-fpm: 
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A similar expression can be established for wide-band AM using the HT. The proposed 

diagnostic strategy, based on the phase shift between sideband interferences cannot be 

applied. On the contrary, CT leads to WD that express as (15) and (17) in case of pure 

wide-band PM and AM respectively. Then, the diagnosis of modulation type is allowed 

using the CT. 

 

4.4 Experimental stator currents with load torque oscillations 

 

The experimental test bench is composed of a 5.5kW, 2 pole pair induction machine 

supplied by a variable frequency Pulse Width Modulation inverter. The induction machine 

is coupled to a DC machine used as a mechanical load. The DC machine is connected to a 

resistor through a DC/DC converter which controls the DC motor armature current. The 

reference of the DC current is composed of an oscillating component at adjustable 

frequency plus an offset in order to induce load torque oscillations around a mean torque 

value.  Experimental stator currents have been measured on the machine in two steady state 

conditions, where the supply frequency equals fs=13.3Hz and then fs=50Hz with a load 

torque oscillation of frequency fpm≈20Hz. Thus, the stator currents are wide-band and 



narrow-band PM signals. In Fig. 1(a) the WD is obtained through the HT analytic signal. In 

Fig. 1(b), the WD is computed using the CT space vector. In the narrow-band PM case, the 

two WD are similar with sideband components in phase opposition at frequencies fs±fpm/2. 

However, in the wide-band PM case, the WD derived from the HT analytic signals leads to 

a sideband component at frequencies fs+fpm/2 and fpm/2, oscillating at frequency fpm and 2fs-

fpm respectively. The WD derived from the CT space vector leads to sideband components 

at frequencies fs±fpm/2 in phase opposition. Consequently, as previously demonstrated, the 

CT allows to diagnose the narrow-band and wide-band PM in steady state conditions. 
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         (a) WD from the HT analytic signal                     (b) WD from CT space vector 

Figure 1. WD computed using HT and CT for wide and narrow-band PM 

experimental currents in steady state 

 

4.5 Wigner distribution of stator currents at variable speed 

 

Finally, stator currents with variable supply frequency fs(t) and variable PM frequency fpm(t) 

are considered. Theoretical derivations have been performed in the particular case of a 

linear variation [2]. This case is studied through simulations only. The PM frequency 

equals fpm=1.4fs, consequently the Bedrosian theorem conditions are violated. As for steady 

state conditions, the WD computed from the CT space vector leads to sideband components 

at fs(t)±fpm(t)/2,  in phase opposition whatever fs. However, the WD obtained through the 

HT analytic signal leads to sideband components at frequencies fs(t)+fpm(t)/2  and fpm(t)/2. 

One can notice that the two WD are similar in variable speed applications when the 

Bedrosian theorem conditions are satisfied. Fig. 2(a) displays the WD derived from the CT 

complex vector of the simulated PM stator current in this case. Fig. 2(b) provides a zoom 

on fundamental and interference components of the WD to ensure that sidebands are in 

phase opposition. 
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           (a) WD from CT space vector                       (b) Zoom on sideband components 

Figure 2. WD from CT for simulated wide-band PM at variable speed 

 

5.  Conclusions 
 

Amplitude and phase modulation analysis through spectral or time frequency methods 

involves a complex signal for an univocal phase and amplitude definition. This paper has 

compared the Wigner distribution of complex signals obtained with the Hilbert and 

Concordia transforms in case of narrow and wide-band amplitude and phase modulations. 

This comparison is first conducted theoretically and then through simulated and 

experimental signals. The application to the time-frequency diagnosis based on Wigner 

distribution is developed. The Concordia transform provides an appropriate signal 

representation in the narrow and wide-band modulation cases. On the contrary, the Hilbert 

transform is limited by the Bedrosian theorem conditions to the analysis of narrow-band 

modulations. Phase and amplitude modulations, resulting from load torque oscillations and 

airgap length variations, can be detected and distinguished using the Wigner distribution of 

the complex signal. The Wigner distribution via Concordia transform provides a clear 

modulation diagnosis through the estimation of the phase shift between sideband 

components whatever the modulation frequency. As a consequence, when at least two 

stator current components are available, the Concordia transform should be preferred to 

build the complex signal required for the modulation analysis. 
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