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In this survey, we propose to explore and discuss the common rules behind knowledge transfer works for vision recognition tasks. To

achieve this, we firstly discuss the different kinds of reusable knowledge existing in a vision recognition task, and then we categorize

different knowledge transfer approaches depending on where the knowledge comes from and where the knowledge goes. Compared

to previous surveys on knowledge transfer that are from the problem-oriented perspective or from the technique-oriented perspective,

our viewpoint is closer to the nature of knowledge transfer and reveals common rules behind different transfer learning settings

and applications. Besides different knowledge transfer categories, we also show some research works that study the transferability

between different vision recognition tasks. We further give a discussion about the introduced research works and show some potential

research directions in this field.
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1 INTRODUCTION

Vision recognition is a core problem in computer vision. Its goal generally is to determine whether or not the input visual

data contains some specific concept, object, or activity and to give corresponding predictive output about the recognized

content. For example, in image classification tasks, the goal is to determine which pre-defined image class/concept

(e.g. ‘airport’, ‘castle’, etc.) the input image belongs to; in object detection tasks, the goal is to determine whether the

input image (or 3D data) contains some specific object (e.g. ‘bicycle’, ‘dog’, ‘mug’ etc.) and to output the corresponding

bounding box (which defines the minimum rectangular/cubic area that contains the object) if an object exists; in

semantic segmentation tasks, the goal is to predict semantic label for each pixel or super pixel in an input image.

The common schema of this kind of tasks is that they all take some visual data as input and output some predictive

information based on the input. Therefore the classical way to solve this kind of tasks is supervised learning-based.
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One first learns a predictive model (e.g. a Convolutional Neural Network (CNN)) with sufficient training data, and then

applies the learned model for prediction on new data whose probabilistic distribution is assumed the same as that of

the training data. This learning principle is known as the Empirical Risk Minimization in statistical learning theory

[123]. In this way, each task is solved individually by learning a corresponding model from scratch. The disadvantage

of this approach is obvious: the relatedness between different tasks is unexplored, thereby making the learning process

inefficient. In many real-life applications, some tasks have abundant training data, but most others often have very

few training data. When learning each task in an independent manner, it could be hard to solve a task that has limited

training data since the available training data may not be enough for learning a reliable model.

It is thus of capital importance to be able to capitalize on previously learned knowledge. Indeed, taking into account

the learned knowledge from previous tasks when learning a new task can be beneficial both in gaining extra training

information and in saving training time (by avoiding training from scratch). For example, when training an image

classification model for some rare categories, one may face the problem of having few training data, in this case,

fine-tuning a CNN model pre-learned on some related image data as feature extractor could significantly improve the

classification performance on target categories [139]. Knowledge transfer could also be applied for different kind of

tasks. For example, since the ground-truth annotations for Object Detection tasks are usually harder to get than those

for Image Classification tasks (the former includes not only class labels but also bounding box information), one could

therefore borrow knowledge from a learned image classification task for training a new object detection model [115].

This knowledge transfer (also known as ‘Transfer Learning (TL)’) has been studied in previous works and has been

attracting more and more attention from several research communities, e.g., computer vision, machine learning, within

the current big data era.

Within the research community of knowledge transfer, one usually defines a target task, to which the knowledge

will be transferred, and one or several source tasks, from which the knowledge will be captured or learned. Depending

on assumptions on target and source tasks, knowledge transfer setting can be categorized into different scenarios, e.g.

Domain Adaptation (DA), self-taught learning, and few-shot learning.

Because of its importance, there exist an increasingly large amount of research work focused on TL and there have

already been several surveys discussing state of the art research work on knowledge transfer at different time period as

illustrated in Fig.1 and Fig.2. A first comprehensive survey on Transfer Learning(TL) was made in 2010 by Pan and Yang

in [89], which discusses TL methods for a broad range of applications, including vision recognition and other types

of applications. They have categorized different TL works according to their assumptions (settings) and the nature

of content to transfer. Specifically, as shown in the top left diagram of Fig.1, they distinguish three settings of TL: (1)

“Inductive TL”, where the source task could be different from the target task, some labeled target training samples should

be provided to induce the target predictive model with the help of the source data or the source model. (2) “Transductive

TL”, where the source and target share the same task, while having different data distributions. Therefore the source

data should be adapted to the target data distribution in order to help learning an effective model for doing prediction

on the target data; and (3) “Unsupervised TL”, where the target task and source task are all unsupervised tasks, e.g.

clustering, dimensionality reduction, density estimation, etc.. Each setting can further depict different TL scenarios

with more detailed assumptions. Finally, as shown in the top left part of Figure 2, they come up with a synthesis of

four different kinds of TL approaches: (1) “Instance Transfer”, where re-weighted source instances are used directly for

learning the target task; (2) “Feature representation transfer”, which tries to find a “good” feature representation which

reduces the discrepancy between the source and the target distributions and increase the performance of classification

and regression models on target data; (3) “Parameter transfer”, which transfers parameters or priors from the source
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models to the target models; and (4) “Relational knowledge transfer”, which builds mappings of relational knowledge

from the source data to the target data. This survey is later enhanced as a book chapter[86], it builds the basic definition

and taxonomy of TL, this methodology is adopted in various TL related works, including some survey papers, e.g.

[132][40][24][145].

Another survey was made in 2014 by Shao et al. [106] who focus on TL works for vision categorization problems. As

shown by the top right diagram of Figure 2, this survey categorizes TL techniques into “feature representation level

knowledge transfer” and “classifier level knowledge transfer”, respectively.

As [89] and [106] don’t cover important development in TL since 2015, a more recent survey was made by Zhang

et al. [145] who overview TL techniques for cross dataset recognition problems. Like in [89], they also distinguish

different works according to the settings. Specifically, they show what kinds of methods can be used when the available

source and target data are presented in different forms. Compared to [89], they give a more detailed categorization of

different cross-dataset settings, as shown in the lower diagram of Fig.1. They also summarize different kinds of criteria

which could be used in solving knowledge transfer problems, as shown in the middle diagram of Fig.2. Like in [89], the

TL methods discussed in [145] also covers a broad range of applications. Another recent survey [146] on “Transfer

Adaptation Learning” considers TL and DA as weakly supervised learning problems, and reviews five different kinds of

related approaches, as shown in the bottom diagram of Fig.2.

As shown in the beginning of this section 1,the common way to solve vision recognition tasks follows the principle

of Empirical Risk Minimization. Due to the specialty of visual data, this common solution could be further defined as

a two-step framework: the feature extraction step and the prediction step. Following this two-step framework, [106]

simply categorizes TL works for vision categorization problems into two categories (as shown in figure 2). Although

this categorization shows its correspondence to the common way of solving visual problems, it does not fully reveal

the characteristics of knowledge transfer within this scope. Furthermore, [106] only covers research works before

2014. While with the rapid growth of vision recognition techniques, a lot of new works, especially those based on deep

neural networks, are published since 2015. These recent works are not discussed in [106]. On the contrary, [145] and

[146] include more recent TL works, while they adopt commonly used methodologies to categorize TL settings and

approaches.

In this survey, we propose to discuss knowledge transfer works for vision recognition tasks, and to explore the

common rules behind these works. As the primary goal of TL methods is to harness learned knowledge for re-use in

novel learning tasks, we overview in this survey knowledge transfer methods from the viewpoint of the knowledge

being transferred. Specifically, We will firstly discuss the reusable knowledge in a vision recognition task, and then we

will categorize different kinds of knowledge transfer approaches by where the knowledge comes from and where the

knowledge goes. We aim at finding general rules across different TL settings instead of focusing on their particularities.

This viewpoint is in clear contrast to previous surveys on TL, i.e., [89] [106][145]. However, any existing method has its

own scope of applicability, and we will indicate the applicable scenarios when introducing each method. In Table 5 we

list some common knowledge transfer settings/problems and their corresponding possible solutions.

The contributions of this survey could be summarized in the following list:

(1) We give a survey about the knowledge transfer in vision recognition from the perspective of knowledge itself,

i.e. we categorize different knowledge transfer approaches by where the knowledge comes from and where the

knowledge goes. This is in clear contrast to existing surveys that are from the problem-oriented perspective

[89] [86] [132] [24] [145], or from the technique-oriented perspective [146]. We believe that our methodology is
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Fig. 1. Existing Categorizations of Transfer Learning Settings: The top left part is the categorization of TL settings from [89], the top
right part is the categorization of TL settings from [86] and the bottom part is the categorization of TL settings from [145] (TL stands
for Transfer Learning)
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Fig. 2. Existing Categorization of Transfer Learning approaches/techniques: The top left part is categorization of TL approaches from
[89], the top right part is categorization of TL approaches from [106], the middle part is categorization of TL techniques from [145],
and the bottom part is categorization of TL techniques from [146](TL stands for Transfer Learning)

closer to the nature of knowledge transfer and could reveal the common rules behind different transfer learning

settings by showing different kinds of knowledge flows from the source to the target (shown in Fig. 3).

Manuscript submitted to ACM



Knowledge Transfer in Vision Recognition: A Survey 5

(2) Unlike some existing surveys that only cover a sub-topic of knowledge transfer (for example [40] and [24] shows

research works about heterogeneous transfer learning, [148] studies the multi-task learning, [78] studies the

transfer metric learning), in our survey, we show knowledge transfer works that cover a wide range of transfer

learning settings or problems, these related settings could be found in the Table 5.

(3) We cover very recent research trends including contrastive learning (in section 4.1.2), meta learning (in section

4.3.2), few shot learning (in section 4.2.2), etc.. These recent research trends are not all included in previous

surveys [24] [40] [78] [89] [86] [106] [132] [145] [146] [148].

(4) We give a discussion and show some future research directions for knowledge transfer in vision recognition in

the section 6, which we hope to inspire researchers to make further contributions to this domain.

The rest of this survey is organized as follows. In Section 2 we introduce knowledge types exist in a vision recognition

pipeline and the possible knowledge transfer flows that we are going to introduce in this survey; In section 3 we

show three categories of knowledge transfer works that transfer knowledge directly from the source data by data

selection/re-weighting or adaptation; In section 4 we show three categories of knowledge transfer works that transfer

knowledge from source model parameters by finding or learning generalizable knowledge in the source model; In

section 5 we show research works that study the transferability between different tasks; In section 6 we give a discussion

and some future directions; And finally in section 7 we conclude this paper.

2 KNOWLEDGE IN VISION RECOGNITION

In this section we firstly introduce the notations we adopt in this paper to describe a vision recognition task and

its solution. Then we discuss different types of knowledge that can be reused (transferred) from a previous vision

recognition task to a new one.

The following notations are adopted in the subsequent: calligraphic letters in upper cases, e.g., X, denote sets or data

spaces; bold letters in upper cases, e.g.,M, denote matrices; bold letters in lower cases, e.g., x, denote column vectors.

Table 1. Characteristics which define a vision recognition task and its solution

In/Out Data Xtr , Ytr , Xte , Yte

In/Out data spaces X, Y
In/Out data distributions P (X ), P (Y )
Learned model f = fK ◦ . . . ◦ f2 ◦ f1

Feature data

Xset, f1, Xset, f2, . . . , Xset, fK−1

(set = {tr, te })

Feature data spaces Xf1, . . . , XfK−1

Feature data distributions P (X f1 ), P (X f2 ), . . . , P (X fK−1 )

Let’s firstly define a vision recognition task T by two data spaces X,Y and the corresponding data distributions

P(X ), P(Y ), where X is the input data space, P(X ) is the marginal probability distribution of the input data X , Y is

the desired output label space, and P(Y ) is the probability distribution of the output data Y . Here P(Y ) can also be

noted as P(Y |X ) and therefore be interpreted as the conditional distribution of Y knowing X . The goal of the vision

recognition task is to find an optimal mapping f (·) which projects the input data X from the data space X to the

label space Y so that the mapped labels Y best correspond to the ground-truth labels Yдt . This mapping f (·) could be

further decomposed into a series of projections f = fK ◦ . . . ◦ f2 ◦ f1, where each fk maps data from the space Xfk−1 to

Manuscript submitted to ACM



6 Lu et al.

the space Xfk . Specifically, Xf0 = X is the input data space, XfK = Y is the output data space, and {Xf1 , . . . ,XfK−1 }
are intermediate feature spaces. In this way, a solution to task T could be defined as S = { f1, f2, . . . , fK }, and these

projections define new feature spaces F = {Xf1 , . . . ,XfK−1 } and the output data space given the input data space.

For example, if we use a K-layer Neural Network model to solve the task T, the solution could be denoted as

SKlayersN N = { f1, f2, . . . , fK }, and the corresponding feature spaces are FKlayersN N = {Xf1 , . . . ,XfK−1 }, where
Xfk (k = {1, 2, . . . ,K − 1}) is the feature space which contains the output of the k-th layer of the Neural Network,

and XfK = Y contains the output of the last layer, which is the desired output label space. If we use a traditional way

to solve T, for example, a SIFT feature extraction step with an SVM classifier, the solution could then be denoted as

SSI FT−SVM = { fSI FT , fSVM } along with FSI FT−SVM = {XfSI FT }, where XfSI FT
is the feature space defined by the

output of the SIFT feature extraction.

In reality, the probability distributions P(X ) and P(Y ) for T are usually not given in an analytical form. Normally they

could be estimated through the given training data set {Xtr ,Ytr }. The test data {Xte ,Yte } are supposed to follow the

same distribution as the training data do, therefore allowing the model learned on training data to be applicable on the

test data. In the training phase, a model f (·) is learned with the training set {Xtr ,Ytr }, and then in the testing phase,

predictions could be made by applying the learned model f (·) on the test data Xte
, and the performance of the model

could be evaluated by comparing the predictions with the ground-truth labels Yte . Following the decomposition of f

described above, we could find out that there exist a series of feature data {Xset,f1 ,Xset,f2 , . . . ,Xset,fK−1 } (set = {tr , te}),
each belongs to their corresponding feature space, i.e.Xtr,fk andXte,fk belong toXfk . And in each feature space the data

should follow a specific probability distribution, we denote these data distributions as {P(X f1 ), P(X f2 ), . . . , P(X fK−1 )}.
Table 1 lists the main characteristics introduced above that describe a vision recognition task and its solution. At this

level, We can observe that there exist two types of knowledge for a given vision recognition task: the first one is directly

represented by raw data which includes the input and the output (ground-truth) data, the corresponding data spaces

they belong to, and their data distributions (i.e. the first 3 lines in the Table 1); the other is learned knowledge which

includes the learned model, feature data generated by this model, feature data spaces and feature data distributions (i.e.

the last 4 lines in the Table 1). Both these two kinds of knowledge have the possibility to become the starting point of a

knowledge transfer flow that transfers knowledge to a new vision recognition task. The knowledge directly represented

by raw data is more flexible to be reused in a knowledge transfer flow since they could be adapted to the target task

for learning a new model dedicated to the target; In contrast, the learned knowledge is more restricted to the source

data. Nevertheless, when the source task is well chosen (i.e., well related to target task), the reuse of learned knowledge

could be both efficient and effective.

For example, it has been shown that deep Convolutional Neural Networks (CNNs) have the ability to produce

transferable features [139] [27] [107]. Therefore, one can adopt a pre-learned CNN model, fix the feature extraction

layers’ parameters and only retrain the classification layer’s parameters on new data, and the resulting new model is

expected to have discriminative performance on the new data. In this way, we are actually reusing the knowledge from

the parameters of the learned feature projections (i.e. { f1, f2, . . . , fK−1}) of a given pre-learned vision recognition task.

In some cases, the target training data is far from enough for learning a reliable classification model, some instance

based TL approaches then choose to select source samples to enrich the target training data directly. For example, Dai

et al. in [23] make use of AdaBoost to choose from the source labeled samples the ones which are close to the target

probability distribution to help the learning of the target classification model. In this way, the knowledge transferred

from the source task are source raw data (i.e. X and Y), and they are reused for learning a prediction model for the

target task.
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Another example is unsupervised DA. In unsupervised DA, the target training data is unlabeled, therefore it is

impossible to use the target training data solely for learning a reliable classification model. We thus need to seek for help

in labeled source data, which is assumed to share the same label space with the target domain and to own similar but

different marginal distribution w.r.t the target domain. In this case, one can attempt to align the source and target data

distributions (either by projecting the two distribution into a shared feature space in which the two feature distributions

are as close to each other as possible; or by projecting one distribution to fit the other one). Then as the two distributions

are well aligned in a new feature space, a classification model learned on the source distributions is then considered as

applicable for target data. In this way, the knowledge reused from source is actually the same as in the previous example,

i.e., source labeled data is reused and adapted to target data for learning a new classification model for target task.

Source input Source feature mapping

Target input Target feature mapping

Source predictor

Target predictor

Source prediction

Target prediction

section 3.1section 3.2

section 4.1

section 4.2

Pipeline for source task

Pipeline for target task

Target model

Source model

section 4.3

section 3.3

Fig. 3. Illustration of Knowledge Transfer: instead of learning a new task independently, knowledge transfer reuse existing knowledge
in previous tasks for learning a new task. In this image the top part shows an example pipeline for a source task and the bottom part
shows the pipeline for the target task. The dashed arrows that connect these two parts indicate the directions of knowledge flow
from the source to the target. The text information on each arrow shows the corresponding section in this survey where this kind of
knowledge transfer is introduced.

In the following two sections, we overview different knowledge transfer techniques/approaches for vision recognition

tasks. They are categorized according to the origin of knowledge being transferred, i.e. raw data or pre-learned model),

as well as the destination of the transferred knowledge, e.g. feature extractor parameters or predictor parameters, etc.).

Figure 3 illustrates the different knowledge transfer types that are presented in the subsequent. In Table 2 we give

a detailed comparison of these knowledge transfer categories. These categories are not mutually exclusive between

one and another. This means that one knowledge transfer method may contain several different kinds of knowledge

transfer types.

3 KNOWLEDGE TRANSFER FROM SOURCE DATA

As we have discussed in section 2, raw data is low level information compared to pre-learned model. Therefore there

exist more possibilities to reuse raw data in target task. The main advantage of using raw data instead of pre-learned

model is that raw data could be adapted to target task before or at the feature extraction stage, therefore the learned

model after adaptation could suffer less from the discrepancy between source and target. There are various ways to

adapt source data to target data. For example, when the source and target data distributions are not very far from each
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Knowledge

transfer types

Knowledge from Knowledge to Related settings/approaches

Data To Predictor
Section 3.1

Re-weighted

or selected

source data

Target predictor

Inductive TL [23][136][94][75]

Source domain selection [130] [16] [134] [76]

Data To Feat
Section 3.2

Selected

source data

Target feature

extractor

Selective feature learning [45][79][151]

Multi-source DA [10]

Data To Model
Section 3.3

Adapted

source data

Target model

Domain Adaptation [8] [108] [87] [88] [70] [77]

Metric learning for DA [25] [78]

Subspace Alignment [33] [74] [113] [144]

Optimal Transport for DA [20] [21] [92] [19]

DNNs for DA [131] [122] [73] [41] [120] [71] [72]

Open set/Partial DA [12] [143] [13]

Feat Param
Section 4.1

Pre-learned

transferable

feature extractor

Target feature

extractor

Lifelong learning [117]

Multi-task learning [3] [5] [2] [148]

Supervised feature learning [95] [27] [107]

Metric feature learning [34] [90]

Self-taught learning [96] [127] [67]

Unsupervised feature learning [31] [9] [125] [126] [65] [64]

Self-supervised feature learning [28] [26] [91] [83] [147] [84]

Predictor Param
Section 4.2

Pre-learned source

predictor

Target predictor

SVM based TL [135] [6] [57] [119] [62]

Hypothesis TL [61] [93]

One-shot/Zero-shot learning [32] [140] [101]

Model Param
Section 4.3

Pre-learned

source model

Target model

Knowledge distillation [52] [98] [15] [137] [111]

Meta learning [35] [82] [39]

Lifelong learning [116] [17] [110]

Table 2. Knowledge transfer types introduced in each section and their corresponding related settings and approaches/techniques

other, a straight forward way is to re-weight (or select) source samples (or sets) so that the resulting data set could

fit the target data distribution. An alternative way is to learn a shared feature extractor which projects both source

and target data into a common feature space, in which the source and target feature distributions are well aligned to

each other. When the source and target data distributions are not very close to each other, one could learn a projection

which projects source data to the target data space (or the inverse) so that the resulting two data distributions would be

close to each other. Once the two data/feature distributions are well aligned, the target task can then benefit from this

shared data/feature space in different ways. For example, the target task could benefit from the discriminability of a

learned shared feature space, or it could benefit from the source conditional distribution for learning a classifier in the

shared data space if the target samples are not enough to support a reliable classification border.

We further categorize knowledge transfer approaches by two different kinds of knowledge destinations, i.e. the

feature extractor parameters and the predictor parameters for the target task. As we have mentioned in section 2, these

two kinds of knowledge destinations are not mutually exclusive, some works may focus on transferring source data

knowledge to one particular kind of target model parameters, while some works reuse source data for learning all kinds

of target model parameters.
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In the following we introduce three groups of previous works that transfer source data knowledge for learning target

model parameters. A brief introduction of these three categories and their corresponding related approaches could be

found in table 2.

3.1 Knowledge transfer from reweighted source data samples/sets to target predictor

Re-weighted 
source input

Target input

Shared feature mapping Target predictor

Target predictionTarget features

Source features

Fig. 4. Illustration of Knowledge Transfer from re-weighted source data to target predictor parameters

A natural way to adapt source data to target is by selecting most related data samples directly from source training

data set, or selecting most related source sets when multiple source sets are presented. The selection is usually done by

giving weights on source samples/sets. In this subsection we show a group of methods that transfers knowledge from

the re-weighted source data samples/sets to the learning of target predictor parameters.

In early days before deep CNNs take over traditional feature extraction skills, research works on knowledge transfer

mainly focus on borrowing knowledge from source to build the target predictor (i.e. knowledge transfer from source

data to target predictor parameters). For feature extraction they use traditional methods (such as SIFT, HOG, etc.) on

source and target training samples. And they use the extracted features of both source and target training samples as

input data to learn a predictive model for target task. In the training process, source samples/sets that are more related

to target samples will be given more important weights to enhance the knowledge transferred from them. Different

works may use different ways to describe the relatedness between source and target samples, and use different strategies

to select related source samples/sets.

In [23] the authors make use of AdaBoost for TL by choosing from the source labeled samples the useful ones for

building a classifier for target data. Assume having a few target training samples and a large amount of source training

samples, their aim is to select the source samples that follow the same probability distribution as the target samples. To

achieve this goal, they build a Transfer AdaBoost framework, namely TrAdaBoost, for learning on target and source

training samples at the same time. In each iteration, AdaBoost works normally on target samples, i.e. it increases the

weights on misclassified target samples; on the other hand, for source training samples, the misclassified ones are

considered as the outliers to the target distribution, therefore the weights on misclassified source samples are decreased.

In this way, after several iterations, the source samples that fit the target distribution better will have larger weights,

while the source samples that do not fit the target distribution will have lower weights. The source samples with large

weights will then intent to help the learning a better classifier for target data.

Since this TrAdaBoost only borrows knowledge from one source task, in [136] the authors extend this method

to MultiSource-TrAdaBoost which borrows knowledge from multiple source tasks. Assume having several different

source training sample sets, each with abundant labeled samples, and one target training sample set with few labeled

samples. In each iteration of AdaBoost, one weak learner is build on each source training set, and the one with the best

performance on target set, i.e. the one appears to be the most closely related to the target, is chosen as the weak learner
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10 Lu et al.

for current iteration. In this way, the authors claim that the MultiSource-TrAdaBoost can better avoid negative transfer

effect caused by brute-force knowledge transfer from the single source when this source is not closely related to the

target.

Beware that, both TrAdaBoost and MultiSource-TrAdaBoost work for binary classification only, i.e. the source and

target label spaces are the same, which could be defined as {+1,−1} where +1 indicates positive sample and −1 indicates

negative sample. Therefore these two works could make use of selected source samples simply as a part of target

training data set for learning classification model. This strategy works when source set and target set are positively

correlated, i.e. there exist source positive samples which are related to target positive samples and source negative

samples which are related to target negative samples. Otherwise, when the two data distributions are not correlated,

making use of source samples may harm the performance of the learned model for target task.

An alternative approach would solve this more complicated situation. In [94] the authors propose to use label

propagation for knowledge transfer, i.e. they propagate labels from samples of selected source sets to each target sample.

The resulting method is named Cross-Category Transfer Learning (CCTL). The coefficient for label propagation from a

source sample to a target sample is defined by a transfer function, which combines both sample relatedness and domain

relatedness between source and target. And the source set selection is also achieved by AdaBoost.

Since this CCTL takes into account both category correlations and sample correlations, it shows a better performance

than the previously introduced TrAdaBoost and MultiSource-TrAdaBoost. However, when having L different source

domains, in each iteration of CCTL one should solve L + 1 optimization problems. This makes this method not very

efficient, especially when having a lot of source domains.

Although these methods make use of traditional feature extraction, we could easily replace their feature extractors

with a state-of-the-art CNN model, which is pre-learned on some related large-scale databases (as shown in the section

4.1), to benefit from the better performance of deep features.

In [75] the authors propose a new method, namely Discriminative Transfer Learning (DTL), to reuse source selected

data set for learning target classifier. They also show that by combining deep features and knowledge transfer in target

classifier one can achieve better results than using traditional features. Unlike previous methods, the authors propose

to build sparse reconstruction based discriminative classifiers for target task with selected source sample sets. They use

positively correlated source sets as positive dictionaries and negatively correlated source sets as negative dictionaries,

the difference between reconstruction errors of target samples on positive dictionary and those on negative dictionary

is served as the discriminator. The source data sets are selected through two parallel AdaBoost processes. Therefore the

resulting classification model is a combination of multiple selected dictionary pairs. Since this method makes use of

both positively correlated source sets and negatively correlated source sets, it shows a better performance than the

previously introduced CCTL, and it is also much more efficient than CCTL both on training time and on prediction time.

As can be seen, the methods introduced previously in this section are all based on boosting framework and all work

for binary classification. It is possible to extend these kinds of methods to multi-class classification by one-vs-one,

one-vs-all or EOOC (Error Correcting Output codes) based approaches, although this extension may increase the time

for training and prediction. In table 3 we give a comparison of the detailed setting of these methods along with the

original AdaBoost.

Apart from boosting based methods that re-weight source data based on their performances shown in the model,

there exist also research works that explicitly define the criterion to select the best source domains for multi-source

transfer learning. For example [130] and [16] propose source selection methods for Human Activity Recognition, [134]

and [76] propose automatic source retrieval and selection methods for text classification.
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Table 3. Comparison of boosting based knowledge transfer methods

Boosting based methods

In each Boosting iteration:

Update sample weights

(↑: augment weight; ↓: decrease weight) Choose weak learner

AdaBoost

Wrongly classified samples ↑
Correctly classified samples ↓

Learned with

weighted samples

TrAdaBoost

Wrongly classified target samples ↑
Correctly classified target samples ↓
Wrongly classified source samples ↓
Correctly classified source samples ↑

Learned with

weighted target

and source samples

MultiSourceTrAdaBoost

Wrongly classified target samples ↑
Correctly classified target samples ↓
Wrongly classified source samples ↓
Correctly classified source samples ↑

The one with best

performance on target

from candidates learned

with multiple sources

CCTL

Wrongly classified samples ↑
Correctly classified samples ↓

The one with best

performance on target

from candidate cross-

category classifiers

DTL

Wrongly classified samples ↑
Correctly classified samples ↓

Multiple pairs of source

sets which show best

performance on target

3.2 Knowledge transfer from source data to target feature extractor

Selected 
source input

Target input

Target feature mapping Target predictor

Target predictionTarget features

Fig. 5. Illustration of Knowledge Transfer from source data to target feature extractor

In the previous subsection we have introduced some TL methods that transfer knowledge from source data to target

discriminator parameters. In this section, we show another group of methods, which also transfer knowledge from

source data, while they mainly focus on using these knowledge to learn a feature extractor adapted for the target task.

As shown in the section 3.1, a straight forward way to adapt source data to target is by re-weighting source data

samples/sets. For learning feature extractor parameters adapted for target, we could also use this kind of strategy.

For example, in [45] the authors propose a method which selects related source samples and then learn a deep CNN

for feature extraction through joint fine-tuning with both selected source samples and target training samples. The

proposed Selective Joint Fine-Tuning is done by two steps:
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In step 1, they project both source and target training samples into a low-level feature space by applying either a

Gabor filter bank or kernels in the convolutional layers of AlexNet (pre-trained on ImageNet). Then they select nearest

source samples for each target training sample. The number of nearest samples is adaptive, i.e. hard target samples may

get a larger number of source neighbors.

In step 2, they make use of the selected source samples with target training samples to optimize the source and

target objective functions at the same time. A 152-layer residual network pre-trained on ImageNet or Places is shared

by source and target predictive models as the feature extractor. In this way, the learned DNN for feature extraction

benefits from the knowledge of the selected source data.

In a more recent work [79] the authors address a similar problem: how to select an optimal Subset of Classes (SOC)

from the source data, subject to a budget constraint, for training a feature extractor which generates good features

for the target task. To achieve this goal, they use a sub-modular set function to model the accuracy achievable on a

new task when the features have been learned on a given subset of classes of the source dataset. An optimal subset is

identified as the set that maximizes this sub-modular function. The maximization can be accomplished using a greedy

algorithm that comes with guarantees on the optimality of the solution.

The source subset selection is also applicable to the multi-source DA and the “Partial Domain Adaptation” settings

(see section 3.3.4 for details). For example in [10] the authors propose an iterative algorithm for multi-source DA that

selects the best source domains and learns a feature extractor dedicated to the target task with the data from the selected

source domains; in [151] the authors make use of the adversarial neural networks to achieve the subset selection for

the Partial DA.

3.3 Domain Adaptation: knowledge transfer from adapted source data to target model

Target input

Target feature mapping Target predictor

Target predictionTarget features

Source feature mapping

Source features

Share/Not

Ad
ap

t

Source input

Fig. 6. Illustration of Knowledge Transfer in Domain Adaptation

A special research direction of knowledge transfer, which has been widely explored for a relatively long time, is

the Domain Adaptation (DA) problem. In DA, we assume that the target data and source data share the same input

and output spaces (XT = XS and YT = YS ), while having different but related data distributions (P(XT ) , P(XS )
and P(YT |XT ) , P(YS |XS )). Depending on whether labeled target training samples are available or not, DA problems

could be further categorized into unsupervised DA (data available in training phase including: labeled source data and

unlabeled target test data) and supervised DA (data available in training phase including: labeled source data, unlabeled

target test data and a few labeled target training data). Whether supervised or unsupervised, the main goal of DA is to

adapt source data distribution to target data distribution, so that the model parameters learned with both source and

Manuscript submitted to ACM



Knowledge Transfer in Vision Recognition: A Survey 13

target data could show good performance for target task. Therefore we consider DA as a kind of knowledge transfer

from source raw data to target model parameters (instead of knowledge transfer from pre-learned model).

There exists various ways to achieve the distribution adaptation between source and target, in the following we show

several groups of methods. The ultimate goal of adaptation is of course to adapt both marginal distributions (P(XS ) and
P(XT )) and conditional distributions (P(YS |XS ) and P(YT |XT )), while some works may only focus on adapting one of

the two, and others may focus on adapting both of them or on adapting the two joint distributions. In table 4 we show a

comparison of the DA methods we introduce in this section.

3.3.1 Learning a shared feature mapping.

A natural way to achieve distribution adaptation is to learn a shared new feature space for source and target data, in

which the distribution discrepancy between source and target feature data is minimized. A lot of DA works follow this

way. Here we show a group of methods doing adaptation in this way. They make use of different methods for finding

the new feature space (e.g. PCA, FLDA, metric learning, etc.), and use different methods for measuring the discrepancy

between source and target distributions (e.g. Bregman divergence, MMD, etc.).

Adaptation with Bregman divergence based distance measure:

The first work is [108] where the authors proposed a Bregman Divergence based regularization schema for transfer

subspace (representation) learning, which combines Bregman divergence with conventional dimensionality reduction

algorithms. This regularized subspace learning learns a feature mapping and a classifier at the same time. The regular-

ization term on the feature transformation parameters is based on a bregman divergence between the source marginal

distribution and the target marginal distribution. Therefore the difference between the two marginal distributions will

be explicitly reduced during optimization.

The authors show examples of this transfer subspace learning framework using different F (θ ) (i.e. combining with

different dimensionality reduction methods), such as transfered principal components analysis (TPCA), transfered

Fisher’s linear discriminant analysis (TFLDA), transfered locality preserving projections (TLPP) with supervised setting,

etc. They also give experimental results on face image data sets and text data sets, which show the effectiveness of the

proposed framework for TL problems.

Adaptation with Maximum Mean Discrepancy (MMD) as distance measure:

Similar to the previous approach, in [87] the authors proposed a TL algorithm which also combines conventional

dimensionality reduction method and a distance measure for measuring the distance between marginal distributions

of source data and target data. In this work the authors make use of the Maximum Mean Discrepancy as distribution

distance measure, and PCA as the dimensionality reduction method.

The MMD between two sample sets could be considered as first mapping the two sample sets into a RKHS, then

calculate the distance between the means of the two sets in the new space (in practice it is calculated with kernel

trick which avoids the explicit mapping of the samples). By combining this MMD with common dimension reduction

methods, the authors propose the Maximum Mean Discrepancy Embedding (MMDE), which learns a new latent feature

space shared by source and target. A classifier is then learned in this latent space with source labeled data, and this

learned classifier is directly used for target classification task (i.e., they assume that in the latent space the conditional

distributions of source data and target data are the same).
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The authors perform experiments on indoor WiFi localization dataset and text classification dataset, the results

showed that using knowledge transfer with the proposed MMDE can effectively improve the model performance

compared to the same model learned without knowledge transferred from the source data.

However this method suffers from two limitations: it does not generalize to out-of-sample patterns, and the semi-

definite program (SDP) it uses is computationally expensive. To get ride of these limitations, the authors further proposed

in [88] a new approach, named transfer component analysis (TCA), which learns a set of common transfer components

for the source and the target domains, at the same time minimizes the difference between the two data distributions in

the new subspace and preserves the properties of the source and the target data.

Unlike MMDE, this proposed TCA avoids the use of SDP and does not have the problem for out-of-sample patterns.

Furthermore, they propose to use an explicit low-rank representation in a unified kernel learning method, instead of

using a two-step approach.

Both MMDE and TCA focus on minimizing the marginal distributions’ discrepancy between source and target

data, while assuming that the conditional distributions of source and target data in the learned novel feature space

are equal so that a classifier learned on source data can be directly applied to target data. However, such equality

assumption of conditional distributions is strong and cannot always be respected. In [70], Long et al. proposed a

Joint Distribution Adaptation (JDA), which aims to jointly adapt both the marginal and conditional distributions in a

principled dimensionality reduction procedure. Similar to previously introduced MMDE and TCA, JDA also makes use

of Maximum Mean Discrepancy as the distance measurement between distributions.

Since they consider the problem of unsupervised DA and thereby assume that no labeled sample is provided in target

training set. As a result, to reduce the mismatch of conditional distributions, the authors propose to make use of the

pseudo labels of the target data, which are obtained by applying the classifier learned on source labeled data directly to

the target data. Furthermore, Long et al. propose to explore the sufficient statistics of class-conditional distributions

P(x(S ) |y(S )) and P(x(T ) |y(T )) instead of the posterior probabilities P(y(S ) |x(S )) and P(y(T ) |x(T )). With the true labels on

the source data and pseudo labels on the target data, they match the distributions P(x(S ) |y(S ) = c) and P(x(T ) |y(T ) = c)
for each class c ∈ {1, . . . ,C} in the label set Y.

The authors proposed an iterative approach where they optimize the feature mapping and pseudo labels alternatively

until convergence of the pseudo labels. They performed experiments for image classification problems to evaluate the

JDA approach. The results verified the effectiveness of JDA compared to other methods, including in particular TCA, on

image classification problems.

Although the previous works adapt the marginal distribution and the conditional distribution at the same time, they

do not consider that these two adaptation processes may have different importance for the final performance. In [128]

the authors propose to balance the marginal distribution adaptation and the conditional distribution adaptation in a DA

approach, in order to have the best adaptation result.

In 2010, Ben-David et al. proposed a theoretical work [8] to answer the important question in unsupervised DA:

“under what conditions can a classifier trained from source data be expected to perform well on target data?” They

address this question by giving a theoretical bound on a classifier’s error on target data, which depends on its error on

the source data and the divergence between source and target data. The bound is defined as follows (Theorem 2 in [8]):

“Let H be a hypothesis space of VC dimension d . If US , UT are unlabeled samples of sizem′
each, drawn from source

domain and target domain respectively, then for any δ ∈ (0, 1), with probability at least 1 − δ (over the choice of the

samples), for every h ∈ H”:
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ϵT (h) ⩽ ϵS (h) +
1

2

ˆdH∆H(US ,UT ) + 4

√
2d log(2m′) + log( 2

δ )
m′ + λ (1)

Where H∆H is the “symmetric difference hypothesis space” for the hypothesis space H. And
ˆdH∆H(US ,UT ) is the

H∆H-divergence defined for the symmetric hypothesis classH∆H.

From the authors’ analysis we could learn that: the performance of a hypothesis h on the target domain is mostly

bounded by three terms: (1) the performance of this hypothesis on the source domain (the first term in Eq. 1), (2) the

data divergence between the two domains (the second term in Eq. 1) and (3) the coherence of the hypothesis functions

across the two domains (the last term in Eq. 1). In previous research works which we have introduced, e.g. TCA [88]

and JDA [70], the authors only seek to minimize the second term of Eq.1, i.e. the difference between data distributions.

In a recent work [77], the authors propose to also minimize the last term in Eq.1 by enhancing discriminativeness of the

joint feature space and by performing geometric alignment of the underlying data manifold structures across source

and target domains. They propose a novel method named Discriminative and Geometry Aware Domain Adaptation

(DGA-DA).

Based on the framework of JDA [70], DGA-DA [77] further add a repulsive force term to increase the distance of

sub-domains with different labels, and two additional consistency constraints, i.e. label smoothness consistency (LSC) and

geometric structure consistency (GSC), in order to preserve the hidden data geometric structure across different domains.

The authors performed extensive experiments for 49 image classification DA tasks on 8 popular DA benchmarks

to verify the effectiveness of the proposed DGA-DA method. They also carried out analysis of DGA-DA w.r.t. its

hyper-parameters and the convergence speed. In addition, using both synthetic and real data, the authors provide some

illustrations for visualizing the effect of data discriminativeness and geometry awareness.

Learning a shared feature space with metric learning:

An alternative way to learn a shared feature space is to cast the representation learning problem into the metric

learning scenario. In metric learning, we learn a new metric that defines the distance between two samples in the input

sample space. This distance could be used to measure the discrepancy between source and target distributions. For

example, Ding and Fu develop a “robust transfer metric learning (RTML)” framework in [25] for unsupervised DA.

Suppose having a source training set X(S ) = {x(S )
1
, . . . , x(S )

n(S ) } of labeled samples from C categories, and a target set

X(T ) = {x(T )
1
, . . . , x(T )

n(T ) } of unlabeled samples, where x(S )i , x
(T )
i ∈ Rd .

The objective function of RTML is defined as follows:

min

M∈Sd+

C∑
c=0

trace(Φ(c)M) + α ∥X̄ −MX̃∥2

F + λ
d∑

i=r+1

(σi (M))2 (2)

where Φ(c)
is the difference between the mean of the source samples labeled to the c-th category and the mean of

the target samples with pseudo labels belonging to the c-th category. M ∈ Rd×d is the positive semi-definite (M ∈ Sd+)
distance metric to be learned. The second term in Eq.(2) is a denoising term for preserving energy of the two domains.

The second term in Eq.(2) is a denoising term for preserving energy of the two domains. X = [X(S ),X(T )], X̄ is the

m-times repeated version ofX, and X̃ is the corrupted version of X̄. (See “marginalized Denoising Auto-Encoder (mDAE)”

[14] and “Denoising Auto-Encoder (DAE)” [126] for details) The last term is a regularization term which controls the

rank of M to not be larger than r . The optimization is performed as follows: M and the pseudo labels of the target data

are refined alternatively in iterations, i.e. optimizing one while fixing the others, until the metricM converges.
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SinceM can be rewritten asM = PP⊤, where P ∈ Rd×r and r ⩽ d is the rank of the metricM, the distance defined

by this metric dM(xi , xj ) can be rewritten as ∥P⊤(xi − xj )∥2. This shows that the metric learning could actually be

considered as learning an underlying subspace, and the distance defined by this metric equals Euclidean distance in this

new subspace. Therefore metric learning methods could be applied for various types of knowledge transfer problems,

in the next section 4 we will meet some metric learning methods for transferable feature learning. A comprehensive

survey about metric learning in knowledge transfer could be found in [78].

3.3.2 Learning separate feature mappings .

The way to learn a shared feature space for DA demands that the source and target data distributions be enough

similar to each other. If not, there might not exist such a common feature transformation that projects two distinct data

distributions into two nearby feature distributions. To relax this assumption, one could assume that the source and

target data distributions lie in two different subspaces and then find a way to align these two subspaces to achieve

adaptation. In the following we show some different ways to make this subspace alignment possible.

Subspace Alignment with dimensionality reduction methods:

Similar to the methods introduced in section 3.3.1, Fernando et al. also make use of dimensionality reduction methods

for subspace learning [33]. The difference is that, they propose to use two PCAs as dimension reduction on both source

and target domain, respectively. Following theoretical recommendations in [8] (see section 3.3.1), this method designs

two different subspaces to represent the two different domains, rather than to drag different domains into a common

shared subspace. They optimize a mapping function to transform the learned source subspace to the target subspace.

In their proposed Subspace Alignment (SA) method, a novel similarity function Sim(x(S ), x(T )) is defined (with the

optimized mapping function) for comparing a source sample x(S ) with a target sample x(T ), this Sim(x(S ), x(T )) could
be used directly in a k-nearest neighbor classification model. An alternative solution is to firstly project the source data

into the learned target subspace with the learned mapping between source and target, and project the target original

data into the learned target subspace, then learn a SVM classifier in the target new subspace. This work is further

improved to a tensor version in [74].

As in SA the source data and the target data are processed separately using their own corresponding feature

transformations, and the resulting two different feature spaces are only aligned by their principle components, the

variances of the source and target data in the two spaces are not aligned. In this case, the distribution mismatch between

the source and target are actually not well minimized with SA. Another problem is that, SA could not handle the

situations where the mapping between the two projected spaces is nonlinear. To solve these problems, the method

“Subspace Distribution Alignment (SDA)” [113] improves SA by taking into account the variance of the principal

components, and “Joint Geometrical and Statistical Alignment (JGSA)” [144] further improves the performance by

reducing the mismatch between source and target both statistically and geometrically. To achieve its goal, JGSA also

tries to find two feature projections for source data and target data. While instead of aligning the two new data spaces

with a third mapping, it minimize the divergence between data distributions in the new spaces using the same way

as in JDA [70] and it adapts Fischer discriminant criteria to maximize the variance of target data and preserve the

source discriminative information. Similar to JDA, they also make use of pseudo-labels on target data and they also

update alternatively the pseudo labels and the learned mappings to improve the final prediction performance until

convergence.

Subspace Alignment with manifold learning:
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Another way to align subspaces is to use the manifold learning methods [48] [46] [7] [129]. For example in [129], the

authors propose to make use of the Geodesic Flow Kernel. They consider the source subspace and the target subspace as

two points in a high dimensional space, and they use the Geodesic Flow as a path to connect these two points, therefore

making the connection between the two suspaces.

Subspace Alignment with Optimal Transportation:

A different way to achieve subspace alignment is to learn the mapping between source and target subspaces as an

optimal transportation [20] [21] [92] [19].

Optimal transportation (OT) [124] is a well explored mathematical problem which calculates the distance between

two distributions. It considers the distance between two distributions as the minimum effort one should spend to

“transport” the mass in one distribution to fit the other one. Recently, as some fast calculation methods for OT have been

proposed (e.g. [22]), OT based distance (also called Wasserstein distance, Earth-Mover’s distance, etc.) has been more

and more applied in machine learning and vision problems, especially in solving DA problems. Most works (e.g. [20]

[21] [92]) which make use of OT methods for solving DA problems consider finding the optimal transportation between

source and target distributions, and then map the source data to the target distribution (or inversely) by explicitly doing

a barycenter mapping. A recent work [19] considers on the contrary that the optimal transportation between source

and target distributions is underlying and does not need to be found explicitly. They focus on estimating the target

prediction function while at the same time learning the underlying OT based transformation between the source and

target distributions.

3.3.3 Deep learning methods for Domain Adaptation.

The last years have seen breakthroughs enabled by deep learning in an increasing number of domains, in particular

for various vision recognition tasks. Recent studies show that deep neural networks (DNN) can also learn transferable

features, which can be well generalized to new tasks. Therefore, more and more works tend to rely upon Deep Neural

Networks to solve DA problems. The basic idea is similar to those introduced previously in Sect.3.3.1 and Sect.3.3.2.

They make use of DNN as the structure for feature learning, and they add regularization on the new feature space

either by using conventional discrepancy measures [122] [73], or by adding an adversarial network as a discrepancy

measure [41] [120] on one or multiple intermediate layers’ outputs to match the source and target distributions. A

comprehensive survey paper on Deep learning Methods for DA could be found in [131]. We will introduce in detail two

representative groups of methods in the following part of this section.

Deep Adaptation with MMD criterion:

In [73], Long et al. proposed a “Deep Adaptation Network (DAN)” architecture. Similar to the previously introduced

JDA in Sect.3.3.1, DAN also uses Maximum Mean Discrepancy (MMD) as distance measurement for adapting source

and target distributions. Specifically, they used a multi-kernel version of MMD, named MK-MMD as proposed by [49],

which gives better performance than MMD and also minimizes the error of rejecting a false null hypothesis.

To learn an optimal feature transformation, the authors propose to extend the AlexNet architecture [60]. According

to [139], the convolutional layers in a CNN learn transferable features in the first layers and less transferable features in

the middle layers, while the last layers are more domain specific. The authors therefore propose to fix the parameters

in the pre-learned conv1-conv3 layers, fine-tune these in conv4 – conv5 layers, and retrain the parameters in fc6 – fc8

layers. At the same time they add an MK-MMD based adaptation regularizer on multiple layers’ outputs to require the

source and target distributions be as close to each other as possible in the hidden feature space. The authors propose to
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initialize the parameters in DAN with those of the AlexNet model pre-trained on ImageNet dataset [100]. The training

process is therefore a fine-tuning of this pre-trained model on source and target training data.

This work is further improved in [71] and [72]. Since in DAN only the marginal distributions of source and target

features are adapted, directly sharing the source classifier to target may suffer from the conditional distribution

discrepancy between the two domains. In [71] the authors proposed a Residual Transfer Network which learns a

classifier dedicated to target. They add some extra residual layers on the target classifier to get the source classifier, in

this way they avoid brute-force application of source predictor to the target. In [72] the authors further propose a joint

maximum mean discrepancy (JMMD) criterion in order to adapt the joint distributions (feature+label) of source and

target data, the resulting model is named Joint Adaptation Network (JAN). A comparison of these methods to other DA

methods is shown in Table 4.

Deep Adaptation with Adversarial Networks:

Another group of methods are those who make use of adversarial networks, instead of MMD used in previously

introduced works, to reduce the distribution discrepancy between source and target feature data (as shown in figure 6).

These methods are inspired by the recent research trend on generative adversarial networks (GANs) for unsupervised

learning [47]. A generative adversarial network is usually build by two parts: one generative part (i.e. the generator)

and one discriminative part (i.e. the discriminator). The generator’s objective is to generate samples that are as close as

possible to the training samples, while the discriminator’s objective is to distinguish between the generated samples

and the real training samples. The two parts are adversarial. When the two parts are trained alternatively, the network

can get to a balanced situation where both the two parts are well trained. In GANs, the discriminator plays the role as

a distance measure, it evaluates the distance between the distribution of the generated samples and that of the real

samples. That’s why the idea of adversarial networks could be applied to solve DA problems, simply by adopting the

discriminator as a replacement to traditional distance measures (e.g. MMD). In [121] the authors propose a general

framework to describe these kind of methods, in the following we show that this general framework corresponds to our

categorization method for traditional DA methods.

The main goal of adversarial adaptive methods is to regularize the optimization of the source and target feature

mappings, f (S ) and f (T ), so as to minimize the discrepancy between the source and target feature distributions:

X(S )(f (S )) = f (S )(X(S )) and X(T )(f (T )) = f (T )(X(T )). When the distance between two distributions is minimized, a

classifier f c(S ) learned on source data could then be applied for classification on target data.

An adversarial adaptation approach could then be determined by answering the following questions: (1) Are the

source mapping and target mapping generative or discriminative model? (2) Are the weights of source and target

mappings shared or not? (3) Which kind of adversarial objective is used?

The first question asks about the parameterization of the source and target mappings, it equals the choice of

feature extractions methods in traditional DA methods (e.g. PCA or FLDA, etc.), except for that most DA methods use

discriminative mappings since DA problems generally consider discriminative tasks. While generative mappings are

also possible to be used for solving DA problems and they are explored in some recent works (e.g. [69]), in these works

they use random noise as input to the generative network mapping to get output samples, an intermediate output of the

mapping is used as feature for training task-specific classifier. The second question equals the choice of shared feature

space or separate feature spaces with subspace/distribution alignment in DA methods. The third question equals the

choice of distance measure for evaluating the discrepancy between source and target distributions. By answering these

three questions, we could then categorize these adversarial DA methods as in the bottom part of Table 4.
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Table 4. Comparison of Domain Adaptation methods (In the last column, ‘M’ stand for Marginal, ‘C’ stand for Conditional, ‘J’ stand
for Joint, ‘S’ stand for Source and ‘T’ stand for target)

Method Mapping method Shared mapping Discrepancy measure

Minimize

Distance between

TSL [108] dimension reduction yes Bregman divergence M distributions

MMDE [87] PCA yes MMD M distributions

TCA [88] PCA yes MMD M distributions

JDA [70] PCA yes MMD M and C distributions

BDA [128] PCA yes MMD M and C distributions

MEDA [129] PCA no GFK + MMD M and C distributions

DGA-DA [77] PCA yes MMD M and C distributions

RTML [25] underlying yes learned metric M and C distributions

SA [33] PCAs no

distance between

Principle components

S and T subspaces

TSA [74] Tucker Decomposition no

distance between

Principle components

S and T subspaces

SDA [113] PCAs no

distance between

Principle components

S and T subspaces

JGSA [144] PCAs no

distance between

Sample means

M and C distributions

DA-ROT [20] Barycenter mapping no Optimal transport M distributions

OT-DA [21] Barycenter mapping no Optimal transport M and C distributions

JDOT [19] underlying no Optimal transport J distributions

ME-DOT [92] Barycenter mapping no Optimal transport M distributions

DAN [73] Discriminative NN yes MK-MMD M distributions

RTN [71] Discriminative NN yes MK-MMD M distributions

JAN [72] Discriminative NN yes MK-MMD J distributions

Gradient reversal [42] Discriminative NN yes Adversarial NN (Mini-max) M distributions

Domain confusion [120] Discriminative NN yes Adversarial NN (Confusion) M distributions

CoGAN [69] Generative NN no Adversarial NN (GAN) M distributions

ADDA [121] Discriminative NN no Adversarial NN (GAN) M distributions

CyCADA [55] Discriminative NN no Adversarial NN (GAN) M distributions

3.3.4 Relaxation on shared label space assumption.

One of the assumptions of DA, that source and target task share a same label space, restricts its application in reality.

When outlier classes appear in source or target data, it will make the equal class number adaptation difficult. Therefore,

recently several works start to study the case without this shared label space assumption. The main idea of these works

is to identify the outliers and only do adaptation on classes shared by source and target.
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For example, in [12] the authors proposed the ‘open set Domain Adaptation’ problem, where only a few categories

of interest are shared between source and target (outliers exist in both source and target). To deal with this problem,

they learn a mapping from source to target, which maps source samples to be close to target distribution. This is done

iteratively: first assign pseudo class labels to a part of the target samples, then minimize the distance between the target

and source samples which have the same label. The assignment problem is defined by a binary linear program that also

includes an implicit outlier handling, which will not assign labels to images that are not related to any source domain

images.

In [143] the authors deal with a similar problem partial Domain Adaptation, where the source domain has more

classes than the target domain. They extend the adversarial neural networks based DA methods for finding the source

samples which are from the outlier classes and at the same time reduce the discrepancy between the source and target

distributions for the shared classes. In [13] the authors also deal with the partial DA problem. They propose Selective

Adversarial Network (SAN), which selects out the outlier source classes and maximally matches the data distributions

in the shared label space.

4 KNOWLEDGE TRANSFER FROM PRE-LEARNED MODEL

In this section we are going to introduce TL works that reuse knowledge from previously learned source tasks. Compared

to those introduced in section 3, these methods reuse knowledge from parameters (or outputs) of a model pre-learned

for source task. Since they avoid learning from scratch with source raw data, these methods are usually more efficient

in training. While as the pre-learned model is more adapted to source task, it makes the result of knowledge transfer

more sensitive to distance between target and source.

4.1 Knowledge transfer from feature extractor parameters

The very first group of methods is those who reuse a pre-learned feature extractor for new target tasks. We categorize

these approaches into supervised feature learning methods and unsupervised feature learning methods.

4.1.1 Supervised transferable feature learning.

One of the pioneer works on knowledge transfer is [117], in which Thrun proposed the concept of lifelong learning.

He proposed an algorithm, which makes use of source data to learn a feature mapping, denoted by д : I → I ′, and

then apply this learned mapping for feature extraction on target data to help the classification of the target task. The

learning objective of the feature mapping is to make every pair of positive samples stay close to each other and every

pair of positive and negative samples stay far from each other in the new feature space. In this way, the learned new

feature representation is considered discriminative for source data, and hopefully also be discriminative for target data.

Thrun has perform experiments on an object recognition task to show that the use of the transferable feature mapping

on target task could improve the performance of the target task when there exist only a small number of labeled target

training samples.

This work is further generalized by several authors [3] [5] [2]. The three works can all be considered as special cases

of the framework of ‘structural learning’ proposed in [3]. And [3] is further applied to image classification in [95].

As shown in section 3.3.1, metric learning could provide same effect as subspace learning. Therefore transfer-

able/shared feature learning could also be done with metric learning methods.
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One of the first works is [34], which tries to learn a shared feature representation using metric learning disciplines.

Similar to the very first TL method [117], this algorithm learns a feature transformation which is later taken as input by

a nearest neighbor classifier for the target task. Unlike Thrun’s transfer algorithm which deploys a neural network

to learn the feature transformation, Fink’s transfer algorithm make use of a max-margin approach to directly learn a

distance metric.

Like the early works introduced previously in this sub-section, the strong assumption which requests the source

data to be very close to the target restricts the effectiveness of this method for more general situations. In [90] a new

method is introduced which combines the large margin nearest neighbor classification with the multi-task learning

paradigm. Unlike the previously introduced method, this method learns a specific metric dt (·, ·) for each of the T tasks.

They then model the commonalities between various tasks through a shared Mahalanobis metric with M0 ⪰ 0 and the

task-specific characteristics with additional matricesM1, . . . ,MT ⪰ 0. The distance for task t is defined as follows:

dt (xi , xj ) =
√
(xi − xj )⊤(M0 +Mt )(xt − xj ) (3)

Although there is not a specific projection as θ defined in [34], this distance defined in Eq. (3) could still be considered

as a distance in an underlying new feature space. The metric defined byM0 picks up general trends across multiple

data sets andMt>0 specialize the metric further for each particular task.

With the growth of deep learning techniques, deep neural networks have shown great success on learning transferable

features, especially for visual data like images. Actually in some of the knowledge transfer methods we have introduced

above (e.g. the methods introduced in section 3.1) where the focus is on transferring knowledge to classifier parameters,

if we make use of a pre-trained deep neural network for feature extraction, the performance will get a significant

improvement comparing to the same method with traditional feature extraction technique (e.g. the results in [75]

confirm this performance gain with deep features). Nowadays, fine-tuning a deep neural network model pre-trained

on some large-scale source dataset for a small customized target dataset has already become a popular way to do

knowledge transfer. In [27] and [107] the authors show the transferability of pre-learned CNN features. In [139] the

authors study the transferability of features from different layers of a pre-learned CNN. They show that the features

from the first layers of a CNN capture general visual information and are more transferable to different tasks, while

the features from the last layers of a CNN are more task-specific. This kind of generic feature learning is not only

studied on 2D images, but also explored for 3D contents. In [142] the authors propose a method to learn transferable

3D representations by solving some basic 3D tasks (e.g. camera pose estimation, feature matching, etc.).

4.1.2 Unsupervised transferable feature learning.

The methods shown in previous section 4.1.1 all make use of labeled source data for training feature extractor. In

reality, it is usually more expensive to get labeled data than unlabeled data, therefore transferring knowledge from

unlabeled data would be a good choice when it is not easy to get source labels. In this subsection, we show some works

that make use of unlabeled source data for learning a feature extractor purposed for target task.

A first group of methods is the so called self-taught learning methods. These methods aim to learn a re-constructive

dictionary from unlabeled source data, this learned dictionary could then be used for feature extraction by sparse coding

for target task.
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[96] is the first work that proposed the self-taught learning problem. They proposed a sparse coding based approach,

which learns high-level feature expressions with unlabeled data using sparse coding. By applying the learned model for

feature extraction on target data, the target classification performance could be improved.

This sparse coding based approach is widely adopted for self-taught learning scenarios, and is also improved from

different aspects by different researchers. For example, in [127] the authors propose to learn the sparse coding basis (i.e.,

the redundant dictionary) using not only unlabeled samples, but also labeled samples. They also proposed a principled

method to seek the optimal dictionary basis vectors for a smaller dictionary that demands less computational cost.

In a recent work [67], the authors propose a new sparse coding based self-taught learning framework for visual

learning, which is named “self-taught low-rank (S-Low) coding”. In addition to sparse coding, they also add a low-rank

constraint into the reconstruction objective function to preserve the subspace structures contained in target data space.

This problem is formulated as a dictionary-learning problem with rank-minimization constraint, which is a non-convex

problem. The authors propose a “majorization-minimization augmented Lagrange multiplier (MM-ALM) algorithm” to

solve it.

Another group of the methods are recent deep learning methods. The rapid growth of deep learning techniques

shows new ways for unsupervised feature learning [31] [9]. Unsupervised deep learning models, such as auto-encoders

(AEs) [125] [126] and deep belief networks (DBNs) [65] [64], could be used for feature learning with unlabeled data. Like

the sparse coding approaches introduced previously, these deep models also learn the transferable feature extractor by

reconstructing source samples. Once the models are learned on source data, the resulting feature extraction networks

could then be applied for new target tasks.

Instead of learning transferable features by reconstructing source data, one could also define some other kinds of

tasks for self-taught learning with unlabeled data, these kinds of tasks are often called “pretext tasks”. For example, the

pretext task of Generative Adversarial Networks (GANs) [28] is to generate new samples which are indistinguishable

with source samples. In [26] the authors propose to learn features with deep CNNs by predicting context information

in images. Specifically, they randomly select two patches in an image, and let the CNNs to learn to predict the spatial

relationship between these two patches. In [91] the authors propose another context aware pre-text task: in-painting.

They randomly mask a region in an input image, and let the CNN model to predict the missing pixels in this region with

the context information around this masked region. The resulting model could be applied for in-painting tasks, and is

also possible to be used as feature extractor for classification, detection and segmentation. In [83] the proposed pre-text

task is to solve jigsaw puzzles. The authors propose a siamese-ennead CNN, which is named the “context-free network

(CFN)”. The learned model could then be applied for feature extraction in object classification and object detection. In

[147] the authors propose to use image colorization as the pretext task. They take colorful images as input, convert the

images into gray-scale images, and then train a CNN model to re-colorize these images. The learned CNN model could

then be applied as a transferable feature extractor in new tasks. In [84] the proposed pre-text task is to count visual

primitives in images. They either cut input image into pieces or scale the image, then let the CNN model to count visual

primitives in the input and the transformed images. The model should follow two supervision rules as the objective:

one is that the sum of detected visual primitives in all pieces belonging to one image should be the same as the number

of visual primitives detected in the original image; the second is that the number of detected visual primitives should be

the same for one image before and after scaling.

A specific group of unsupervised feature learning methods aim at learning features that are discriminative for

individual images. These methods are considered as “contrastive learning” [133] [53] [150] [51]. For example, in [133]

the authors propose to make use of the DNN architectures for learning an “instance-level discrimination” model. They
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replace the softmax part of DNNs with a “noise-contrastive estimation (NCE)” to approximate the softmax supervision on

the output distribution of DNNs. Once the model is learned, it could then be applied as a feature extractor on new tasks

combining with a simple k Nearest Neighbor classifier. In [51] the authors propose the “Momentum Contrast(MoCo)”,

which learns a large and consistent dynamic dictionary for unsupervised feature learning with the contrastive loss. The

performance of the learned features with MoCo is even comparable to that of the features learned in a supervised way.

4.2 Knowledge transfer from predictor parameters

Apart from feature extractor parameters, predictor parameters of a pre-learned model could also be reused for learning

a new target task. In this section we show two groups of methods, one is based on discriminative models (e.g. SVMs),

the second one is based on generative models(e.g. Bayesian models).

4.2.1 Knowledge transfer from discriminative models.

Support Vector Machine (SVM) is a supervised discriminative learning method, which learns the conditional distri-

bution of labels on knowing input features. Several early works on knowledge transfer from model parameters are

constructed based on the SVM classifier [135] [6] [68]) [57] [119] [62]. A common form of the objective function of

these SVM based TL models could be expressed as follows:

min

w(T ),b
Φ(w(T )) +C

∑
(xi ,yi )∈DT

ε(xi ,yi ;w(T ),b) (4)

where

∑
(xi ,yi )∈DT ε(xi ,yi ;w(T ),b) is the loss on labeled samples in the target data set DT , and Φ(w(T )) is the

regularization on model parameter w(T )
which enforces the margin maximization and the knowledge transfer. The

knowledge transfer regularization is usually expressed as a minimization of the distance between the pre-learned source

parameter w(S )
and the target parameter w(T )

.

As can be seen, SVM based TLmethods enforce knowledge transfer simply by adding a regularization term tominimize

the distance between the target model parameters and the source model parameters. This brute-force regularization

work well for binary-classification when target positive category and source positive category are as close as possible.

The extension to multi-class classification could be done in a one-vs-all manner as shown in [62], and the negative

transfer could be prevented by tuning a model selection parameter as shown in [62].

Another group of methods which transfers knowledge from source models is the so-called hypothesis transfer learning

[61] [93]. In these methods they assume not having access to source data but only having access to hypothesis induced

from source domain. For example in [93] the authors have explored the setting Metric Hypothesis Transfer Learning, in

which they assume that the source training samples are not accessible so one can only make use of the pre-learned

source metric MS to help learning the target metric M. They have mainly provided some theoretical analysis and

guarantees for transfer metric learning with a biased regularization term. They propose a new stability notion called

on-average-replace-two-stability, which measures the stability of an algorithm when suffering from a little change in its

input. Then based on this, they prove that the metric hypothesis transfer learning can achieve a fast converge rate with

a high probability generalization bound under certain conditions. For the weighted biased regularization term they use,

i.e. ∥M − βMS ∥, they propose an approach to set the parameter β rather than tune it with brute-force search. As can

be seen, this metric hypothesis transfer learning uses a similar regularization term as what is used in SVM-based TL

methods.
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4.2.2 Knowledge transfer from generative models.

Another kind of classification methods are generative models, which learn the joint distribution of the labels and

input features. Generative models are also adopted for knowledge transfer, especially in the case of zeros-shot or

one-shot learning for object recognition, where no target sample or only one target sample is given for training an

object recognition model.

A representative work is proposed in [32], which is a Bayesian-based unsupervised one-shot learning framework for

object categorization. This work is based on the constellation model [11], where an object model consists of several parts

and each part is described by its appearance. The shape of the object is described by the relative positions between each

part. The appearances and relative positions are modeled by probability density functions (e.g. Gaussians). The objective

in training step is to estimate the model distribution parameters conditioned on training samples. This could be done by

using the Variational Bayes Procedure, which approximates the desired distribution using an EM like iterative updating

strategy. This procedure allows incremental learning, therefore one could take an object model pre-learned on source

object samples, and update its parameters with new training samples from target object for learning a new target model.

In [101] the authors propose a hierarchical non-parametric Bayesian model for one-shot learning or unsupervised

few shots learning. They borrow knowledge from model priors on means and variances previously learned on source

categories. When a sample from a new category is given, the model firstly find some related super-categories to this

new sample, and then use the model parameters of these super categories to estimate the priors of the model for the

new category.

Another work is [140], where the authors propose a generative attribute model for zero-shot and one-shot learning.

In their proposed framework, one category is associated with a list of attributes. They build generative models, which

are considered as attribute priors, to describe the probabilistic distributions of image features for all the attributes. Then

for zero-shot or one-shot learning, one could classify images from unseen categories just by using their corresponding

attribute lists and the pre-learned attribute priors. Recently a large-scale attribute data-set [149] is released specially for

attribute based zero-shot learning.

A special work is [58], in which the authors propose a “Bayesian Transfer Learning” framework for semi-supervised

DA. They define a joint prior for the source data distribution and the target data distribution in order to transfer

knowledge from the source data to help the target classification task. Furthermore, they make use of a hyper-parameter

α to describe the relatedness between the two domains, in order to control the amount of knowledge being transferred

from the source to the target.

As can be seen, knowledge transfer with generative models reuse model parameters pre-learned on source data and

usually demand some prior knowledge on target data. For example, in [32] they assume that the target objects could be

expressed by a pre-defined constellation model with fixed number of object parts, in [140] they demand the attribute

list information is available for target categories. From a general point of view these methods could be seen as also

transferring knowledge from some non-visual information (e.g. prior knowledge/semantic information).

4.3 Knowledge transfer from source model to target model

As we have mentioned previously, the knowledge transfer categories we show in this survey (see Table 2) are not

mutually exclusive between one and another. In the previous two sub-sections 4.1 and 4.2 we have shown two knowledge

transfer categories, which either focus on transferring feature extractor parameters, or focus on transferring predictor
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parameters. In this sub-section, we are going to introduce some groups of research works that consider these two parts

as a whole model and transfer knowledge from this pre-learned source model to the target task.

4.3.1 Knowledge distillation.

Input data

Target feature mapping Target predictor Target predictionTarget features

Source feature mapping Source features Source predictor Source prediction

Draw
 close

Fig. 7. Illustration of Knowledge Distillation

A special group of works is the knowledge distillation methods for Deep Neural Networks [52] [98] [15] [137] [111].

As its name ‘distillation’ suggests, these works try to learn a small student network that could give equal performance

as a big teacher network. These works not only benefit knowledge transfer from a big pre-learned DNN, but also try

to make knowledge more compact by putting the transferred knowledge into a new DNN with smaller amount of

parameters.

The concept “knowledge distillation (KD)” is firstly introduced in [52], in which the authors propose the “teacher-

student” framework. They make use of a softened version of the output of a big neural network, which is considered as

the “teacher network”, to teach a smaller neural network, which is considered as the “student network”, to give the

same output. In this way, the knowledge saved in the big “teacher network” could be compressed/distilled into the

smaller “student network”. In [98] the authors further make use of the intermediate output of the “teacher network”

for training a “deeper and thinner student network”. The learned student network can even give better performance

than the teacher network and at the same time run faster than the teacher network thanks to the smaller number of

parameters. Net2Net [15] make use of a similar “teacher-student” system, while instead of transferring knowledge

from a bigger teacher network to a smaller student network, Net2Net focus on transferring knowledge to a “deeper

and wider” student network in order to make the initialization and training of the big student network more efficient.

Inspired by image style transfer with neural networks [43], which make use of Gram matrix to represent the global

style of an image, [137] also tries to make use of Gram matrix to represent the knowledge of how neural nets solve

a problem. The Gram matrix is calculated by doing inner products between outputs of two layers, and the student

network is trained to generate similar Gram matrices as the teacher network in order to learn the knowledge from the

teacher network.

Unlike other methods introduced above, these methods do not focus on adapting a model learned on source dataset

to a new model for a different target dataset, they rather consider two different models for a same data distribution.

However we still consider these methods as a kind of knowledge transfer since they consider transferring knowledge

from one model to another one, and they have the potential to be extended to a normal transfer learning scenario with

different source and target data distributions.

4.3.2 Meta learning.
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Another important research direction is the so-called “meta learning” [103] [81], or “learning to learn” [118]. The

objective of learning to learn is to let the algorithm benefit from the previously learned tasks so that its performance on

a new task would be better than learning the new task from scratch. To achieve this the algorithm needs to encode

knowledge from previously learned source models, i.e. to find the meta knowledge of different tasks which could be

well generalized to help the learning of a new task.

There are various ways to achieve this meta knowledge transfer. One direction is to find a good weight initialization

from source models, so that the target model initialized this way could converge fast with only a few labeled samples.

For example in [35] the authors propose a model-agnostic method for meta learning (MAML), which is applicable to

any models that use gradient descent optimization. By defining the meta-loss as a sum of the updated source task losses,

the algorithm aims to find a set of parameters which does not need to be good for every task at the current step, but

should be potentially good for all tasks, i.e. could yield good results after updating one step further on each task. In [82]

the authors propose Reptile, which is related to First Order MAML. Instead of updating the meta model with the sum of

losses of the one-step-updated source models, Reptile update the meta model with the direction suggested by a model

updated multiple steps on a randomly sampled source task. The authors also give theoretical analysis showing that

both First Order MAML and Reptile optimize for “within task generalization”.

Another way to achieve meta knowledge transfer is to learn a meta-learner, which could be used to update model

parameters. For example in [104] the authors use one neural network to predict parameter changes of the second neural

network. In [4] the authors propose to learn an optimizer for deep neural networks instead of using a standard optimizer

such as the vanilla gradient descent. (Which is based on an earlier work [54] for shallow neural network.) They show

that an optimizer should be specially designed for a particular kind of tasks to yield the best performance on this kind

of task. Instead of handcrafting an optimizer for each task, one could cast the optimizer design as a learning problem

and learn the best optimizer for one type of tasks. They propose a LSTM (Long Short Term Memory) network to achieve

this optimizer learning. In [66] the authors tackle the same problem. They consider one optimizer as a learning policy

and cast the optimizer learning problem to a reinforcement learning problem. They solve this problem by a guided

policy search. In [97] the authors propose a LSTM network which not only learns the updates of parameters of the

target deep neural network, but also learns a set of good weight initialization for the target model. Instead of learning

the optimizer, in [50] the authors propose to use a deep neural network, which is named “HyperNetworks” to directly

learn the parameters of another deep neural network.

As can be seen, a lot of methods introduced above make use of methods with a natural internal memory as the

meta-learner, such as Recurrent Neural Networks (RNNs) or LSTMs. In some extreme situations, for example in one-shot

learning, where the available information for learning a new task is limited, the internal memory of deep models may

not be enough to store the meta knowledge learned from the source. Therefore some recent approaches make use of

the Memory Augmented Neural Networks(MANNs), where external memory are used to extend the memory size and

flexibility of Neural Networks. For example in [102] the authors propose to use the Neural Turing Machines (NTMs) to

encode meta knowledge for one-shot learning. In [80] the authors propose the “MetaNet” where a meta-learner network

and an external memory is used to learn and store meta knowledge for one-shot and few-shot learning problems.

Instead of learning initialization or meta-learner, another group of methods learn a meta metric, i.e. an embedding

space where the query samples could be very easily recognized through some linear models or nearest neighbor

classifier. For example in [114] the authors propose a “Relation Network (RN)”, which is an end-to-end neural network,

for few-shot learning and zero-shot learning problems. The RN learns a deep metric with source data, which describes
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relations between a small group of input images. Therefore when a few target samples and a query image is provided,

the learned model could make prediction based on relations between the query image and the target samples.

In [138] the authors propose a special meta learning method especially designed for transfer learning. They define a

“reflection function” that encodes the knowledge about how and what to transfer from a source task to a target task.

This function is trained with a series of source-target task pairs and then is finally applied to a new pair of source and

target tasks to help it find the best way of knowledge transfer.

Another special group of meta learning methods aim at revealing and making use of the relationships between

different tasks, we will introduce these methods in section 5.

4.3.3 Lifelong learning and Reinforcement learning.

The concept of “lifelong learning” is firstly introduced in [117]. The goal is to retain knowledge in previously learned

tasks in order to make the learning of the new tasks easier. Some existing works have reviewed the development of

research works on this topic [110] [17]. In [116] the authors show a real situation of lifelong learning in the computer

game “minecraft”, where the players should learn an endless series of different tasks. Learning a dedicated model for

every task would be impossible since existing models will take bigger and bigger storage space when the number of

tasks increases. Therefore the authors use the “divide and conquer” strategy, where one task is divided into a group of

sub-tasks. The sub-tasks are essential skills to different kinds of tasks, therefore the sub-task models could be considered

as the general knowledge in this game which could be re-used in future tasks.

Another research direction in machine learning that is quite related to lifelong learning is the “Reinforcement

learning (RL)”. In RL, the tasks are no longer static, they are rather “continuous”. This means that a RL algorithm should

make a series of decisions/actions in the RL environment in order to get positive feedbacks for its actions. RL is quite

explored for vision related problems, for example for vision based robot control [37] [36] [38] and for playing graphical

computer games [29] [56] [59].

5 TRANSFERABILITY: RELATIONS BETWEEN TASKS

When performing knowledge transfer from source tasks to the target task, one should always assume that the source

tasks are related to the target task. Therefore, it is of grate importance to discover the relations between tasks, in order

to avoid using unrelated source tasks which would cause the “negative transfer” effect [99] and to find these closely

related source tasks which may yield best knowledge transfer performance [141]. In this section we show some research

works that study the relatedness between different tasks.

A straight forward way to find the relatedness between tasks is to measure the distance between data distributions

from different tasks. For example in [105] the authors define a “Predictive Distribution Matching (PDM)” framework,

which measures the relatedness between source and target data distributions in order to encourage the knowledge

transfer from source data which are “positively transferable”. The data selection transfer learning methods we have

introduced in section 3.2, e.g. [45] [79] [151], also avoids “negative transfer” by selecting source data that are most

similar to target data.

Another way to measure the transferability of source tasks is to find their model performance on the target data. For

example in [44], the authors propose a “Supervised Local Weight(SLW)” schema to assign a weight to each source model

based on their performance on the target data. Some boosting based transfer learning methods we have introduced in

section 3.1, e.g. [23] [136] [94] [75], implicitly assign weights to sources through the calculation of sub-model weights
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based on their corresponding performances in the boosting framework. A special work is [18], where the authors

propose a metric to measure the transferability of each layer of the source neural network model to the target task,

instead of measuring the transferability of the whole source model.

As can be seen, these methods introduced above study the transferability of individual tasks, therefore the relations

between tasks should be measured every time when knowledge transfer is performed. In computer vision, the existing

types of vision tasks, e.g. colorization, image in-painting, segmentation, etc., are countable, hence knowing the relatedness

between these types of vision tasks would be certainly helpful for performing knowledge transfer between these vision

tasks. In [141] the authors give a thorough study on the transferability between different kinds of vision tasks. They

have built a database with four million images and 26 different kinds of annotations corresponding to 26 vision tasks for

each image. They firstly learn a deep encoder-decoder model for each of the 26 vision tasks on this database. Then they

perform knowledge transfers on all possible first-order task pairs (one source to one target) and some high-order task

pairs (multiples sources to one target). The knowledge transfer is achieved by directly applying the feature extractor

(encoder) learned on source to the target task without further fine-tune. A shallow neural network is then learned

on target features (output of the source encoder with target data as input) as the predictor. The authors show the

performances of each source-target pairs in an affinity matrix, and then further optimize this matrix to reveal the

transferability between tasks in some directed graphs, which are named “Taskonomies”. Each “Taskonomy” graph

shows the transferability between tasks for chosen transfer order and supervision budget and could be served as a

guide for performing knowledge transfer.

Instead of evaluating transfer learning performances on thousands of source-target pairs in order to get the Taskonomy

graphs, in [30] the authors propose a less time-consuming approach for learning task taxonomy. Specifically, they

propose to use the “Representation Similarity Analysis (RSA)” to evaluate similarities between pre-learned source

models. To calculate RSA they only need the pre-learned models and some randomly selected images as input. Therefore

there is no need to finetune source models on the target data and evaluate their performances. Their experimental

results show that the RSA similarity between two tasks corresponds well to the transfer learning performance from one

task to the other one.

In [1] the authors propose another way to measure task relationships, especially for visual classification tasks. They

propose to use a probe network to encode one classification task into a vector of fixed length. This vector is then

considered as the embedding of the corresponding classification task. Therefore the relationships between different tasks

could be measured in the resulting embedding space of these tasks. The authors propose a meta learning framework,

which learns a metric on this embedding space and use it to predict the best source models for knowledge transfer to

the target task.

The methods shown in [141] and [30] are good examples of how to measure the relatedness between different vision

tasks, these relatedness could also be collected in other ways, e.g. by crowd-sourcing [85]. Once these relatedness

between tasks are known, one can therefore make use of them for solving knowledge transfer problems. For example,

in [85] the authors propose to solve the zero-shot learning problem using relationships between source tasks and

the target task. Since there is no training data provided for the target task, they directly calculate the target model

parameters from source model parameters based on the relatedness between source tasks to target task. This method is

also considered as a meta learning method, since it could be seen as learning a meta-learner which produces parameters

for the target model.

Instead of studying transferability from source to target in a two-phases manner (i.e. pre-learn the source model

and then apply it to the target) as in [141] or [30], multi-task learning aims at knowledge sharing between multiple
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tasks at the same time. In [112] the authors investigate systematically this knowledge sharing between tasks to answer

the question: “which tasks should and should not be learned together in one network when employing multi-task

learning?”. They propose a framework which could divide input tasks into groups so that the tasks in a same group

share a same network structure in the multi-task learning manner. In this way, the could avoid the situation where two

unrelated tasks harm each other when they are learned in a same network.

Table 5. Some common Transfer Learning settings and their corresponding possible knowledge transfer approaches(All possible
knowledge transfer flows could be found in table 2)

Name

Source v.s. Target

label space

Source

labels

Target

labels

Objective

Possible

knowledge flow

Inductive TL[109] Different yes yes single All

Domain Adaptation[8] Same/Different yes no single Data To Model

Self-taught Learning[96] Different no yes single

Data To Feat
Feat Param

Unsupervised/self-supervised

feature learning[28][84]

Different no no single

Data To Feat
Feat Param

Multi-task Learning[148] Different yes yes multiple

Feat Param
Model Param

Zero shot Learning[63] Different yes no single

Predictor Param
Model Param

One shot Learning[32] Different yes yes single

Predictor Param
Model Param

Meta learning[35] Different yes yes/no multiple Model Param

Life long learning[110] Different yes yes multiple Model Param

Reinforcement learning [29] Same yes yes single Model Param

6 DISCUSSION AND FUTURE DIRECTIONS

In the previous three sections we have introduced two groups of knowledge transfer methods, i.e. knowledge transfer

from data (section 3) and from pre-learned models (section 4), and some research works that study the transferabilities

between different tasks (section 5).

As can be seen, the methods introduced in section 3 mostly focus on data selection, re-weighting or adaptation.

These methods select and extract knowledge from the source data directly and learn a model for the target task at the

same time. On the contrary, the methods introduced in section 4 mainly performs knowledge transfer in a consecutive

manner: they firstly pre-learn the source models and then they transfer knowledge from the pre-learned parameters to

the target model. (An exception is the multi-task learning, where there is no explicit distinction of source or target, and

all tasks share the learned knowledge from each other at the same time.) As a result, these two groups of methods show

their own advantages in different kinds of application domains. For example, in unsupervised DA where there is no
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labeled training data provided for the target task, it is therefore essential to adapt the source data to the target test

distribution in order to learn a target model with the source data. While in the “Life long learning” scenario where the

main goal is to preserve previously learned knowledge for new incoming tasks, it would then be preferable to retain

knowledge in a more compact form as model parameters.

Nevertheless, in some cases these two kinds of knowledge transfer methods could work together to get a better

performance. For example, a pre-learned transferable feature extractor (as shown in section 4.1) could be applied to

other transfer learning methods that focus on predictor learning (e.g. methods in section 3.1 or section 4.2).

In table 5 we show some common knowledge transfer settings that we have encountered in this survey, we compare

their assumptions about the input data and the objective, and we show some possible knowledge transfer flows for

each setting. From this table, the table 2 and the previous sections we can get some hints about the future research

directions of knowledge transfer in vision recognition:

• In section 3.2 we show some source selection methods for transferable feature learning. Although there has

not been much work studying unlabeled source data selection when learning a transferable feature extractor

for the target task, we believe that this could be a research direction worth to explore. Since data selection has

already shown its effectiveness when transferring knowledge from labeled source data to target feature extractor,

it should show equal importance when transferring knowledge from unlabeled source data to target feature

extractor.

• In section 4.3.1 we introduce some knowledge distillation methods which reduce the sizes of deep neural networks.

Although these methods are proposed for distillation of knowledge between models that tackle the same task,

they have the potential to be extended to knowledge transfer between different tasks, especially in the lifelong

learning or meta learning situations. Actually “policy distillation” is already applied in lifelong learning methods

as shown in [116].

• As shown in section 4.3.2, meta learning is a promising research direction for knowledge transfer, especially

when combined with the rapidly growing DNN techniques.

• As shown in section 5, transferability study is important for performing knowledge transfer between different

tasks. For vision recognition problems, transferability study is also a promising research direction. Some works

have already shown their success in this direction [141] [30] [1] [112], but there are still much more left to be

explored.

7 CONCLUSION

In this paper we have introduced a new methodology to describe and categorize knowledge transfer methods for

vision recognition problems. Unlike existing surveys for transfer learning, we focus on where the knowledge comes

from and where the knowledge goes. Based on this principle, we derive six major categories as shown in table 2, each

containing detailed sub categories. For each category we introduce its basic idea by illustration and description and

we also introduce some representative works related to this category. Then we introduce some research works on

transferability study in section 5. In section 6 we give a discussion to compare the different kinds of knowledge transfer

categories, and based on this discussion we give some possible future research directions in this field. We hope this

paper could be a good guide for researchers to get an overview about knowledge transfer in vision recognition, to find

suitable methods for their applications, or to find directions for their future research.
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