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Abstract

It is widely hypothesized that mechanical loading, specifically repetitive low-intensity tasks, influences the inner

structure of cancellous bone. As such, there is likely a relationship between handedness and bone morphology.

The aim of this study is to determine patterns in trabecular bone between dominant and non-dominant hands

in modern humans. Seventeen healthy patients between 22 and 32 years old were included in the study. Radial

carpal bones (lunate, capitate, scaphoid, trapezium, trapezoid, 1st, 2nd and 3rd metacarpals) were analyzed

with high-resolution micro-computed tomography. Additionally, crush and pinch grip were recorded. Factorial

analysis indicated that bone volume ratio, trabeculae number (Tb.N), bone surface to volume ratio (BS.BV),

body weight, stature and crush grip were all positively correlated with principal components 1 and 2 explaining

78.7% of the variance. Volumetric and trabecular endostructural parameters (BV/TV, BS/BV or Tb.Th, Tb.N)

explain the observed inter-individual variability better than anthropometric or clinical parameters. Factors

analysis regressions showed correlations between these parameters and the dominant side for crush strength

for the lunate (r2 = 0.640, P < 0.0001), trapezium (r2 = 0.836, P < 0.0001) and third metacarpal (r2 = 0.763).

However, despite a significant lateralization in grip strength for all patients, the endostructural variability

between dominant and non-dominant sides was limited in perspective to inter-individual differences. In

conclusion, handedness is unlikely to generate trabecular patterns of asymmetry. It appears, however, that

crush strength can be considered for endostructural analysis in the modern human wrist.

Key words: grip strength; human; laterality; trabecular bone; wrist.

Introduction

Background

Frost’s mechanostat theory first established the ability of

bone to remodel in response to mechanical loading (Frost,

1987). Knowing that intrinsic factors such as bone mineral

content, material properties, hormonal changes, age and

sex all impact hand skeletal morphology – the effect of

unique biomechanical signatures on bone architecture has

been well documented (Tocheri et al. 2005; Skinner et al.

2015).

The potential effects of asymmetrical behaviors on the

skeletal structure have long been documented. In particu-

lar, the tendency to preferentially use one hand in a variety

of actions (laterality or ‘handedness’) has been argued to

cause bone structural asymmetry (Shaw, 2011). An impor-

tant task is to determine whether the inner structure of

bone reflects this behavior as suggested by endostructural

patterns. Indeed, to investigate the origin of handedness in

past populations, many researchers have relied on the inner

bone morphology that can be traced in skeletal remains

(Macchiarelli et al. 1999; Lazenby et al. 2008b; Ubelaker &

Zarenko, 2012; Barak et al. 2013). The effect of handedness

on bone morphology in humans, however, remains

uncertain. Further, most modern activities involve highly

lateralized, repetitive, low-intensity mechanical loading.

However, the effect of these behaviors on bone morphol-

ogy is not well understood.

The lateralization of grip strength (GS) represents an

important factor characterizing handedness, often
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had a standard posture, and three out of 17 were left-handed

(Table 2). None had a lateralized occupation at work or in athletic

activity, but they all had a self-reported handedness. Despite some

patients having UCLA scores of 9 or 10, none practiced at competi-

tion level or could be considered as intensive practice. Only one

patient was identified as a manual worker.

Micro-CT measurements and processing

Both the left and right wrists were analyzed. Patients sat during CT

scan with their forearms placed in a rigid splint. A focus on the

radial side of the hand is based on the assertion that the thumb col-

umn is the most likely to be impacted by prehensile and fine manip-

ulation tasks (Marzke & Marzke, 2000). Moreover, muscles involved

in prehension such as extensor carpi radialis longus and brevis are

attached to the base of the 2nd and 3rd metacarpals. Thus, each

participant had four carpal bones (lunate, scaphoid, capitate and

trapezium) and three metacarpals (1st, 2nd and 3rd) analyzed on

each side measured using an XTREMECT MICROCT (Scanco Medical,

Switzerland). This machine produces isometric voxel size of 61 lm.

Additionally, three-dimensional (3D) data analyses were performed

using AMIRA 4.1 software (VSG, France). A 3D reconstruction of each

bone (Fig. 1) was made initially, and volumes of interest (VOI) were

placed. This technique was preferred to XTREMECT SCAN software in

order to avoid any flaw due to potential motion during the exam

on such small bones. Further, performing HRpQCT in vivo might

generate images for which CT scan software would not assess pre-

cisely during acquisition. Our use of 3D reconstruction allowed for

the verification of each slice, and to adjust gray-scales or correct

artifacts. Finally, attenuation histograms were used to determine

bone/soft tissue segmentation threshold in order to create 3D stacks

of data in a DICOM format.

Endostructural parameters

Morphometric analyses were conducted with the CTAN software

(SkyScan, www.bruker-microct.com). The following endostructural

parameters were assessed using the VOI method: bone volume ratio

(BV/TV), specific bone volume (BS/BV), trabecular pattern factor

(Tb.Pf), trabecular thickness (Tb.Th), trabecular number (Tb.N), tra-

becular separation (Tb.Sp), degree of anisotropy (DA) and total

Table 1 UCLA activity score.

1: Wholly inactive, dependent on others, and cannot leave

residence

2: Mostly inactive or restricted to minimum activities of daily

living

3: Sometimes participates in mild activities, such as walking,

limited housework and limited shopping

4: Regularly participates in mild activities

5: Sometimes participates in moderate activities such as

swimming or could do unlimited housework or shopping

6: Regularly participates in moderate activities

7: Regularly participates in active events such as bicycling

8: Regularly participates in active events, such as golf or

bowling

9: Sometimes participates in impact sports such as jogging,

tennis, skiing, acrobatics, ballet, heavy labor or backpacking

10: Regularly participates in impact sports

considered as a reflection of human adaptation to tool-
related behavior. GS lateralization has been described at a 
population level (Mitsionis et al. 2009). Even though several 
factors may influence GS, a curvilinear relationship with age 
has been described with a peak between 25 and 50 years of 
age (Mathiowetz et al. 1985). In adults, GS is significantly 
higher (~10%) in men than in women, and this difference 
increases with age (Kamide et al. 2015). However, this trend 
was reported only in right-handed individuals, whereas no 
GS asymmetry between genders was shown in left-handed 
people.

Few studies have examined the effects of these variations 
on bone architecture – knowledge that would be useful in 
examining the reaction of trabecular bone to the infralimi-

nar constraints of daily life. However, reference data for 
standard behaviors are missing. The present study uses 
high-resolution peripheral quantitative computed tomogra-

phy (HRpQCT) in a sample of living individuals to identify 
endostructural features of the human wrist that correlate 
to anthropometric and clinical measurements of GS and 
handedness.

Objectives

This study assessed bone morphological factors influenced 
by lateralized activities of daily life in healthy, young, mod-

ern humans.

Methods

Ethical statement

The local Institutional Review Board approved the protocol. All par-
ticipants received a verbal and written description of the protocol 
prior to participation. Following this, each participant provided
written informed consent.

Study design

Criteria for inclusion were age between 20 and 40 years. Partici-
pants with a medical history of bone disease or wrist fracture were 
excluded. Twenty participants were included initially. Two with pre-
vious wrist fracture were excluded, and one with no self-reported
handedness was excluded.

Our final study cohort included 17 patients (six female and 11 
male). Sample size was decided after computing data from previous
studies (Tsegai et al. 2013).

Anthropometric and clinical measurements

Each participant completed a questionnaire to record their medical 
history, biometric data (height, weight and age), handedness and 
athletic activities (graded by UCLA score defined in Table 1). GS was 
recorded with a Jamar grip dynamometer (Jamar Plus+; Sammons 
Preston, Rolyon, Bolingbrook, IL, USA) for crush grip (fingers flexed 
on palm) and pinch grip (thumb and index finger). Each measure-

ment was repeated three times, with averages reported. Patients

http://www.bruker-microct.com


porosity (Po.tot). For each bone (except the capitate), the VOI was

placed centrally in the bone volume, using three orthoslices planes

scaled at 50% of the largest diameter. For the capitate, due to its

particular shape, a 50% scaled VOI was placed and centered in the

head proximally. For metacarpals 1, 2 and 3, the VOIs were scaled at

50% of the largest diameter of the proximal epiphysis.

Statistical analyses

Data were analyzed using the R software (www.R-project.org).

Values were normally distributed in the global sample, and sub-

groups were also examined.

Principal component analyses (PCA) were performed to investi-

gate the relationships between variables. A factor map was used to

identify the anthropometric and clinical measurements and the

endostructural features that most influenced the variation in our

cohort. The PCA highlighted the discriminating parameters for each

bone taken separately or considered together. The influence of

intrinsic patient-related variables [sex, body weight, stature, body

mass index (BMI)] and extrinsic variables (UCLA activity level) on

bone endostructure was assessed for each patient. Regressions were

performed considering laterality and bone microstructure patterns

as independent and dependent variables, respectively. The stron-

gest statistical models were applied to GS and handedness. P-value

significance was set at < 0.05.

Results

Parameters explaining the observed variation among

our sample

Looking at all the bones from each patient, the factorial

analysis indicated that bone volume ratio, number of tra-

beculae and bone surface per bone volume were positively

correlated with principal component (PC)1 and accounted

for 58.7% of total variance (Fig. 3). PC2 (20.0% of variance)

was positively correlated with porosity and negatively with

bone volume ratio, number of trabeculae, trabecular pat-

tern factor and bone surface per bone volume. Therefore,

some endostructural parameters appear to explain better

the variation among our sample than anthropometric and

clinical measurements. No sex effects were found (P =

0.488) in any bone. A clear separation appeared between

each bone on PCA, and PC1 and PC2 were significant for

bone specificity (P < 0.0001). However, on both principal

components, overlapping was shown for lunate–scaphoid

and trapezium–MC-3. Figure 3 highlights how the positive

end of PC1 reflects a compact and dense trabecular archi-

tecture, with low porosity subsequently. The positive end of

PC2 showed a more porous trabecular bone and less

robustly built architecture. The PCA results for each bone

after statistical rotation and extraction are summarized in

Table 3. The highest percentages of variances explained by

the two-first components were obtained for the capitate

(97.5%) and the first metacarpal (96.5%). For both the capi-

tate and the first metacarpal, the first PC was explained

mainly by the bone volume ratio (BV/TV; Fig. 2) and Po.tot

(Table 3). Overall correlations of significant patterns (i.e.

estimation on PC1 or PC2 > 0.750) are presented in Fig. 3

for each bone. Capitate, MC-1 and MC-2 were the most

Table 2 Sample investigated in this study with individual parameters.

Weight Height BMI Sex Laterality UCLA

1 67 172 22.6 M Right 8

2 48 162 18.3 F Right 8

3 62 167 22.2 F Left 6

4 68 176 22.0 M Right 10

5 75 169 26.3 M Left 9

6 60 157 24.3 F Right 4

7 63 183 18.8 M Right 9

8 60 174 19.8 M Right 3

9 60 169 21.0 F Right 8

10 66 180 20.4 M Right 7

11 75 179 23.4 M Right 6

12 74 182 22.3 M Right 8

13 74 183 22.1 M Right 9

14 67 168 23.7 F Right 5

15 81 180 25.0 M Right 5

16 67 182 20.2 M Left 10

17 60 169 21.0 F Right 6

Mean 66.3 173.6 22.0

Min 48.0 157.0 18.3 3

Max 81.0 183.0 26.3 10

SD 8.0 7.8 2.2

BMI, body mass index.

Fig. 1 Three-dimensional (3D) segmentation of wrist bones prior to

volume of interest (VOI) analysis.

http://www.R-project.org
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consistent groups of bones within the sample. Capitate was 
found with a robust and specific architecture, while MC-1 
and MC-2 showed higher porosity and thinner trabeculae.

GS

Although no extreme lateralized occupation (e.g. intensive 
lateralized sport or asymmetrical work) was recorded, we 
observed significant differences between dominant and 
non-dominant crush grip (36.0 � 9.6 N; P = 0.002) and pinch 
grip (6.0 � 2.1 N; P = 0.012). The differences observed for 
crush grip were in favor  of the dominant side in all but  one  
patient (Table 4). The average difference was 7% (�15% to 
15%) between both sides. Pinch grip had a different distri-
bution with no statistical relation to sex or  occupation. Four  
patients had a pinch grip in favor of the non-dominant side. 
The average difference was 6% (�9% to 23%). The UCLA 
score was not correlated to the lateralization of pinch or 
crush strength, respectively, r2 = 0.305, P = 0.769 and r2 = 
0.366, P = 0.646.
The endostructural parameters for each bone were con-

sidered separately. Additionally, multiple regression analy-
ses of GS indicated a highly significant correlation (P < 
0.0001) between these parameters (PC1 and PC2) and the 
dominant side for the lunate (r2 = 0.640), the trapezium (r2 

= 0.836, P < 0.0001) and the third metacarpal (r2 = 0.763).

Laterality

We investigated whether handedness had an influence on 
the observed variability in endostructural values. It 
appeared that distribution is more related to bone than to 
side (Fig. 4). When considering each bone individually, we 
observed the distribution of dominant and non-dominant 
sides in PC1 vs. PC2 plots. As a general trend, we observed 
that the differences between dominant and non-dominant 
sides were limited and relatively less substantial than inter-
individual variability. Figure 4 shows the PCA analysis per 
side. PC1 was found not to be significant for laterality (P = 
0.176) as well as PC2 (P = 0.796). The dominant and non-
dominant sides representing the same individual generally 
indicated similar endostructural values. For example, when 
we consider the endostructural values obtained for the 
lunate and the first metacarpal, patient number 15 appears 
relatively distinct from all the other individuals for both 
dominant and non-dominant sides. At the same time, 
lunate endostructural values obtained for dominant and 
non-dominant sides within several individuals are almost 
superimposed (e.g. patients 9 and 11). Importantly, no 
inter-individual difference due to sex, activity or GS explains 
the variability observed in this dataset. Further, these same 
trends are observed when examining the endostructural 
parameters of all bones together. Specifically for the capi-
tate, the parameters BV/TV, BS/TV and Tb.N were higher in 
the dominant side whether Tb.Pf and Tb.Sp were lower. For



the scaphoid, porosity was slightly higher in the dominant

side but all the other parameters were comparable. For the

lunate, BS/BV, Tb.Pf, Tb.Sp and porosity were higher in the

dominant side whether BV/TV, BS/TV, Tb.N were lower. The

trapezium, MC-1 and MC-2 had the same patterns, BV/TV,

BS/TV, Tb.N were higher in the dominant side whether

BS.BV, Tb.Pf, Tb.Sp and porosity were lower.

Discussion and conclusions

We sought to define the pattern of laterality in vivo on the

carpal skeleton of the human hand. Specifically, we found

bone volume ratio (BV/TV) as a specific parameter explain-

ing variability in each bone. The number of trabeculae and

the specific bone surface (BS/BV) appeared also recurrent

indicators for variability. We observed a relationship

between GS and trabeculae patterns for the lunate, MC-3

and trapezium. Conversely, pinch grip was inconsistent with

hand preference and was not related to any specific vari-

able. Despite these findings, the results of this study suggest

that usual tasks (e.g. writing, eating) with a preferred hand

do not stimulate sufficient asymmetric mechanostat

biofeedback to influence bone modeling in the wrist.

Indeed, a multifactorial analysis did not show any robust

pattern. Further, endostructural parameters did not appear

to be correlated with any anthropometric (body weight or

stature), sex or clinical measurements. BMI was not involved

in the variability in any bone. This is likely due to the fact

that forelimbs are not used for locomotion (Marzke, 2009).

As such, the modern behaviors sampled in this study may

Fig. 2 Volume of interest (VOI) in capitate

(non-dominant side on left, dominant side in

right) on patient 2. Trabeculae are thicker

(Tb.Th 0.35 mm vs. 0.31 mm) on the right

sample, and bone volume fraction BV/TV is

higher (37.3% vs. 30.9%).

Fig. 3 Variables correlations on principal

component analysis (PCA) on PC1 (x-axis) and

PC2 (y-axis) per bone studied. The

explanation of the variance per PC (58% for

PC1 and 20% for PC2) is meant for all the

bones studied.



impact of handedness on bone in non-athletic individuals is

necessary to fully understand the relationship between

mechanostat biofeedback and bone modeling. Addition-

ally, this study builds upon other studies that have reported

the effect of age and sex on bone characteristics, but failed

to investigate laterality (Hasegawa et al. 2001; Edwards

et al. 2013; Szulc et al. 2013; Crockett et al. 2015). Finally,

Table 4 Patients strength for crush and pinch grips (N).

Patients

#

Crush grip

dominant

Crush grip non-

dominant

Delta crush

(%)

Pinch grip

dominant

Pinch grip non-

dominant

Delta pinch

(%)

1 618.0 529.7 14 106.3 101.4 5

2 255.1 215.8 15 93.2 78.5 16

3 480.7 470.9 2 83.4 89.3 �7

4 640.9 608.2 5 107.9 99.7 8

5 506.9 582.1 �15 104.6 80.1 23

6 320.5 294.3 8 81.8 85.0 �4

7 608.2 542.8 11 139.0 147.2 �6

8 539.6 519.9 4 99.7 99.7 0

9 323.7 307.4 5 83.4 75.2 10

10 503.6 500.3 1 75.2 81.8 �9

11 670.4 572.5 15 106.3 101.4 5

12 595.1 529.7 11 106.3 96.5 9

13 565.7 497.0 12 103.0 93.2 10

14 255.1 235.4 8 89.9 75.2 16

15 588.6 526.5 11 106.3 103.0 3

16 621.3 588.6 5 107.9 96.5 11

17 467.6 425.1 9 91.6 80.1 13

Fig. 4 Variables correlations on principal

component analysis (PCA) on PC1 (x-axis) and

PC2 (y-axis) for dominant and non-dominant

sides. Dots indicate dominant and triangles

indicate non-dominant. The explanation of

the variance per PC (58% for PC1 and 20%

for PC2) is meant for all the bones studied.

not create sufficient strains on the hand skeleton to influ-
ence bone modeling.

To our knowledge, this is the first study to assess the rela-
tionship between endostructure and strength in a living 
patient with standard activities. Unfortunately, the current 
literature is focused on athletes and extreme handedness 
(Ozener, 2012). Yet, we believe an investigation into the



our use of pQCT to analyze cross-sectional bone provides

more detailed data than similar studies only focusing on

bone mass density.

Limitations

This study has several limitations. First, the sample size is

small. Though other well-designed studies using identical

segmentation methods have been published with compara-

ble sample sizes (Stephens et al. 2016), we believe that fur-

ther studies should be conducted using larger sample sizes

to confirm the relationship between lateralized low-inten-

sity activities on human bone morphology. Second, there

are well-documented technical limitations with the collec-

tion of VOI data. Specifically, Kivell et al. (2011) expressed

concerns about technical difficulties in collecting VOI data

on wrist bones. Indeed, trabeculae distribution in such small

bones is heterogeneous and choice of VOIs position is

essential. As a consequence, assessments of handedness in

fossil samples should be cautious, even in the case of

observed side differences at the micro-architectural level.

We used 61 lm voxels to limit time of acquisition, which

can be considered a low resolution to assess endostructure

on non-weight-bearing bones. The values reported, particu-

larly the trabeculae thickness, appear to be higher than pre-

viously published data. That might be a limitation of our

segmentation technique and the resolution used. Finally,

we must consider some inaccuracy in determining the edges

of the trabeculae due to marrow and fat content of the

interstitial space, considering this is an in vivo study. Kivell

(2016) detailed the difficulty of such an analysis in living

samples and emphasized that current literature is focused

only in high-activity athletes. Mice models have been

developed with poor reliability and translational issues to

human models. For these reasons, in vivo data must be con-

sidered with caution. As such, we reported all data as

trends.

There are many data supporting the ability of high

biomechanical loading to effect human bone structure.

Erlandson et al. (2012) used dual-energy X-rays absorptiom-

etry analysis to show that premenarchal elite gymnasts had

a higher bone mass in the femoral neck, when compared

with non-gymnasts. Further, such a difference was proven

to remain unchanged 14 years later when the loading stim-

ulus had decreased. These results highlight the ability of

bone modifications from repetitive biomechanical loading

to persist long after the termination of the loading behav-

ior. Similarly, Sone et al. (2006) observed asymmetry in the

tibia of individuals with a dominant leg for mobility and

manipulation, and Sylvester et al. (2006) used radiographs

to show differences in bone morphology and pathology

(e.g. osteoarthritis) based on human activity (specifically

rock climbing). Therefore, there is little doubt that mechani-

cal behavior affects bone structure. Yet, important ques-

tions regarding the relationship between mechanical

behavior and bone morphology remain – specifically, the

effect of repetitive biomechanical loads on cancellous and

cortical bone. In this context, the impact of handedness on

bone clearly represents one of the most challenging ques-

tions to address. This study sought to better understand the

impact of handedness on bone modeling by investigating

endostructural parameters in modern human carpal bones.

Carpal modeling represents a hallmark of adaptation to

tool manipulation (Marzke, 2009). Our findings highlight

that a level of activity or strength might be determined as a

threshold to stimulate aptation to environment.

Lazenby et al. (2008a) suggest that volumetric variables

such as BV/TV and Tb.N are sensitive to mechanical regula-

tion and handedness. Further, they found that the influ-

ence of age is felt more on the left rather than the right

metacarpal given the human propensity for right-handed-

ness. This remains not obvious in our results. Our data sug-

gest that usual tasks (e.g. writing, eating) with a preferred

hand may be important inter-individual differences in

endostructural parameters (i.e. as trabecular thickness and

bone volume ratio). These tasks, however, did not produce

strong morphological differences between the two sides. It

should be noted that contrary findings have been described

in the literature. Stephens et al. (2016) assessed the lateral-

ity in Homo sapiens and Pan troglodytes and paniscus by

micro-CT scan, identifying specific and significant patterns

of laterality (BV/TV, degree of anisotropy and elastic modu-

lus in the base of the first metacarpal). Our results suggest

similar patterns for MC-1 and MC-2 bases and trapezium

(BV/TV = 11/17 on MC-1, 9/17 on MC-2 and 11/17 on trapez-

ium), but remain unclear for the rest of the thumb column.

We did not find anisotropy as a significant factor. In that

same study, however, despite a flawless method, the later-

alization could not be reported as the bone analyzed came

from individuals from the 1st and 3rd centuries. The authors

assumed that asymmetry of the bone is explained by lateral-

ity, but this fact is not invariable. In our sample, one individ-

ual showed a higher crush grip in the right hand when he

reported himself as left-handed. In a society where right-

handed preference reported is over 90%, usual tasks are

taught and tools are made to facilitate this lateralization.

This is an interesting fact that should not be underesti-

mated when analyzing fossils. Earlier studies have illus-

trated the effect of lateralized sport activity and bone

morphology. Notably, Shaw (2011) documented an effect

on humeral, ulnar and tibial shaft morphology based on

specific lateralized biomechanical loading patterns in cricket

and hockey players. However, no significant asymmetry was

observed in their control groups with a non-lateralized

activity. This finding based on pQCT of 0.5 mm slices (l-CT)

suggested that bone modeling was not sufficient to pro-

duce a significant asymmetry in both non-professional ath-

letes and runners and swimmers with no ‘habitual, highly

intense or repetitive, unilateral upper limb activities in the

loading histories of these groups’. Shaw concluded that



laterality can produce a significant asymmetry only in the

case of a marked biomechanical contrast between right and

left sides – as in the high repetitive biomechanical loading

experienced by cricket and hockey players. It should be

noted that Shaw’s finding reports an estimate of the tor-

sional and average bending rigidity of the diaphysis and

cortical area, an indicator of a bone’s mechanical perfor-

mance under biomechanical loading (Ruff et al. 2006). This

method is limited in that it only concerns the diaphysis, and

deemphasizes trabecular bone patterning. Moreover, no

indication about patients’ morphology, height, weight or

BMI was analyzed as influencing factors. In our study, we

assessed correlations between anthropometric variables

and endostructure. As such, our study reinforces Shaw’s

finding that unilateral and repetitive stresses are required

in low-intensity activities to mark bone structure in upper

limb and carpal bones morphology.
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