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Abstract

We construct random metric spaces by gluing together an infinite sequence of pointed metric
spaces that we call blocks. At each step, we glue the next block to the structure constructed so far
by randomly choosing a point on the structure and then identifying it with the distinguished point
of the block. The random object that we study is the completion of the structure that we obtain
after an infinite number of steps. In [7], Curien and Haas study the case of segments, where the
sequence of lengths is deterministic and typically behaves like n−α. They proved that for α > 0,
the resulting tree is compact and that the Hausdorff dimension of its set of leaves is α−1. The
aim of this paper is to handle a much more general case in which the blocks are i.i.d. copies of the
same random metric space, scaled by deterministic factors that we call (λn)n≥1. We work under
some conditions on the distribution of the blocks ensuring that their Hausdorff dimension is almost
surely d, for some d ≥ 0. We also introduce a sequence (wn)n≥1 that we call the weights of the
blocks. At each step, the probability that the next block is glued onto any of the preceding blocks is
proportional to its weight. The main contribution of this paper is the computation of the Hausdorff
dimension of the set L of points which appear during the completion procedure when the sequences
(λn)n≥1 and (wn)n≥1 typically behave like a power of n, say n−α for the scaling factors and n−β

for the weights, with α > 0 and β ∈ R. For a large domain of α and β we have the same behaviour
as the one observed in [7], which is that dimH(L) = α−1. However for β > 1 and α < 1/d, our
results reveal an interesting phenomenon: the dimension has a non-trivial dependence in α, β and
d, namely

dimH(L) =
2β − 1− 2

√
(β − 1)(β − αd)

α
.

The computation of the dimension in the latter case involves new tools, which are specific to our
model.

1 Introduction

Let us recall Aldous’ famous line-breaking construction of the Brownian CRT (Continuum Random
Tree) in [3]. On the half-line [0 ,∞), consider C1, C2, . . . , Cn the points of a Poisson process with
intensity tdt. Cut the half-line in closed intervals [Ci , Ci+1], which we call branches (of length
Ci+1 − Ci). Starting from [0 , C1], construct a tree by recursively gluing the branch [Ci , Ci+1]

to a random point chosen uniformly on the tree already constructed (i.e. under the normalised
length measure). Aldous’ Brownian CRT is the completion of the tree constructed after an infinite
number of steps. This process can be generalised by using any arbitrary sequence (λn) for the
length of the successive branches. This model was introduced and studied by Curien and Haas in
[7], who proved that when λn = n−α+o(1) for some α > 0, the tree obtained is a.s. compact and has
Hausdorff dimension (1 ∨ α−1). In [4], Amini et. al. obtained a necessary and sufficient condition
on the sequence (λn) for the almost sure compactness of the resulting tree, under the assumption
that this sequence is non-increasing. In [13], Haas describes how the height of the tree explodes
when n→∞ under the assumption that λn ≈ nα, with α ≥ 0.

Our goal is to define a more general version of this model, in which the branches are replaced
by arbitrary (and possibly random) measured metric spaces, and to investigate the compactness
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Figure 1: Gluing of circles of radii λn = n−3/5, with weights wn = n−3/2. The Hausdorff dimension of
the resulting metric space is (103 −

√
5).

and the Hausdorff dimension of the resulting metric space. As we will see, in this broader context,
a striking phenomenon (absent from [7]) pops up. In all the paper we will work with

(λn)n≥1 and (wn)n≥1,

two sequences of non-negative real numbers that will be the scaling factors and weights of the
metric spaces that we glue. All the scaling factors (λn)n≥1 are considered strictly positive, but the
weights, except for the first one w1, can possibly be null.

Definition of the model and main results Let us first present a simpler version of our
construction, in which we construct a tree through an aggregation of segments. For now the
branches, which we denote (bn)n≥1, are segments of length (λn)n≥1, rooted at one end and endowed
with the Lebesgue measure normalised so that their respective total measure is (wn)n≥1 (or endowed
with the null measure for branches with vanishing weight). We then define a sequence (Tn)n≥1 of
increasing trees by gluing those branches as follows. First, T1 = b1. Then, if Tn is constructed,
we build Tn+1 by first sampling a point Xn chosen proportionally to the measure µn obtained by
aggregating the measures concentrated on the branches b1, . . . ,bn and then gluing bn+1 onto Tn
by identifying its root with Xn. Let T ∗ be the increasing union of the trees Tn for n ≥ 1 and T be
the completion of T ∗. Note that if (wn) = (λn), this model coincides with the one studied in [7].

We can compute the Hausdorff dimension of the resulting tree in the case where (λn) and (wn)

behave like powers of n, say λn = n−α and wn = n−β . We define L := (T \ T ∗) to which we refer
as the set of leaves of T . In this particular case it coincides, up to a countable set, with the set of
points x such that T \ {x} remains connected. In the above context a trivial consequence of our
main theorem is that T is a.s. compact and

dimH(L) =
2β − 1− 2

√
(β − 1)(β − α)

α
if β > 1 and α < 1,

=
1

α
otherwise,

where dimH(X) stands for the Hausdorff dimension of the metric space X, see Section A.2.
Note that, since we can check that the dimension of the skeleton T ∗ is always 1, we can recover

the dimension of T as dimH(T ) = max(1,dimH(L)). We see that dimH(L) = 1
α as in [7] for most

values of β, however, a new phenomenon, absent from [7], happens in the case β > 1 (the sum of
the weights is finite) and α < 1 (the total length is infinite). In this case, the Hausdorff dimension
of T depends in a non-trivial manner on α and β.
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Now we want to generalise it to sequences (bn) of more general metric spaces that we call blocks,
which can be random and possibly more elaborate than just segments. Specifically, our blocks are
based on the distribution of a random pointed measured compact metric space, (B,D, ρ, ν), with
underlying set B, distance D, distinguished point ρ and endowed with a probability measure ν. We
sometimes denote it B by abuse of notation when no confusion is possible and we refer to it as the
underlying random block. We consider a sequence ((Bn,Dn, ρn, νn))n≥1 of i.i.d. random variables
with the distribution of (B,D, ρ, ν) and define our blocks by setting

∀n ≥ 1, (bn,dn,ρn,νn) := (Bn, λn · Dn, ρn, wn · νn), (1)

meaning that we dilate all the distances in the space Bn by the factor λn and scale the measure
by wn. We suppose that, λn ≈ n−α for some α > 0, and wn ≈ n−β for some β ∈ R, in some loose
sense which we make precise in the sequel. For technical reasons, we have to separate the case
β < 1, the case β > 1 and β = 1. This gives rise to the three hypotheses Hyp. ©α,β , Hyp. �α,β
and Hyp. �α,1. For any d ∈ [0 ,∞), we will introduce the Hypothesis Hd and suppose that the
distribution of our underlying random block (B,D, ρ, ν) satisfies this hypothesis for some d ≥ 0.
This hypothesis ensures that our random block exhibits a d-dimensional behaviour. We set out all
these hypotheses just below the statement of our theorem.

Except in Section 2.1, we will always assume that the blocks are of the form (1).
This is implicit in all our results.

In this extended setting, we can perform the same gluing algorithm and build a sequence (Tn)n≥1
of random compact metric spaces by iteratively gluing the root of bn+1 onto a point chosen in Tn
according to the measure µn obtained as the sum of the measures of the blocks b1, . . . ,bn. Again
T ∗ =

⋃
n≥1 Tn is called the skeleton of the construction and its completion is still denoted T . See

Figure 1 for non-isometric, non-proper representation in the plane of a simulation of this model,
with B chosen to be almost surely a circle of unit length. As for the case of segments, we refer to
L = (T \ T ∗) as the set of leaves of the construction. We can now state our main theorem.

Theorem 1. Suppose that there exists d ≥ 0, such that (B,D, ρ, ν) satisfies Hypothesis Hd, and
α > 0 and β ∈ R such that the sequences (wn) and (λn) satisfy either Hyp. �α,β or Hyp. ©α,β, or
Hyp. �α,1. Then, almost surely, the structure T resulting from the construction is compact, and

dimH(L) =
2β − 1− 2

√
(β − 1)(β − αd)

α
, if β > 1 and α <

1

d
,

=
1

α
otherwise.

Remark that for β > 1 the dimension of the set L depends on the geometry of the underlying
random block through d, its dimension. For β ≤ 1, it is not the case, and actually the theorem
remains true under much weaker hypotheses for the distribution of (B,D, ρ, ν), namely that ν is
not almost surely concentrated on {ρ}, and that ∀k ≥ 0,E

[
(diam(B))k

]
< ∞, where diam(·)

denotes the diameter of a metric space. We could even replace the assumption that the blocks
((Bn,Dn, ρn, νn))n≥1 are i.i.d. by some weaker assumption but we do not do it for the sake of
clarity. The proofs when β ≤ 1 are quite short and the interested reader can easily generalise them
to a more general setting.

Hypotheses of the theorem Let us define and discuss the precise hypotheses of our theorem.
First, let us describe the assumptions that we make on the sequences (λn) and (wn). We define

Wn =

n∑
k=1

wk,

and for all ε > 0, we set

Gε :=
{
k ≥ 1

∣∣ wk ≥ k−β−ε, λk ≥ k−α−ε} , (2)

and also
Gεn :=

{
k ∈ Jn , 2nK

∣∣ wk ≥ n−β−ε, λk ≥ n−α−ε} . (3)
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dimH(L)

α

β

Figure 2: The plot represents the Hausdorff dimension of the leaves as a function of α and β, the
dimension d being fixed to 1. The expression obtained for β > 1 and α < 1

d can be rewritten

as d +
(
√
β − αd−√β − 1)2

α
This expression is always larger than d and smaller than 1

α , and it is
decreasing in α and β on the domain on which we consider it. When β → 1, it converges to the value
1
α so that the function (α, β) 7→ dimH(L) is continuous on the domain R∗

+ × R.

As said earlier, we separate the case β < 1, the case β > 1 and the case β = 1.

Hypothesis©α,β. We have α > 0 and β < 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤ n−β+o(1).
Furthermore Wn = n1−β+o(1) and for all ε > 0,

lim inf
n→∞

∑n
k=1 wk1{k∈Gε}∑n

k=1 wk
> 0.

The last display ensures that for all ε > 0, the set Gε contains asymptotically a positive pro-
portion of the total weight.

Hypothesis �α,β. We have α > 0 and β > 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤ n−β+o(1).
Furthermore, for all ε > 0,

#Gεn =
n→∞

n1+o(1).

Under the stronger assumption λn = n−α+o(1) and wn = n−β+o(1), Hypothesis �α,β holds if
β > 1 (resp. Hypothesis ©α,β , if β < 1). The case β = 1 is slightly different and in this case we set

Hypothesis �α,1. We have α > 0 and β = 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤ n−1+o(1).
Furthermore, for all ε > 0,

1

log log logN

N1+ε∑
k=N

wk
Wk

1{k∈Gε} −→
N→∞

+∞.

Note that this last hypothesis requires in particular that Wn → ∞ as n → ∞. Now let us
define Hypothesis Hd, for any d ≥ 0, which will ensure that our random underlying block has the
appropriate d-dimensional behaviour.

Hypothesis Hd. The law of the block (B,D, ρ, ν) satisfies the following conditions:

(i) •If d = 0, the block B is a finite metric space which is not a.s. reduced to a single point and
such that the measure ν satisfies ν({x}) > 0, for all points x ∈ B.
•If d > 0, there exists an increasing function ϕ : [0 , 1] → [0 , d/2], satisfying lim

r→0
ϕ(r) = 0,

such that almost surely, there exists a (random) r0 ∈ (0 , 1) such that

∀r ∈ [0 , r0), ∀x ∈ B, rd+ϕ(r) ≤ ν (B(x, r)) ≤ rd−ϕ(r). (?r0)

(ii) Let Nr(B) be the minimal number of balls of radius r needed to cover B. Then

E [Nr(B)] ≤ r−d+o(1) as r → 0.
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(iii) For all k ≥ 0, we have E
[
diam(B)k

]
<∞.

Here B(x, r) is the open ball centred at x with radius r and the notation diam(B) denotes the
diameter of B, defined as the maximal distance between two points of B. The conditions (i) and (ii)
ensure that the blocks that we glue together have dimension d. The condition (iii) ensures that the
blocks cannot be too big. In the paper, some results are stated under some weaker assumptions on
the distribution of random block (B,D, ρ, ν) and they are hence all still valid under Hypothesis Hd.

Motivations The assumptions of Theorem 1 are rather general and various known models fall
into our setting. First, let us cite two constructions that were already covered by the work presented
in [7]. Of course we have Aldous’ line-breaking construction of the CRT but let us also cite the work
of Ross and Wen in [19], in which the authors study a discrete model of growing trees and prove that
its scaling limit can be described as a line-breaking procedure à la Aldous using a Poisson process
of intensity tldt, with l an integer. The Hausdorff dimension of the resulting tree is then (l + 1)/l.
Our extended setting now also includes the Brownian looptree, defined in [6], which appears as
the scaling limit of the so-called discrete looptree associated with Barabási-Albert model. This
random metric space also has a natural construction through an aggregation of circles, and our
theorem proves that this object has almost surely Hausdorff dimension 2. These examples do not
really use our theorem in its full generality since their underlying block is deterministic. In fact,
Hypothesis Hd is very general and is satisfied (for the appropriate d ≥ 0) by many distributions
of blocks, including the Brownian CRT (d = 2), see [8], the Brownian map (d = 4), see [20, 15],
the θ-stable trees (d = θ+1

θ ), see [9]. Hence, our results can apply to a whole variety of such
constructions, with a very general distributions for the blocks, and we are currently working on
some examples in which this construction naturally arises as the limit of discrete models.

Indications on the proofs The computations of the dimension in Theorem 1 differ, depending
on the assumptions we make on α and β, and always consist of an upper bound, that we derive by
providing explicit coverings, and a lower bound that arises from the construction of a probability
measure satisfying the assumptions of Frostman’s lemma, see Lemma 20 in the Appendix for a
statement.

If we just assume that the scaling factors are smaller than n−α+o(1), we can prove that the
dimension is bounded above by 1

α for rather general behaviours of the weights. To do so, we adapt
arguments from [7] to our new setting. The essential idea behind the proof is that the sub-structure
descending from a block bn has size n−α+o(1), and so that one only needs to cover every block bn
with a ball of radius n−α+o(1) to cover the whole structure.

When α < 1
d and β > 1, although the sub-structure descending from a block bn may have

diameter of order n−α+o(1), we can also check that the index of the first block glued on block
n has index roughly nβ , which is large compared to n. Hence the diameter of the substructure
descending from bn is essentially due to bn itself. This gives us a hint that we can cover the whole
substructure descending from the block bn, using a covering of bn with balls that are really small
compared to the size of bn, and that it would lead to a more optimal covering. In fact we use these
two observations to recursively construct a sequence of finer and finer coverings, which lead to the
optimal upper-bound. The idea of the proof is presented in more details in Section 4.2.1.

Concerning the lower bounds, for all values of α and β, we can define a natural probability
measure µ̄ on T as the limit of (a normalised version of) the measure µn defined on Tn for every
n ≥ 1, see Section 3. In the case β ≤ 1, this probability measure only charges the leaves of T , and
an application of Lemma 20 gives the lower bound 1

α .
For β > 1, the measure µ̄ does not charge the leaves and so the preceding argument does

not work. We construct another measure as the sub-sequential limit of a sequence of measures
(πk) which are concentrated on sets of the form (T2nk \ Tnk) with (nk) chosen appropriately, see
Section 5.2.1 for a presentation of the idea of the proof. The limiting measure is then concentrated
on a strict subset of leaves and again, using Lemma 20 yields the appropriate lower bound.
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Related constructions Let us also cite some other models that have been studied in the
literature and which share some features with ours. First, the line-breaking construction of the
scaling limit of critical random graphs in [2] by Addario-Berry, Broutin and Goldschmidt, that of the
stable trees in [11] by Goldschmidt and Haas, and that of the stable graphs in [12] by Goldschmidt,
Haas and Sénizergues, use a gluing procedure that is identical to ours. Their constructions are
not directly handled by Theorem 1 but they fall in a slightly more general setting, for which our
proofs still hold. In [5], Borovkov and Vatutin study a discrete tree constructed recursively, which
corresponds to the "genealogical tree" of the blocks in our model. Last, in [18], Rembart and Winkel
study the distribution of random trees that satisfy a self-similarity condition (in law). They provide
an iterative construction of those trees in which infinitely many branches are glued at each step.

Plan of the paper In Section 2, we give a rigorous definition of our model, set up some useful
notation, and discuss some general properties. In the second section, we study the (normalised)
natural measure µ̄n on Tn and prove that it converges to a measure µ̄ on T under suitable as-
sumptions. In Section 4.1, we prove the almost sure compactness of T and some upper-bounds
on its Hausdorff dimension under some relatively weak hypotheses. In Section 4.2, we develop a
new (more involved) approach that allows us to obtain a better upper-bound for some parameters
for which the former fails to be optimal. In Section 5, we prove the lower bounds that match the
upper-bounds obtained in Section 4. It is again divided in two subsections, each providing a proof
that is only valid for some choices of parameters α and β. The Appendix A.2 contains a short
reminder of basic properties concerning Hausdorff dimension. The Appendices A.1, A.3 and A.4
contain some technical proofs that can be skipped at first reading.

Acknowledgements The authors would like to thank the anonymous referees for their valuable
comments which helped to improve the presentation of the manuscript.

2 General framework

In this section, we start by providing a precise definition of our model and then we investigate some
of its general properties.

2.1 Construction

Consider ((bn,dn,ρn,νn))n≥1 a sequence of compact pointed metric spaces endowed with a finite
Borel measure. Recall from the introduction the heuristics of our recursive construction. We define
T1 as the first block b1 endowed with its measure ν1. Then at each step, we construct Tn+1 from
Tn by gluing the root of the block bn+1 to a random point Xn ∈ Tn, which has distribution (a
normalised version of) µn. The measure µn+1 is defined as the sum of the measures µn and νn+1,
the measure supported by bn+1. We define T ∗ as the increasing union of all the Tn for n ≥ 1,
and its completion is denoted T . In the next paragraph, we describe formally how to construct
such growing metric spaces as subsets of a larger ambient space. The definitions here are rather
technical and the proofs in the paper do not use the details of the construction, so the reader can
skip this part at first reading.

Embedded construction We consider (U, δ) the Urysohn space, and fix a point u0 ∈ U . The
space U is defined as the only Polish metric space (up to isometry) which has the following extension
property (see [14] for constructions and basic properties of U): given any finite metric space X, and
any point x ∈ X, any isometry from X \ {x} to U can be extended to an isometry from X to U .
In the rest of the construction, we assume that the measured metric spaces ((bn,dn,ρn,νn))n≥1
are all embedded in the space U and that their root is identified to u0. From the properties of the
Urysohn space, this is always possible (see Appendix A.1 for a construction in the case of random
blocks).
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b6

T (b6)

b2

b5

ρ

b1x

[x]4
[x]1

T5

b4

ρ4 = X4

b3

Figure 3: Substructure descending from a set, and projection on a substructure, illustrating some
notation introduced in the paper in the case of the gluing of segments.

We introduce

`1(U, u0) :=

{
(xn)n≥1 ∈ UN∗

∣∣∣∣∣
∞∑
n=1

δ(xn, u0) < +∞
}
.

If we endow `1(U, u0) with the distance d((xn)n≥1, (yn)n≥1) =
∑∞
n=1 δ(xn, yn), it is an easy

exercise to see that it makes this space Polish. We can now construct the Tn recursively, by
T1 = {(x, u0, u0, . . . ) | x ∈ b1}, and identifying T1 to the block b1, we set µ1 = ν1. For n ≥ 1, the
point Xn is sampled according to µ̄n a normalised version of µn with total mass 1. The point Xn

is of the form
(
x
(n)
1 , x

(n)
2 , . . . , x

(n)
n , u0, . . .

)
and we set

Tn+1 := Tn ∪
{(
x
(n)
1 , x

(n)
2 , . . . x(n)n , x, u0 . . .

) ∣∣∣ x ∈ bn+1

}
.

We set µn+1 := µn+νn, where as in the preceding section, we see bn+1 as the corresponding subset
of Tn+1. Then T ∗ =

⋃
n≥1 Tn and T = (T ∗) is its closure in the space (`1(U, u0),d). At the end T

is a random closed subset of a Polish space.
In the rest of the paper, we will not refer to this formal construction of T and we will identify

bn with the corresponding subset in T . We recall the notation Wn =
∑n
k=1 wn for the total mass

of the measure µn.

2.2 Some notation

Let us introduce some notation that will be useful in the sequel, some of which is illustrated in
Figure 3. Recall that from now on, we always assume that the blocks are of the form (1).
• If (E,d, ρ) is a pointed metric space, and x ∈ E, we define ht(x), the height of x, as its

distance to the root d(ρ, x). We also denote ht(E) = supx∈E ht(x), the height of E. Let us consider
(B,D, ρ, ν), a random block of our model before scaling, and X a point of B which conditionally on
(B,D, ρ, ν), has distribution ν. We denote

H := ht(X) = D(ρ,X), (4)

the height of a uniform random point in the block. Remark that Hypothesis Hd implies that
E
[
H2
]
< ∞, and that P (H > 0) > 0. Some of our results are stated under these weaker assump-

tions.
• Whenever we sample the point Xn under µ̄n, we do it in the following way: first we sample

Kn such that for all 1 ≤ k ≤ n, P (Kn = k) = wk
Wn

and then, conditionally on Kn = k, the point Xn

is chosen on the block bk using the normalised version of the measure νk. Whenever Kn = k, we
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say that bn+1 is grafted onto bk and write bn+1 → bk. Remark that this entails that Xn ∈ bk, but
this condition is not sufficient in the case where Xn belongs to several blocks (which only happens
if the measures carried by the blocks have atoms). We denote

µ̄∗n := law of (Kn, Xn), (5)

seen as a measure on
⊔n
k=1{k} × bk. In this way, the random variables ((Kn, Xn))n≥1 are inde-

pendent with respective distributions (µ̄∗n)n≥1. We remain loose on the fact that we sometimes
consider the blocks as abstract metric spaces and at other times we see them as subsets of T . It is
implicit in the preceding discussion that everything is expressed conditionally on the sequence of
blocks (bn)n≥1.
• We simultaneously construct a sequence of increasing discrete trees (Tn)n≥1 by saying that

for n ≥ 1, the tree Tn has n nodes labelled 1 to n and i is a child of j if and only if bi → bj . Also
define T their increasing union. We denote ≺ the genealogical order on N∗ induced by this tree.
We denote dT(i, j) for the graph distance between the nodes with label i and j in this tree and
htT(·) for their height.
• For x ∈ T , we define [x]n, the projection of x on Tn, as the unique point y of Tn that minimizes

the distance d(x, y).
• Similarly, for k ≥ 1, we define [k]n, the projection of k on Tn, as the unique node i ≤ n that

minimizes the distance dT(i, k).
• If S is a subset of a block bn for some n ≥ 1 then we define T (S), the substructure descending

from S as
T (S) := S ∪

⋃
i�n

[Xi−1]n∈S

bi.

If S = bn, this reduces to
T (bn) =

⋃
i�n

bi,

and we consider (T (bn),d,ρn) as a rooted metric space.
• Remark that if x ∈ T (bk) for some k ≥ 1 then we have [x]k ∈ bk and more generally, for any

n ≤ k, we have [x]n ∈ b[k]n .
• We often use the little-o notation and denote o(1) a deterministic function that tends to 0

when some parameter tends to 0 or ∞, depending on the context. For such functions that are
random, we write instead oω(1).

2.3 Zero-One law for compactness, boundedness and Hausdorff dimen-
sion

The main properties of T and L that we study are compactness and Hausdorff dimension. One can
check that some of these properties are constants almost surely by an argument using Kolmogorov’s
zero-one law.

Indeed, take the whole construction T and contract the compact subspace Tn into a single
point. We can easily check that the resulting space is compact (resp. bounded) iff the former is
compact (resp. bounded). Also, the subset L and its image after the contraction of Tn have the
same Hausdorff dimension. Now remark that the space that we just described only depends on the
randomness of the blocks and the gluings after n steps. Indeed, if we start at time n with a unique
point with weight Wn and then follow the procedure by gluing recursively bn+1, bn+2, . . . , we get
exactly the same space.

Hence, as this is true for all n, these properties only depend on the tail σ-algebra generated by
the blocks and the gluings, and are therefore satisfied with probability 0 or 1.

Remark 2. In the setting of [7], where the blocks are segments and the weights correspond to the
lengths of those segments, the authors proved that the event of boundedness and compactness for
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T coincide almost surely. This is not the case in our more general setting: consider the case of
branches with weights and lengths defined as

wn = 2n, λn = 2−n for n /∈
{

2k
∣∣ k ∈ N

}
,

w2k = 1, λ2k = 1, for k ∈ N.

In this case, an application of Borel-Cantelli lemma shows that a.s. for n large enough, no branch
bn is ever grafted onto a branch b2k for any k. It is then clear that the resulting tree is a.s. bounded
since the sum of the lengths of the branches bn for n /∈ {2k | k ∈ N} is finite, but it cannot be
compact since there exists an infinite number of branches with length 1.

2.4 Monotonicity of Hausdorff dimension

Let us present an argument of monotonicity of the Hausdorff dimension of L with respect to the
sequence (λn), on the event on which T is compact. Let (wn) be a sequence of weights and (λn)

and (λ′n) be two sequences of scaling factors such that for all n ≥ 1, we have λn ≥ λ′n. Suppose that
((Bn,Dn, ρn, νn))n≥1 is a sequence of random compact metric spaces endowed with a probability
measure. Then, let T (resp. T ′) be the structure constructed using the blocks (bn,dn,ρn,νn) =

(Bn, λn · Dn, ρn, wn · νn), for n ≥ 1, (resp. (b′n,d
′
n,ρ

′
n,ν

′
n) = (Bn, λ

′
n · Dn, ρn, wn · νn)). Note that

since we use the same sequence of weights we can couple the two corresponding gluing procedures.
Let f be the application that maps each of the block bn to the corresponding b′n. Recall here

that we see the blocks as subsets of the structure. We can verify that f : T ∗ −→ (T ′)∗, is 1-
Lipschitz. We can then extend uniquely f to a function f̂ : T −→ T ′, which is also 1-Lipschitz.
Suppose T is compact. Then its image f̂(T ) is compact, hence closed in T ′. Since (T ′)∗ ⊂ f̂(T )

and (T ′)∗ is dense in T ′, we have f̂(T ) = T ′ and so f̂ is surjective. Now since (T ′)∗ = f̂(T ∗), we
also have L′ = f̂(L), and since f̂ is Lipschitz,

dimH(L′) ≤ dimH(L). (6)

3 Study of a typical point

In this section we study the height of a typical point of Tn, i.e. the distance from the root to a
point sampled according to µ̄n. The proofs in this section are really close to those of [7, Section 1],
to which we refer for details.

3.1 Coupling with a marked point

We construct a sequence of points (Yn)n≥1 coupled with the sequence (Tn)n≥1 in such a way that
for all n ≥ 1, the point Yn has distribution µ̄n conditionally on Tn and such that the distance
from Yn to the root is non-decreasing in n. For technical reasons, we in fact define a sequence
((Jn, Yn))n≥1 such that for any n ≥ 1, (Jn, Yn) has distribution µ̄∗n conditionally on (Tn, Tn), see
(5). The properties of this construction are stated in the following lemma.

Lemma 3. We can couple the construction of ((Tn, Tn))n≥1 with a sequence ((Jn, Yn))n≥1 such
that for all n ≥ 1,

(i) we have Jn ∈ {1, . . . , n} and Yn ∈ bJn ,

(ii) conditionally on (Tn, Tn), the couple (Jn, Yn) has distribution µ̄∗n,

(iii) for all 1 ≤ k ≤ n, ([Jn]k, [Yn]k) = (Jk, Yk).

Furthermore, under the assumption Hd(iii), the sequence (Yn)n≥1 almost surely converges in T iff

∞∑
n=1

λnwn
Wn

1{λn≤1} <∞ and
∞∑
n=1

wn
Wn

1{λn>1} <∞. (7)
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Note that if either

W∞ :=

∞∑
n=1

wn <∞ or
∞∑
n=1

wnλn
Wn

<∞,

then (7) is satisfied, and this is the case under the assumptions of Theorem 1. In this case we let

Y := lim
n→∞

Yn.

Proof. Let n ≥ 2. Conditionally on Tn and Tn, sample a couple (Jn, Yn) under the measure µ̄∗n.
Then two cases may happen:

• with probability 1 − wn/Wn : we have Jn < n, so the point Yn belongs to Tn−1, that is
[Yn]n−1 = Yn , and conditionally on this event ([Jn]n−1, [Yn]n−1) has the same distribution
as (Jn−1, Yn−1),

• with probability wn/Wn : we have Jn = n. In this case the point Yn is located on the last
block bn grafted on Tn−1. Conditionally on this event (if wn > 0), Yn is distributed on this
block under the measure νn and the couple ([Jn]n−1, [Yn]n−1) is independent of the location
of Yn on the n-th block and has the same distribution as (Jn−1, Yn−1).

From this observation we deduce that

(Tn−1,Tn−1, [Jn]n−1, [Yn]n−1) = (Tn−1,Tn−1, Jn−1, Yn−1)

in distribution and more generally, (Tk,Tk, [Jn]k, [Yn]k) = (Tk,Tk, Jk, Yk) in distribution for all
1 ≤ k ≤ n.

Reversing this observation, we can construct a sequence (Jn, Yn)n≥1 (coupled to the Kn and Xn

involved in the construction of T ∗) such that conditionally on Tn and Tn, the couple (Jn, Yn) has
distribution µ̄∗n and that for all 1 ≤ k ≤ n, we have ([Jn]k, [Yn]k) = (Jk, Yk). To do so, we consider:

• a sequence (Un)n≥1 of uniform random variables on (0 , 1),

• a sequence (Zn)n≥1 of points respectively sampled on (bn)n≥1 with respective distribution
(a normalised version of) the measure (νn)n≥1 whenever it is non-zero, (set Zn = ρn a.s.
whenever νn is trivial),

• a sequence (In, Pn)n≥1, sampled with respective distributions (µ̄∗n)n≥1,

independently for all these random variables. Then we construct (Kn, Xn) and (Jn, Yn) as follows.
We set (J1, Y1) = (1, Z1). Then recursively for n ≥ 1, we assume that Xn−1 (if n 6= 1) and Yn have
been constructed:

• if Un+1 ≤ wn+1

Wn+1
, then we set (Kn, Xn) := (Jn, Yn), Jn+1 := n+ 1 and Yn+1 := Zn+1,

• if Un+1 >
wn+1

Wn+1
, then we set (Kn, Xn) := (In, Pn), Jn+1 := Jn and Yn+1 := Yn.

We can check that with this construction, for all 1 ≤ k ≤ n, we have ([Jn]k, [Yn]k) = (Jk, Yk),
the (Kn, Xn)n≥1 are independent with the appropriate distribution and for all n ≥ 1 conditionally
on Tn and Tn the couple (Jn, Yn) has distribution µ̄∗n. Notice that the distance from Yn to the root
ρ is non-decreasing. Denoting T0 = {ρ} and Y0 = ρ, for all 0 ≤ m ≤ n we have

d(Yn, Ym) = d(Yn, Tm) =

n∑
k=m+1

d(Zk, ρk)1{
Uk≤

wk
Wk

}, (8)

which is equal in distribution to
n∑

k=m+1

λkHk1{
Uk≤

wk
Wk

},
where the (Hk)k≥1 are i.i.d., independent of the (Uk)k≥1 and have the law of H, see (4). Under
Hd(iii) the random variableH has a finite second moment, and an application of Kolmogorov’s three
series theorem tells us that the almost sure convergence of

∑
k≥1 λkHk1{

Uk≤
wk
Wk

} is equivalent to

(7). In this case, (Yn)n≥1 is a Cauchy sequence in the complete space T and hence it converges.
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Also notice that with this construction, the discrete counterpart of (8) is

dT(Jn, Jm) =

n∑
k=m+1

1{
Uk≤

wk
Wk

} and so htT(Jn) =

n∑
k=2

1{
Uk≤

wk
Wk

}. (9)

Remark that for any θ ∈ R,

E [exp (θ htT(Jn))] = E

[
exp

(
θ

n∑
k=2

1{
Uk≤

wk
Wk

}
)]

=

n∏
k=2

(
Wk − wk
Wk

· 1 +
wk
Wk

eθ
)

= exp

(
n∑
k=2

log

(
1 + (eθ − 1)

wk
Wk

))

≤ exp

(
(eθ − 1)

n∑
k=2

wk
Wk

)
, (10)

where in the last line we use the inequality log(1 + x) ≤ x, valid for all x > −1.

3.2 Convergence of the measure µ̄n
Proposition 4. Assume that E

[
H2
]
< ∞ and P (H > 0) > 0 and that (7) holds. Then almost

surely there exists a probability measure µ̄ on T such that

µ̄n −→
n→∞

µ̄ weakly.

Furthermore, conditionally on (T , µ̄), the point Y is distributed according to µ̄ almost surely. If
W∞ <∞, then µ̄ = 1

W∞
µ∞, and µ̄ is concentrated on T ∗. If W∞ =∞, then µ̄ is concentrated on

L.
The proof of the last proposition is very similar to the proof of [7, Theorem 4], and is left

to the reader. We can easily check that the assumptions of Proposition 4 are satisfied under the
hypotheses of Theorem 1. We now state an additional lemma that will be useful later in the paper.

Lemma 5. Suppose that the assumptions of Proposition 4 hold, that µ̄ is concentrated on the set
L and that the sequence of weights satisfies wn

Wn
≤ n−1+o(1). Then almost surely, we have

µ̄(T (bn)) ≤ n−1+oω(1),

where the random function oω(1) is considered as n→∞.

Proof. Let us introduce some notation. If i ≥ n, we set M (n)
i := µ̄i(T (bn)) the relative mass of

the tree descending from bn in Ti. As i varies, this sequence of random variables evolves like one
of Pemantle’s time-dependent Pólya urns (see [17]) and is therefore a martingale. The topological
boundary of T (bn) in T is either the empty set or the singleton {ρn}, thus it has zero µ̄-measure1.
It follows from Portmanteau theorem that the quantity of interest µ̄(T (bn)) corresponds to M (n)

∞ ,
the almost sure limit of this positive martingale. We can write

M
(n)
i+1 =

(
Wi

Wi+1

)
M

(n)
i +

wi+1

Wi+1
1{

Ui+1≤M(n)
i

},
with (Ui)i≥1 a sequence of i.i.d. random variables, uniform on (0 , 1). We are going to show by
induction on k ≥ 1 that there exists a function o(1) as n→∞ such that for all i ≥ n, we have

E
[
(M

(n)
i )k

]
≤ n−k+o(1).

1Indeed, under the assumptions of the lemma, µ̄ is carried on the leaves.
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Note that we use the notation o(1) for all such functions, but that in this proof, the corresponding
functions can depend on k but not on i.
• For k = 1, the result follows from the fact that (M

(n)
i )i≥n is a martingale and that almost

surely M (n)
n ≤ wn

Wn
≤ n−1+o(1).

• Let k ≥ 2. Suppose that the result is true for all 1 ≤ l ≤ k − 1. Then

E
[(
M

(n)
i+1

)k ∣∣∣∣M (n)
i

]
= E

[((
Wi

Wi+1

)
M

(n)
i +

wi+1

Wi+1
1{

Ui+1≤M(n)
i

})k ∣∣∣∣∣M (n)
i

]

=

(
Wi

Wi+1

)k (
M

(n)
i

)k
+ E

[
k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l (
M

(n)
i

)l( wi+1

Wi+1
1{

Ui+1≤M(n)
i

})k−l ∣∣∣∣∣M (n)
i

]

=

(
Wi

Wi+1

)k (
M

(n)
i

)k
+

k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l (
M

(n)
i

)l+1
(
wi+1

Wi+1

)k−l

≤
(
M

(n)
i

)k(( Wi

Wi+1

)k
+ k · wi+1

Wi+1

(
Wi

Wi+1

)k−1)
+

k−2∑
l=0

(
k

l

)(
M

(n)
i

)l+1
(
wi+1

Wi+1

)k−l
.

Now taking the expectation and using the fact that ∀x ∈ [0 , 1], (1 − x)k + k(1 − x)k−1x ≤ 1, we
get, using the induction hypothesis,

E
[
(M

(n)
i+1)k

]
≤ E

[
(M

(n)
i )k

]
+

k−2∑
l=0

(
k

l

)
E
[(
M

(n)
i

)l+1
](

wi+1

Wi+1

)k−l

≤ E
[
(M

(n)
i )k

]
+

k−2∑
l=0

(
k

l

)
n−(l+1)+o(1)(i−1+o(1))k−l.

Summing over all i we get that, for all i ≥ n:

E
[
(M

(n)
i )k

]
≤ E

[
(M (n)

n )k
]

+

∞∑
j=n

k−2∑
l=0

(
k

l

)
n−l−1+o(1)j−k+l+o(1)

≤ E
[
(M (n)

n )k
]

+

k−2∑
l=0

(
k

l

)
(n−l−1+o(1))

∞∑
j=n

j−k+l+o(1)

≤ n−k+o(1) +

k−2∑
l=0

(
k

l

)
n−l−1+o(1)n−k+l+1+o(1)

≤ n−k+o(1).

This finishes the proof by induction. This property passes to the limit by dominated convergence
so, for all n ≥ 1, we have E

[
(M

(n)
∞ )k

]
≤ n−k+o(1). For N an integer and ε > 0,

P
(
M (n)
∞ ≥ n−1+ε

)
≤ nN−NεE

[
(M (n)
∞ )N

]
≤ n−Nε+o(1).

If we take N large enough, those quantities are summable and so, using the Borel-Cantelli lemma we
get that with probability one, M (n)

∞ ≤ n−1+ε for all n large enough. This completes the proof.

4 Upper-bounds and compactness for the (α, β)-model

In this section, we compute upper-bounds on the Hausdorff dimension of the set L. We first prove
Proposition 6, which tells us that, under the condition that λn ≤ n−α+o(1) for some α > 0 and
in a very general setting for the behaviour of the weights (wn), the dimension is bounded above
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by 1/α. The techniques used in the proof are very robust, and do not depend on the geometry
of the blocks nor on the sequence of weights. In a second step, in Proposition 7, we handle the
more specific case where the underlying block satisfies Hypotheses Hd and that λn ≤ n−α+o(1) for
some 0 < α < 1/d and wn ≤ n−β+o(1) for some β > 1. In the proof of this proposition, a careful
analysis allows us to refine some of the arguments of the previous proof and prove upper-bounds on
the Hausdorff dimension of L that are below the "generic" value 1/α, given by Proposition 6. The
techniques used for the proof are new and really take into account the behaviour of the weights
and the geometry of the blocks.

4.1 Upper-bound independent of the weights and compactness

Notice that under Hd(iii), the underlying block (B,D, ρ, ν) satisfies, for any N > 0,

P (diam(B) ≥ nε) ≤ E
[
diam(B)N

]
n−Nε

,

which is summable if N is large enough. Hence if (Bn) is an i.i.d. sequence with the same law as
B, then using the Borel-Cantelli lemma we have almost surely,

diam(Bn) ≤ noω(1). (11)

Proposition 6. Suppose λn ≤ n−α+o(1), with α > 0, and that for all n, we have Wn ≤ nγ for
some γ > 0. Suppose also that (11) holds. Then the tree-like structure T is almost surely compact
and we have

(i) dH(Tn, T ) ≤ n−α+oω(1),
(ii) dimH(L) ≤ 1

α .

Since our model is invariant by multiplying all the weights by the same constant, we can always
assume that w1 ≤ 1. Hence, the assumption in the lemma is always satisfied if Wn grows at most
polynomially in n, which is the case if Hyp. �α,β , Hyp. �α,1 or Hyp.©α,β is fulfilled, for any choice
of α > 0 and β ∈ R.

Proof of Proposition 6. We start with point (i). First,

dH(T2i , T2i+1) ≤ sup
2i+1≤k≤2i+1

λk diam(Bk) + sup
2i+1≤k≤2i+1

d(ρk, T2i).

For any 2i ≤ k ≤ 2i+1 − 1, the point ρk+1 in the tree is identified with the point Xk, taken under
the measure µ̄k on the tree Tk. From our construction in Section 2.2, the point Xk belongs to some
bKk , and the couple (Kk, Xk) is sampled with measure µ̄∗k. Bounding the contribution of every
block along the ancestral line with their maximum, we get

d(Xk, T2i) ≤
(

sup
2i+1≤k≤2i

λk diam(Bk)

)
htT(Kk). (12)

Now using Lemma 24 in Appendix A.4, we know that there exists a constant C > 0 such that∑n
i=1

wi
Wi
≤ C log n. Combining this with equation (10) (which holds for Kk because it has the

same distribution as Jk) and Markov inequality, we get for any u > 0,

P (htT(Kn) ≥ u log n) ≤ exp ((C(e− 1)− u) log n) = nC(e−1)−u.

The last display is summable in n if we choose u large enough. Hence using the Borel-Cantelli
lemma, we almost surely have htT(Kn) ≤ u log n for n large enough. Hence, in (12) we have
htT(Kk) = (2i)o

ω(1). Combining this with (11) and the upper-bound on λn we get,

dH(T2i , T2i+1) ≤ (2i)−α+o
ω(1).
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Replacing i by k and summing the last display over k ≥ i,
∞∑
k=i

dH(T2k , T2k+1) ≤ (2i)−α+o
ω(1),

hence the sequence of compact sets (T2i) is a.s. a Cauchy sequence for Hausdorff distance between
compacts of the complete space T . So the sequence (Tn)n≥1 is also Cauchy because of the increasing
property of the construction, and T is then almost surely compact. Moreover we have, a.s.

dH(T2i , T ) ≤ (2i)−α+o
ω(1),

and this entails (i). Remark that since ht(T (bn)) ≤ dH(Tn−1, T ), this implies that a.s. we have

ht (T (bn)) ≤ n−α+oω(1). (13)

We now prove point (ii). Let ε > 0. From (13), the collection of balls B(ρn, n
−α+ε), for n ≥ N ,

where N is an arbitrary number, is a covering of L whose maximal diameter tends to 0 as N →∞.
Besides, if we fix δ, for N large enough, and s > 1

α−ε , we have:

Hδs(L) ≤
∞∑
n=N

diam(B(ρn, n
−α+ε))s ≤

∞∑
n=N

2sn(−α+ε)s −→
N→∞

0.

Hence for all such s, we have Hs(L) = 0 and so dimH(L) ≤ 1
α−ε . Letting ε → 0 finishes the

proof.

4.2 Upper-bound for α < 1/d and β > 1

Now let us study the specific case where the blocks satisfy Hypothesis Hd and that λn ≤ n−α+o(1)
for some 0 < α < 1/d and wn ≤ n−β+o(1) for some β > 1. The preceding Proposition 6 still holds
but it is not optimal in this specific case. As in the previous proof we construct explicit coverings
of the set L in order to bound its Hausdorff dimension. We construct them using an iterative
procedure, which strongly depends on the dimension d and the exponent β. Starting from the
covering given in the proof of Proposition 6, the procedure provides at each step a covering that is
"better" in some sense than the preceding. In the limit, we prove the bound given in Proposition 7,
which explicitly depends on β and d.

Proposition 7. Suppose 0 < α < 1
d and β > 1 and that for all n ≥ 1, λn ≤ n−α+o(1) and

wn ≤ n−β+o(1). Suppose also that Hd(iii) and Hd(ii) hold for some d ≥ 0. Then the Hausdorff
dimension of L almost surely satisfies:

dimH(L) ≤ 2β − 1− 2
√

(β − 1)(β − αd)

α
.

For our purposes, we will work with countable sets of balls of T , i.e. sets of the form

R = {B (xi, ri) | ∀i ≥ 1, xi ∈ T , ri > 0} ,

where B(x, r) denotes the open ball centred at x with radius r. Let us introduce some notation. If
R is such a set of balls of T , we say that R is a covering of the subset X ⊂ T if X ⊂ ⋃B∈RB. We
can also define the s-volume of R as

Vols(R) :=
∑
B∈R

diam(B)s.

In this way if the diameters of the balls that belong to R are bounded above by some δ > 0, and
R is a covering of X, then Hδs(X) ≤ Vols(R), see Section A.2 in the Appendix for the definition of
Hδs(X). Also, if R and R′ are collections of balls and R covers X and R′ covers X ′, then obviously
R ∪R′ is a countable set of balls that covers X ∪X ′ and for any s, we have

Vols(R ∪R′) ≤ Vols(R) + Vols(R
′). (14)

In what follows, we construct random sets of balls and we prove that they are coverings of our set
L, which allow us to prove upper-bounds on the Hausdorff dimension of L.
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4.2.1 An idea of the proof

We briefly explain the idea of the proof before going into technicalities. The goal will be to provide
a covering of each T (bn), for all n large enough. Since from the definition of L we have for any
N ≥ 1,

L ⊂
⋃
n≥N

T (bn), (15)

then the union over all n large enough of coverings of the T (bn) is indeed a covering of L.
We recall how we derived the upper-bound 1

α for the Hausdorff dimension of L in the proof
of Proposition 6 (ii). The idea is to consider for every n ≥ 1, a ball of radius n−α+ε, say centred
at ρn. For n large enough, this ball covers T (bn) by (13). Thanks to (15), the set of balls
{B(ρn, n

−α+ε) | n ≥ N}, for any N ≥ 1, is a covering of L.
For β ≤ 1, this covering is good because, as a block of index n has relative weight wn/Wn which

can be of order up to n−1+o(1) when it appears, the indices of the first blocks that are glued on bn
can have also an index of the order of n, and so a height of order up to n−α. On the contrary, if
β > 1, we will see that the first block to be grafted on bn has index roughly of order nβ , and so a
height at most of order n−αβ , which is very small compared to n−α. This gives us a hint that we
can provide a "better" covering using a big number of smaller balls to cover bn instead of just a
"big" one, see Figure 4. We will use this rough idea to provide an algorithm which will construct
finer and finer (random) coverings. Let us fix β > 1 from now on and take s > d, and explain
informally how the algorithm works.

Goal: At each step i of the algorithm, we want to construct for all n ≥ 1 a set of balls Rsn,i
such that, for n large enough, this set of balls is a covering of T (bn). Such a set of balls Rsn,i
will have an s-volume of roughly nfi(s), say. From step to step, we try to lower the s-volume of
the set of balls constructed by the algorithm, which corresponds to lowering this exponent fi(s).
Whenever we manage to get an exponent below −1, we stop the algorithm. We will see that it
implies that the Hausdorff dimension of L is lower or equal to s.

Step 1: The first step of the algorithm is deterministic and corresponds to what we did in
the proof of Proposition 6. For each n we take a ball centred at ρn of radius roughly n−α (in fact
n−α+ε but let us not consider these technicalities for the moment). As seen before, for n large
enough, it is a covering of T (bn). The s-volume of this covering is then of order n−αs. Denote
f1(s) = −αs. If f1(s) < −1, stop. Otherwise, proceed to step 2.

Step 2: As represented in Figure 4a, decompose T (bn) as

T (bn) = bn ∪
⋃

bk→bn

T (bk).

Since the first block grafted on the block bn has typically an index that is very large compared to
n, we design a covering using smaller balls. We fix γ > 1 and decide to cover bn with balls of size
n−αγ , so that the blocks (and their descending substructure) of index > nγ are included in these

balls, see Figure 4b. Since the blocks have dimension d, this covering uses roughly
(
n−α

n−αγ

)d
balls,

each with s-volume n−αγs. So the total volume used is around n−αd+αγd−αγs.
But doing so, we forgot to cover the blocks bk such that bk → bn and k ≤ nγ . To take care of

them, we use the preceding step of the algorithm and cover each of them with a ball of radius k−α,
see Figure 4c. Recalling that s ≤ 1/α, we get that in expectation, these balls have a s-volume of
order

nγ∑
k=n+1

P (bk → bn) k−αs ≈ n−β
nγ∑

k=n+1

k−αs ≈ n−β+γ(1−αs).

Hence, the total s-volume used to cover T (bn) has order nmax(−β+γ(1−αs),−αd+αγd−αγs). Since we
want to construct a covering having the smallest possible volume, we can optimize on γ the last
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bn

T (bk1)

T (bk2)

(a) The substructure T (bn)

bn

T (bk1)

T (bk2)

n−αγ

(b) A covering of bn with small balls

bn

T (bk1)

T (bk2)

(c) The remaining substructures are covered
using the preceding step

Figure 4: Explanation of Step 2 of the algorithm

exponent. Under our assumptions, one can check that it is minimal if we take γ := β−αd
1−αd > 1. We

then get

max(−β + γ(1− αs),−αd+ αγd− αγs) =
−αd+ αβd− αβs+ α2ds

1− αd := f2(s).

We can check that the new exponent f2(s) is smaller than f1(s) = −αs. Hence we can cover T (bn)

with balls using a total s-volume of a lower order than the preceding step. If f2(s) < −1, stop.
Otherwise, proceed to step 3.

Step i: Now we recursively repeat the preceding step. Thanks to step i − 1, we know that
we can provide a covering of T (bn) for any n, using a s-volume of approximately nfi−1(s). Now
we fix a number γ > 1 and we cover the block bn with balls of radius n−αγ . As in step 2, this
covering has a s-volume of order n−αd+αγd−αγs. Then we take care of the bk such that bk → bn
and k < nγ . To cover them we use step i− 1, which ensures that we can do that for each k with a
s-volume roughly kfi−1(s). Hence the expectation on the s-volume for all these balls is, if s is such
that fi−1(s) ≥ −1,

nγ∑
k=n+1

P (bk → bn) kfi−1(s) ≈ n−β
nγ∑

k=n+1

kfi−1(s) ≈ n−β+γ(1+fi−1(s)).

We then choose the optimal γ > 1 that minimizes the maximum of the exponents

max(−αd+ αγd− αγs,−β + γ(1 + fi−1(s))).

We denote γi(s) the value for which the minimum is obtained, which depends on s. The first
exponent is linearly decreasing with γ, the other one is linearly increasing, and their value for γ
tending to 1, satisfy −αs > −β + 1 + fi−1(s). Hence, the value of γi(s) is the value for which the
two of them are equal, and this value is strictly greater than 1. We call this minimal exponent
fi(s). If fi(s) < −1, stop. Otherwise, proceed to step i+ 1.
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Upper-bound on Hausdorff dimension Now, suppose s is such that fi(s) is well-
defined and fi(s) < −1, for some i ≥ 1. If we cover every T (bn) using the covering provided by
step i of the algorithm, then the union of all those coverings covers L. Furthermore, we only need
to cover all the T (bn) for n sufficiently large to cover L, so we can have a covering of L using
arbitrarily small balls. Hence we get that for all δ > 0, we have Hδs(L) <

∑∞
n=1 n

fi(s) <∞ and so
Hs(L) <∞, which proves that

dimH(L) ≤ s.
This rough analysis is turned into a rigorous proof in what follows. We begin with elementary
definitions and calculations that arise from what precedes.

4.2.2 Study of a sequence of functions

We begin by defining recursively the sequence of functions (fi)i≥1, together with a sequence (si)i≥1
of real numbers.

Definition-Proposition 8. We set s0 :=∞. We define a sequence (fi)i≥1 of functions as follows.
We set

∀s ∈ [d ,∞), f1(s) := −αs,
and set s1 := 1

α . Then for all i ≥ 1, we recursively define:

∀s ∈ [d , si], fi+1(s) :=
α(−d+ βd− βs− fi(s)d)

1 + fi(s) + αs− αd .

Define si+1 as the unique solution to the equation fi+1(s) = −1.

Before proving the validity of this definition, let us state some properties of this sequence of
functions.

Proposition 9. The following properties are satisfied:

(i) For all i ≥ 1, the function fi is continuous, strictly decreasing, and fi(d) = −αd.
(ii) For all i ≥ 1, for all s ∈ (d , si], we have fi+1(s) < fi(s).

(iii) Let s∞ :=
2β−1−2

√
(β−1)(β−αd)
α . Then we have for all s ∈ [d , s∞),

fi(s) −→
i→∞

f∞(s),

where

f∞(s) =
−(1 + αs) +

√
1 + 2αs+ α2s2 − 4αd+ 4αβd− 4αβs

2
.

(iv) For all s ∈ [d , s∞), we have f∞(s) > −1.

(v) The sequence (si)i≥1 is strictly decreasing and

si −→
i→∞

s∞.

(vi) For all i ≥ 1, we have fi+1(si) < −1.

Proof. We define the function F on the set
{

(s, x) ∈ R2
∣∣ d ≤ s ≤ 1

α , x > αd− αs− 1
}

by the
expression:

F (s, x) =
α(−d+ βd− βs− dx)

1 + x+ αs− αd .

We have for all s > d and all x > αd− αs− 1,

∂xF (s, x) =
α(β − αd)(s− d)

(1 + x+ αs− αd)2
> 0.

This shows that for all s > d, the function F (s, ·) is strictly increasing, and also strictly concave
since the derivative is strictly decreasing.
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From these facts we can show by induction on i the points (i) and (ii) of Proposition 9, together
with the validity of the definition of fi and si, in Definition-Proposition 8.
• For i = 1, the function f1 is well-defined, s1 is indeed the unique solution to f1(s) = −1 and

the point (i) is satisfied. Moreover, f2(s) is well-defined for s ∈ [d , s1] by f2(s) = F (s,−αs) and
for all s ∈ (d , s1), we have

F (s,−αs) + αs =
α(β − 1)(d− s)

1− αd < 0,

which proves that (ii) holds for i = 1.
• By induction, if fi and si are defined up to some i ≥ 1 and satisfy (i), then one can verify

that for all s ∈ [d , si], the function fi+1 is well-defined by the formula:

fi+1(s) = F (s, fi(s)).

From the monotonicity of F (s, ·) and fi, this function is continuous and strictly decreasing. One
can check that F (d, x) = −αd for any x > −1 so fi+1 satisfies (i). Then, if i = 1, the initialisation
already gives us that (ii) holds. Otherwise, if i ≥ 2, then using the induction hypothesis, for all
s ∈ (d , si−1] we have fi(s) < fi−1(s). Using that F (s, ·) is strictly increasing for s > d we get that
for all s ∈ (d , si], fi+1(s) < fi(s), and so (ii) holds. Since fi+1 is continuous and strictly decreasing
and that fi+1(d) > −1 and fi+1(si) < fi(si) = −1, then si+1 is well-defined. This finishes our
proof by induction.

Let us study at fixed s > d the equation F (s, x) = x. We get the following second order
equation:

x2 + x(1 + αs) + (αd− αβd+ αβs) = 0,

for which the discriminant is ∆s = 1 + 2αs + α2s2 − 4αd + 4αβd − 4αβs. We can evaluate this
quantity at d and at 1

α . We get

∆d = (αd− 1)2 > 0 and ∆1/α = 4(β − 1)(αd− 1) < 0.

We can check that it vanishes exactly at s = s∞ so that in the end, ∆s is strictly positive on
[d , s∞), null at s∞ and strictly negative on (s∞ , 1

α ]. Hence, the function F (s, ·) has 2 (resp. 1,
resp. 0) fixed points on the corresponding intervals.

The convergence (iii) is a consequence of the fact that for s ∈ [d , s∞), the function F (s, ·)
is strictly increasing and concave, has exactly two fixed points and that the initial value f1(s) is
greater than the smallest fixed point. We then have a convergence of the sequence fi(s) towards
the greatest fixed point of F (s, ·), the value of which can be computed using the equation above.
The property of the limit (iv) can be checked by proving that for all s ∈ [d , s∞], we have f∞(s) ≥
f∞(s∞) =

√
(β − 1)(β − αd)− β > −1.

Let us prove the point (v). According to property (ii), we have fi(si+1) > fi+1(si+1) = −1, and
since fi is decreasing, we get si+1 < si. Hence the sequence (si)i≥1 is strictly decreasing, bounded
below by d, so it converges. Now let s > s∞. If the sequence (fi(s))i≥1 was well-defined for all
i ≥ 1, then for all i ≥ 1 we would have fi(s) > −1, so it would be decreasing, bounded below, hence
it would have a limit, which would be a fixed point of F (s, ·). It is impossible since F (s, ·) has no
fixed point, so the sequence is not well-defined for all i ≥ 1 and so for i large enough, s > si. We
conclude that limi→∞ si ≤ s∞. If we had limi→∞ si < s∞, then it would contradict the property
(iv). In the end, limi→∞ si = s∞.

The last property (vi) follows from property (ii). Indeed, we have fi+1(si) < fi(si) = −1.

4.2.3 Construction of the coverings

Let us provide a rigorous proof of our upper-bound, which follows the heuristics that we derived
in the beginning of the section. Here, we distinguish two types of negligible functions, on(1) and
oε(1). A function denoted on(1) (resp. oε(1)) is negligible as n→∞ (resp. as ε→ 0) and does not
depend on ε (resp. on n).
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Proposition 10. Fix i ≥ 1 and s ≤ si−1. For all ε > 0, we can construct simultaneously for all
n ≥ 1 a set of balls Rs,εn,i, such that the following holds.

(i) Almost surely, for n large enough, Rs,εn,i covers T (bn).

(ii) We have
E
[
Vols(R

s,ε
n,i)
]
≤ nfi(s)+on(1)+oε(1).

(iii) The diameter of the balls used are such that max
B∈Rs,εn,i

diamB −→
n→∞

0.

We will define the set of balls Rs,εn,i over the block bn and its descendants in an algorithmic way,
and each step of the algorithm only depends on the gluings that happen after time n. The proof of
the upper-bound will directly follow from this proposition. Let us first state an elementary result,
the proof of which is left to the reader. Note that we allow the function oε(1) to be infinite for
large values of ε.

Lemma 11. Let ξ ≥ −1. Then for all γ > 1, we have:

E

[
nγ∑

k=n+1

1{bk→bn}k
ξ+on(1)+oε(1)

]
≤ n−β+γ(ξ+1)+on(1)+oε(1).

Proof of Proposition 10. Let s > 0 and ε > 0. We prove the proposition by induction on i. The
first set of balls that we build is the following: for each block bn, we cover the block with a ball of
radius n−α+ε, centred on the point ρn. We write:

Rs,εn,1 = {B(ρn, n
−α+ε)}.

According to (13), there exists a random N such that for all n ≥ N , the set Rs,εn,1 covers T (bn).
The diameter of the ball of Rs,εn,1 tend to 0 as n→∞. Besides we have,

E
[
Vols(R

s,ε
n,1)
]
≤ (2n)−αs+εs = nf1(s)+on(1)+oε(1).

The property is thus proved for i = 1.
Let i ≥ 1 and s < si. Let us construct

(
Rs,εn,i+1

)
n≥1, using the previous step i. We set γi+1(s) > 1

a positive real number that we will choose later, and ε > 0. We define Rs,εn,i+1 as follows: it is the
union over all the blocks bk for k < nγi(s) that are grafted on the block bn, of their covering R

s,ε
k,i of

the preceding step, together with the union of a deterministic set of balls that we define hereafter.
We want to cover bn with balls of radius n−αγi+1(s), which is equivalent to covering Bn with

balls of radius λ−1n n−αγi+1(s). Under Hypothesis Hd, for any d ≥ 0, using Lemma 21 and Lemma 23
in Appendix A.3, we can a.s. find a random collection (xm)1≤m≤Mr(Bn) of points of Bn such that
the balls centred on those points with radius r := λ−1n n−αγi+1(s) cover Bn, and such thatMr(Bn) ≤
Nr/4(Bn), where Nr(B) is the minimal number of balls of radius r needed to cover B.

From the assumption on the sequence (λn), we have r ≥ n−αγi+1(s)+α+on(1). Since Nr(Bn) is
decreasing in r, using Hypothesis Hd(ii) we get that

E
[
Nr/4(Bn)

]
≤ n−αd+αγi+1(s)d+on(1).

In the end,

Rs,εn,i+1 :=

 ⋃
k≤nγi+1(s):bk→bn

Rs,εk,i

 ∪ {B
(
xm, n

−αγi+1(s)+ε
) ∣∣∣ 1 ≤ m ≤Mr(Bn)

}
.
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Now we compute the expectation of the s-volume of these sets of balls.

E
[
Vols(R

s,ε
n,i+1)

]
= E

nγi+1(s)∑
k=n+1

1{bk→bn}Vols(R
s,ε
k,i)

+ E [Mr(Bn)] (2n(−αγi+1(s)+ε))s

≤ E

nγi+1(s)∑
k=n+1

1{bk→bn}E
[
Vols(R

s,ε
k,i)
]+ E

[
Nr/4(Bn)

]
(2n(−αγi+1(s)+ε))s

≤ E

nγi+1(s)∑
k=n+1

1{bk→bn}k
fi(s)+on(1)+oε(1)

+ n−αd+αdγi+1(s)+(−αγi+1(s)+ε)s+on(1)+oε(1)

≤ n−β+γi+1(s)(fi(s)+1)+on(1)+oε(1) + n−αd+αdγi+1(s)−αγi+1(s)s+on(1)+oε(1),

where in the last line we used Lemma 11 which applies because s ≤ si, hence fi(s) ≥ −1. We then
take γi+1(s) := β−αd

fi(s)+1−αd+αs > 1, which yields:

−β + γi+1(s)(fi(s) + 1) = −αd+ αγi+1(s)d− αγi+1(s)s = fi+1(s).

We then have,
E
[
Vols(R

s,ε
n,i+1)

]
≤ nfi+1(s)+on(1)+oε(1).

We can check that maxB∈Rs,εn,i+1
diamB −→

n→∞
0, and that almost surely, for n large enough, the

collections of balls Rs,εn,i+1 are indeed coverings of T (bn) thanks again to (13). This finishes the
proof.

We can now prove the main proposition of this section.

Proof of Proposition 7. Let i ≥ 1. For ε > 0 small enough, we use Proposition 10 to get a set of
balls (Rsi,εn,i+1)n≥1, which satisfies:

E
[
Volsi(R

si,ε
n,i+1)

]
≤ nfi+1(si)+on(1)+oε(1).

From Proposition 9(vi), we have fi+1(si) < −1, so we can choose ε small enough such that the
exponent is eventually smaller than fi+1(si)−1

2 < −1 as n → ∞. Then, for N ≥ 1, we set RN =⋃
n≥N R

si,ε
n,i+1. According to Proposition 10, the set of balls Rsi,εn,i+1 is a covering of T (bn) for n

large enough and so RN is a covering of L, for all N . Since for any δ > 0, we may choose N large
enough so that maxB∈RN diamB < δ, we get:

Hsi(L) = lim
δ→0
Hδsi(L) ≤ lim sup

N→∞
Volsi(RN ) ≤ Volsi(R1) < +∞, a.s.

since

E [Volsi(R1)] ≤
∞∑
n=1

n
fi+1(si)−1

2 +on(1) < +∞.

This shows that the Hausdorff dimension of L satisfies dimH(L) ≤ si, almost surely. In the end,
since the sequence (si)i≥1 tends to s∞, we conclude that almost surely,

dimH(L) ≤ s∞ =
2β − 1− 2

√
(β − 1)(β − αd)

α
.

5 Lower-bounds for the (α, β)-model

In this section we compute lower-bounds on the Hausdorff dimension of the set L. We do that by
constructing Borel measures on L that satisfy the assumptions of Frostman’s lemma (Lemma 20
in Appendix A.2). In the case where β ≤ 1 we use the natural measure µ̄ on T which arises as the
limit of the normalised weight measures on Tn (see Proposition 4). The case β > 1 is a bit more
technical because the natural measure µ̄ is not concentrated on L, so we have to construct another
measure π, that we define as the subsequential limit of some well-chosen sequence of probability
measures on T .
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5.1 Case β ≤ 1 and use of the measure µ̄

In this subsection, we suppose that β ≤ 1. Under the assumptions of Proposition 4, the sequences
of measures µ̄n almost surely converges weakly to a measure µ̄, which is concentrated on the set of
leaves L. The existence of µ̄ will be useful for the proof of the next proposition. Recall from (4)
the definition of the random variable H and the fact that the assumptions on H in the proposition
are satisfied under Hypothesis Hd for any d ≥ 0.

Proposition 12. Suppose that Hypothesis ©α,β or Hypothesis �α,1 is satisfied. Suppose also that
E
[
H2
]
<∞ and that P (H > 0) > 0. Then the Hausdorff dimension of L almost surely satisfies:

dimH(L) ≥ 1

α
.

As we said earlier, the idea is to prove this lower bound on the dimension using Frostman’s
lemma: we will thus prove that almost surely, for µ̄-almost all leaves x ∈ L, we have an upper
bound of the type

µ̄(B(x, r)) ≤ r1/α−ε,
for r sufficiently small, and for all ε. An application of Lemma 20 will then finish our proof.

In order to prove this control on the masses of the balls, we will use two lemmas. The first one
allows us to compare µ̄(B(x, r)) with a quantity of the form µ̄(T (bn)) for an appropriate n. The
second one, Lemma 5, provides a good control of the quantities µ̄(T (bn)) for large n, such that the
combination of the two will provide the upper bound that we want. Let ε > 0. Recall from (2) the
definition of Gε.

Lemma 13. Set n0 = 2 and nk+1 = dn1+εk e. Under the hypotheses of Proposition 12, almost surely
for µ̄-almost every x ∈ L, for all k large enough2, there exists n ∈ Jnk , nk+1K ∩Gε such that

x ∈ T (bn) and d(x,ρn) ≥ n−α−2ε.

Proof. Note that in our setting, the hypothesis of Proposition 4 holds and so the random leaf Y
constructed in Section 3 is defined a.s. Also, according to Proposition 4, conditionally on (T , µ̄),
the point Y has distribution µ̄. So it suffices to prove that the lemma holds for the the random
leaf Y . We recall

d(Yn, Ym)
law
=

n∑
k=m+1

λkHk1{
Uk≤

wk
Wk

} and Y = lim
n→∞

Yn.

Let us introduce a constant c > 0 and set

p := P (H > c) .

For β < 1, thanks to our assumptions, we can fix c such that p is non-zero. We then have:

P
(
∀i ∈ Jnk , nk+1K ∩Gε, Ui >

wi
Wi

or Hi < c

)
=

n1+ε
k∏

i=nk
i∈Gε

(
1− p wi

Wi

)

= exp

n1+ε
k∑

i=nk
i∈Gε

log

(
1− p wi

Wi

)

≤ exp

−pn
1+ε
k∑

i=nk
i∈Gε

wi
Wi


≤

Lem.25
exp (−pCε log(nk)) .

2The threshold depends on the realisation and on x.
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To write the last line we use Lemma 25 in the Appendix and we can see that the last display is
summable over k.

For the case β = 1, Hypothesis �α,1 allows us to write

P
(
∀i ∈ Jnk , nk+1K ∩Gε, Ui >

wi
Wi

or Hi < c

)
≤ exp (−pf(k) log log log(nk)) ,

with a function f(k) tending to infinity. Since nk ≥ 2(1+ε)
k

, then log log log(nk) ≥ (1 + o(1)) log k

and the last display is also summable in k. In both cases, an application of the Borel-Cantelli
lemma shows that we have almost surely, for k large enough,

∃n ∈ Jnk , nk+1K ∩Gε, Un ≤
wn
Wn

and Hn ≥ c.

Since n ∈ Gε, we have λn ≥ n−α−ε. Combined with the fact that Hn ≥ c we get

d(ρn, Y ) ≥ λnHn ≥ cn−α−ε ≥ n−α−2ε, for n (or equivalenly k) large enough.

Proof of Proposition 12. Let ε > 0. Let us fix a realisation of T and a leaf x ∈ L such that the
conclusions of Lemma 13 and Lemma 5 hold. Note that thanks to Hypothesis ©α,β or Hypothe-
sis �α,1, the condition of application of Lemma 5 are fulfilled. From the definition of nk+1 we have
n1+εk < nk+1 ≤ n1+εk + 1 and so nk+1 =

k→∞
n
1+ε+o(1)
k . We know from Lemma 13 that for all k large

enough, there exists n ∈ Jnk , nk+1K such that x ∈ T (bn) and

d(ρn, x) ≥ n−α−2ε ≥ n−α−2εk+1 ≥ n(1+ε+o(1))(−α−2ε)k .

So if we take k large enough and r ∈ [n−α−2εk+2 , n−α−2εk+1 ), then

µ̄(B(x, r)) ≤ µ̄(T (bn)) ≤
Lem. 5

n−1+ε ≤ n−1+εk = n
−1+ε

(1+ε)2
+o(1)

k+2

≤
(
r
−1
α+2ε

)−1+ε
1+ε +o(1)

≤ r 1
α+g(ε)+o(1),

with a function g tending to 0 as ε→ 0.
Since the last display is true almost surely for all r sufficiently small, we use Lemma 20 (Frost-

man’s lemma) to deduce that the Hausdorff dimension of L is a.s. larger than 1
α + g(ε). Taking

ε→ 0 we get that almost surely,

dimH(L) ≥ 1

α
.

5.2 Case β > 1 and construction of measures on the leaves

The following section is devoted to prove the following proposition.

Proposition 14. Suppose that Hypothesis �α,β is satisfied and that the block B satisfies Hypothe-
sis Hd for some d ≥ 0. Then the Hausdorff dimension of L almost surely satisfies:

dimH(L) ≥ 2β − 1− 2
√

(β − 1)(β − αd)

α
, if α <

1

d
,

≥ 1

α
otherwise.

In the case β > 1, we cannot use the natural measure µ̄ to get a good lower bound on the
Hausdorff dimension of L since, as stated in Proposition 4, the measure µ̄ does not charge the
leaves. So the goal of this subsection is to artificially construct a probability measure concentrated
on the leaves that will give us, using Frostman’s lemma, the appropriate lower bound on the
Hausdorff dimension, that is, the one matching with the upper bound derived in Section 4. The
measure will be obtained as a sub-sequential limit of a sequence of measures concentrated on the
blocks, and will only charge a strict subset of L.
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First, let us fix some notation. Recall the definition of Gεn in (3).It follows from �α,β that there
exists a function h(n) tending to 0 such that #G

h(n)
n = n1+o(1). We choose such a function h and

let
Gn := Gh(n)n . (16)

We will also use an increasing sequence of positive integers (nk)k≥0, such that for all k ≥ 0, we
have nk+1 = dnγke, with a fixed γ > 1, that we will optimise later. Also we suppose n0 to be very
large, with conditions that we will make explicit in what follows. For all n ≥ 1, we set

bn :=

{
x ∈ bn

∣∣∣∣ dn(ρn, x) >
ht(bn)

2

}
,

the "upper-half" of block bn. For technical reasons, we will only keep in our construction the blocks
that behave reasonably well, see the forthcoming property (Pd), introduced in Section 5.2.2. We
recursively define some random sets of integers. Let

G̃n0
= {n ∈ Gn0

| Bn satisfies property (Pd)} , (17)

and for k ≥ 0,

G̃nk+1
=
{
n ∈ Gnk+1

∣∣∣ Bn satisfies property (Pd); ∃i ∈ G̃nk , bn → bi, Xn−1 ∈ bi

}
. (18)

We then define for all k ≥ 0,
Bk =

⋃
n∈G̃nk

bn.

In other words, B0 is the union of all the upper-halves of the blocks bn, for n in Gn0
for which

Bn behaves well, and Bk+1 is defined to be the union of all the upper-halves of the blocks of index
n ∈ Gnk+1

that are grafted directly on Bk, and such that Bn behaves well. Note that for the
moment, Bk can be empty.

We define the measure
∑
n∈G̃nk

νn and refer to it as the mass measure3 on the k-th generation.
To simplify notation we denote it | · |. We do not index it by k since the index for which we consider
it is always clear from the context. We also define a sequence (πk)k≥0 of probability measures on
Bk by

πk :=
| · ∩ Bk|
|Bk|

,

the normalised mass measure on Bk. Note that the sequence (πk) is only well-defined on the event
where Bk has non-zero mass for all k. In what follows we will ensure that it is the case for an
event of strictly positive probability and only work conditionally on this event. Remark that, still
conditionally on this event and on the event that T is compact, which has probability 1, the sequence
(πk)k≥0 is a sequence of probability measures on a compact space, hence it admits at least one
subsequential limit π for the Lévy-Prokhorov distance. We can check using [7, Lemma 17], which is
essentially an application of the Portmanteau theorem, that π is concentrated on

⋂
k≥0 T (Bk) ⊂ L.

5.2.1 Idea of the proof

Let us briefly explain how the measure π that we just constructed enables us to derive the appro-
priate lower bound for the Hausdorff dimension. We give the intuition for α < 1/d; the idea for
α > 1/d is very similar. We will be very rough for this sketch of proof and we keep the notation
introduced above. Let us here forget that some blocks may not satisfy (Pd), and that we only deal
with half-blocks.

3It may appear more natural to define the mass measure as simply
∑∞

n=1 νn which gives T a finite mass. However,
this definition would not have the property that for every set S ⊂ bn, we have |S| = νn(S). Indeed, when blocks can
have an atom at their root, which is possible in the case d = 0, the contribution of the mass added by the roots of future
blocks should be counted in |S|.
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Number of blocks in Bk Suppose that the number of blocks in Bk evolves like a power of
nk, say nak. Then the total weight of Bk is |Bk| ≈ nakn−βk , because all the blocks in Bk have weight
≈ n−βk . Since the probability that any block with index in Jnk+1 , 2nk+1K is grafted on Bk is roughly
|Bk|, and since the number of blocks in Bk+1 is roughly nak+1, we have

nγak ≈ nak+1 ≈ |Bk| · nk+1 ≈ nakn−βk nγk .

Hence we have a = γ−β
γ−1 , and so |Bk| ≈ n

γ(1−β)
γ−1

k .

Estimation on π For each k ≥ 0, the set Bk is made of blocks of size ≈ n−αk . Let us suppose
that the quantities of the form π(B(x, r)) are well-approximated by πk(B(x, r)), whenever r ∈
[n−αk+1 , n

−α
k ]. For x close to Bk, such a ball typically intersects only one block of Bk, with weight

roughly n−βk , and since the block is d-dimensional, the ball covers a proportion
(
r/n−αk

)d of this
block. So |B(x, r) ∩ Bk| ≈ n−βk

(
r/n−αk

)d, and
π(B(x, r)) ≈ πk(B(x, r)) =

|B(x, r) ∩ Bk|
|Bk|

≈ rdn−β+αd−γ
β−1
γ−1

k

≈ rdn
1

γ−1 (γ(αd−1)+β−αd)
k .

Then, if α < 1/d, the last exponent is negative for γ large enough. For such γ, using r > n−αk+1 ≈
n−αγk yields

π(B(x, r)) ≤ rd− 1
αγ(γ−1)

(γ(αd−1)+β−αd). (19)

Optimisation We then choose γ such that the exponent d− γ(αd−1)−αd+β
αγ(γ−1) is maximal. We get

the value 2β−1−2
√

(β−1)(β−αd)
α which matches our upper-bound.

Plan of the proof Our goal is now to make those heuristics rigorous. First we will make
some precise estimation on how the mass of the blocks with indices in G̃nk is spread on subsets of
Tnk−1. Then we will decompose each block of each Bk into subsets that we call fragments for which
our preceding estimation holds. After that, we use this decomposition to control the behaviour of
the (πk), and also how the measures πk can approximate the limiting measure π. At the end we
conclude by optimising on the parameters.

We will distinguish the two cases d = 0 and d > 0 and mostly work on the latter. We then
explain quickly how the proof can be adapted to d = 0, in which fewer technicalities are involved.

5.2.2 Mass estimations

Before proving our main proposition, we have to state some technical lemmas that will allow us to
control how regularly the mass of Bk+1 is spread on Bk. Let us now define the property (Pd), in a
different way whether d = 0 or d > 0. Let C > 0 be a positive number and remind the definition
of (?r0) in Hypothesis Hd(i). For d > 0 we say that a pointed compact metric space endowed with
a probability measure (b,d,ρ,ν) satisfies (Pd) iff

C−1 ≤ ht(b) ≤ C,

ν

({
x ∈ b

∣∣∣∣ d(ρ, x) ≥ ht(b)

2

})
≥ C−1,

(b,d,ρ,ν) satisfies (?r0) with r0 = C−1.

(Pd)

For d = 0 we say that (b,d,ρ,ν) satisfies (P0) iff b is finite and
C−1 ≤ ht(b) ≤ C,
#b ≤ C,
∀x ∈ b, ν ({x}) ≥ C−1.

(P0)
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In any case, under Hypothesis Hd(i), for any d ≥ 0, we can choose C such that the underlying
block (B,D, ρ, ν) satisfies (Pd) with a positive probability p > 0.

p = P (B satisfies (Pd)) > 0.

From now on we fix such a constant C. We also set M := ν
({
x ∈ B

∣∣∣ D(ρ, x) ≥ ht(B)
2

})
, and

m := E [M | B satisfies (Pd)]. We also denote by M a random variable with the law of M conditional
on the event {B satisfies (Pd)},
Lemma 15. Let S be a subset of some bi with i ≤ nk − 1, measurable with respect to Fnk−1, the
σ-field generated by the blocks and the gluings up to time nk − 1. Let χ(S) be the total mass of the
union of the sets

{
bn
∣∣ n ∈ Gnk , bn → bi, Xn−1 ∈ S, Bn satifies (Pd)

}
, namely, the total mass

of the half-blocks that are grafted on S with index in Gnk , and such that the corresponding blocks
satisfy property (Pd). Then for all x ∈ [0 , 1],

P
(∣∣χ(S)− ak |S|

∣∣ > xak |S|
∣∣ Fnk−1) ≤ 2 exp

(
−x2n1+o(1)k |S|

)
,

where ak := pm
∑
i∈Gnk

wi
Wi−1

, is such that E [χ(S) | Fnk−1] = ak |S| and the function o(1) in the

right-hand side does not depend on x.

This lemma roughly states that, for every subset S ⊂ bi for i ∈ Gnk , if the subset has enough
mass to attract a substantial number of the blocks coming between time nk and 2nk then we have
a good control on how the mass of Bk grafted on S can deviate from its expected value.

Proof. First we write χ(S) as:

χ(S) =
∑
i∈Gnk

1{
Ui≤ |S|

Wi−1

}1{Bi satisfies (Pd)}Miwi,

where the (Ui) are independent uniform variables on [0 , 1], independent of everything else. Then
we can compute

E [χ(S) | Fnk−1] =
∑
i∈Gnk

|S|
Wi−1

pwi · E [Mi | Bi satisfies (Pd)]

= |S| · pm

 ∑
i∈Gnk

wi
Wi−1

 = |S| · ak.

Let us bound the exponential moments of χ(S):

E [exp(θχ(S)) | Fnk−1] =
∏

i∈Gnk

(
p |S|
Wi−1

· E
[
eθwiMi

∣∣ Bi satisfies (Pd)]+ 1− p |S|
Wi−1

)

=
∏

i∈Gnk

(
1 +

p |S|
Wi−1

(E
[
eθwiM

]
− 1)

)

≤ exp

p |S| ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1)

 ,
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where we used the inequality ez ≥ 1 + z, in the last line. Now,

E [exp(θ(χ(S)− ak |S|)) | Fnk−1]

≤ exp

p |S| ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1)− θ |S|

∑
i∈Gnk

pmwi
Wi−1


≤ exp

p |S|
 ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1− θmwi)


≤ exp

p |S|
 ∑
i∈Gnk

1

Wi−1
c(θwi)

2

 .

Here we used the fact that for z ∈ [−1 , 1], we have ez ≤ 1 + z + 3z2 and so

E
[
ezM
]
− 1− zE [M] ≤ E

[
1 + zM + 3(zM)2

]
− 1− zE [M] ≤ 3E

[
M2
]
z2 ≤ cz2,

for c a constant. Since we ask that z ∈ [−1 , 1], the computation above is valid if we restrict
ourselves to |θ| ≤ (supi∈Gnk

wi)
−1 = n

β+o(1)
k . Note that we can use this inequality for negative

values of θ. Hence for x ∈ [0 , 1] we have

P (|χ(S)− ak |S|| > xak |S| | Fnk−1)

≤ P (χ(S)− ak |S| > xak |S| | Fnk−1) + P (−(χ(S)− ak |S|) > xak |S| | Fnk−1)

≤ P
(

exp (θ(χ(S)− ak |S|)) > eθxak|S|
∣∣∣ Fnk−1)+ P

(
exp (−θ (χ(S)− ak |S|)) > eθxak|S|

∣∣∣ Fnk−1)
≤ 2 exp

p |S|
 ∑
i∈Gnk

1

Wi−1
c(θwi)

2

− θxak |S|


= 2 exp

p |S|
 ∑
i∈Gnk

1

Wi−1
(c(θwi)

2 − θxmwi)

 .

Taking θ = xnβ−εk in the last inequality, which is possible for nk large enough, this gives

P
(∣∣χ(S)− ak |S|

∣∣ > xak |S|
∣∣ Fnk−1)

≤ 2 exp

p |S|x2
 ∑
i∈Gnk

1

Wi−1
(nβ−εk wi)(cn

β−ε
k wi −m)

 .

From our assumptions on the sequence (wn), we have nβ−εk wi → 0 and hence (cnβ−εk wi − m) is
eventually smaller than−m2 , uniformly for i ∈ Gnk . Also 1

Wn
is always greater than 1

W∞
. Combining

this with the last display we get, for nk large enough

P
(∣∣χ(S)− ak |S|

∣∣ > xak |S|
∣∣ Fnk−1)

≤ 2 exp

(
−x2 |S| · pm

2W∞
#Gnk( inf

i∈Gnk
wi)n

β−ε
k

)
≤ 2 exp

(
−x2 |S|n1−ε+o(1)k

)
.

Now for every ε > 0, this inequality is true for nk large enough, so this proves the lemma.

Let us also state another technical lemma, the proof of which is in the Appendix A.4.

Lemma 16. Suppose that Hypothesis �α,β is satisfied. We have, for the sequence (ai) defined in
Lemma 15,

k∏
i=1

ai = n
γ(1−β)
(γ−1)

+o(1)

k ,

where the o(1) is considered when k →∞.
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5.2.3 Construction of fragments, case d > 0

Fragments of a random block Let us discuss how we can decompose a metric space into a
partition of subsets that we call r-fragments, all of them having a diameter of order r. Suppose that
the random block (B,D, ρ, ν) comes with a sequence of random points (Xn)n≥1, which are i.i.d. with
law ν, conditionally on (B,D, ρ, ν), and that this block satisfies Hypothesis Hd(i), for some d > 0.
The following lemma ensures that in this setting, we can construct a partition F (B, r) = (f

(r)
i )1≤i≤N

of r-fragments of (B,D, ρ, ν), which have approximately equal diameter and measure. Recall the
function ϕ defined in Hypothesis Hd(i), and the notation Nr(B) for the minimal number of balls of
radius r needed to cover B.

Lemma 17. Suppose that (B,D, ρ, ν) satisfies Hypothesis Hd(i) for some d > 0. For any r ∈ [0 , 1],
we construct a finite partition of Borel subsets (f

(r)
i )1≤i≤N of the block (B,D, ρ, ν) in a deterministic

way from (B,D, ρ, ν) and the sequence of random points (Xn)n≥1. There exists two functions ψ
and φ defined on the interval [0 , 1], which tend to 0 at 0 such that the following holds almost surely
on the event {(B,D, ρ, ν) satisfies (?r0)}, for any r0 > 3r,

(i) For all 1 ≤ i ≤ N ,

diam fi ≤ 2r and
(r

4

)d+ϕ(r/4)
≤ ν(fi) ≤ rd−ϕ(r).

(ii) For all r′ < r0/3, we have

∀x ∈ B, # {1 ≤ i ≤ N | B(x, r′) ∩ fi 6= ∅} ≤ (r ∨ r′)d+ψ(r∨r′) · r−d+φ(r).

(iii) The (random) number N of fragments satisfies

N ≤ Nr/4 (B) and N ≤
(r

4

)−d−ϕ(r/4)
.

In the paper, we use this construction on (Bn,Dn, ρn, νn), assuming that for all n ≥ 1, a sequence
(Xn,j)j≥1 is defined on the same probability space and that this sequence is i.i.d. with law νn, con-
ditionally on (Bn,Dn, ρn, νn). For any n ≥ 1 and r > 0, we denote F (Bn, r) =

{
f
(r)
i

∣∣∣ 1 ≤ i ≤ N
}

the partition of Bn into (random) r-fragments which is given by the lemma. The proof of Lemma 17
can be found in the Appendix.

Decomposition of bn into fragments Fix a parameter η ∈ (0 , 1d ). We want to decompose
every bn, for n ∈ G̃nk , in fragments of size approximately n−ηk+1. For that, it is sufficient to
use F (Bn, rn) the decomposition of Bn in rn-fragments with rn = (λ−1n · n−ηk+1), which is given by
Lemma 17. Let us emphasise that these fragments are constructed as subsets of Bn, but we consider
them as subsets of bn in what follows, without changing notation. We define the set Fk is as the
collection of all these fragments coming from every bn with n ∈ G̃nk . We have of course⋃

f∈Fk

f =
⋃

n∈G̃nk

bn. (20)

In our construction, we decided to keep only the blocks that were sufficiently well-behaved with
respect to some properties that will be useful now. Recall the definition of the random set G̃nk in
equations (17) and (18). Remark that, from the definition of Gnk , we have,

ck := min
n∈Gnk

(
λ−1n · n−ηk+1

)
= n

α−γη+o(1)
k and Ck := max

n∈Gnk

(
λ−1n · n−ηk+1

)
= n

α−γη+o(1)
k .

If γ and η are such that γ > α
η , then the last exponent is strictly negative, and so we can take n0

sufficiently large so that Ck < C−1/3, for all k ≥ 0. For n ∈ G̃nk , we know that Bn satisfies (?r0)
with r0 = C−1. Hence, for all n ∈ G̃nk , we have 3rn ≤ r0, and so the conclusions of Lemma 17
hold simultaneously for all the decompositions F (Bn, rn) for n ∈ G̃nk .
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Control on the mass and number of fragments Recall the function h that we defined
in (16), which tends to 0 at infinity, and the function ϕ specified in Hypothesis Hd(i), which tends
to 0 at 0. Thanks to Lemma 17, we get, for all f ∈ Fk such that f ⊂ bn,

|f | = wn · νn(f) ≥
(16), Lem.17(i)

n
−β−h(nk)
k · (λ−1n · n−ηk+1)d+ϕ(n

−αd+α+o(1)
k )

≥ n−β−h(nk)k · cd+ϕ(Ck)k .

Note that the last quantity is deterministic and only depends on nk, and so almost surely,

min
f∈Fk

|f | ≥ n−β−h(nk)k · cd+ϕ(Ck)k

≥ n−ηdγ+αd−β+o(1)k = n
−ηd+ 1

γ (αd−β)+o(1)
k+1 . (21)

Note that a similar computation using upper-bounds instead of lower-bounds also yields, almost
surely,

max
f∈Fk

|f | ≤ n−β+o(1)k · Cd−ϕ(ck)k ≤ n−ηdγ+αd−β+o(1)k , (22)

where the right-hand side is deterministic. Also, from Lemma 17(iii), we get that the number of
fragments obtained from the block bn by that construction is bounded above by (rn/4)

−d−ϕ(rn/4),
with rn = λ−1n · n−ηk+1 = n

α−γη+o(1)
k , and so at the end, the total number of fragments in Fk is

bounded above by a deterministic quantity which grows at most polynomially in nk.

5.2.4 Construction of fragments, case d = 0

In this case, we will consider the finite number of points of each block as a decomposition into
fragments, hence we set Fk =

{
{x}

∣∣∣ x ∈ bn, n ∈ G̃nk
}
. Note that

∀f ∈ Fk, f ⊂ bn, |f | = wn · νn(f) ≥
(16), (P0)

n
−β−h(nk)
k · C−1,

and so the equations (21) and (22) are still valid when d = 0, and also the number of fragments in
Fk grows linearly, hence polynomially in nk.

5.2.5 Using the mass estimations

Recall that we fixed a parameter η ∈ (0 , 1d ). We let 0 < ε < (1 − ηd). If γ and η are such that
γ > β−αd

1−ηd−ε , then −ηd+ 1
γ (αd−β) > −1+ε. And so we get from (21) that minf∈Fk |f | ≥ n

−1+ε+o(1)
k+1 .

We can apply the result of Lemma 15 for every fragment f ∈ Fk, with x = n
−ε/4
k+1 ,

P
(∣∣χ(f)− ak+1 |f |

∣∣ > n
−ε/4
k+1 ak+1 |f |

∣∣∣ Fnk+1−1

)
≤ 2 exp

(
−
(
n
−ε/4
k+1

)2
n
1+o(1)
k+1 min

f∈Fk
|f |
)

≤ 2 exp
(
−n−ε/2k+1 n

1+o(1)
k+1 n

−1+ε+o(1)
k+1

)
≤ 2 exp

(
−nε/4k+1

)
for nk+1 large enough.

For that, again, we impose that n0 is large enough such that the last display is true for all k and
for all f . Now we can sum this over all fragments,

E

 ∞∑
k=0

∑
f∈Fk

P
(∣∣χ(f)− ak+1 |f |

∣∣ > n
−ε/4
k+1 ak+1 |f |

∣∣∣ Fnk+1−1

)
≤
∞∑
k=0

E [#Fk] · 2 exp
(
−nε/4k+1

)
−→
n0→∞

0,
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since (#Fk) is almost surely bounded by a deterministic quantity which grows at most polynomially
in nk. The same is true for the Bk,

E

[ ∞∑
k=0

P
(∣∣χ(Bk)− ak+1 |Bk|

∣∣ > n
−ε/4
k+1 ak+1 |Bk|

∣∣∣ Fnk+1−1

)]
−→
n0→∞

0.

In the rest of Section 5.2, we will fix n0 large enough and work on the event of large probability
E on which we have, for all k ≥ 0 and for all f ∈ Fk∣∣χ(Bk)− ak+1 |Bk|

∣∣ ≤ n−ε/4k+1 ak+1 |Bk| and
∣∣χ(f)− ak+1 |f |

∣∣ ≤ n−ε/4k+1 ak+1 |f | . (23)

Remark that thanks to Section 2.4, giving a lower bound of the Hausdorff dimension on a set
of positive probability is enough to prove that the bound holds almost surely. Note that this
construction depends on the parameters η and ε and γ. The parameters must satisfy

η ∈ (0 ,
1

d
), ε ∈ (0 , 1− ηd), γ > max

(
α

η
,
β − αd

1− ηd− ε

)
, (24)

and we can choose them in this particular order.

5.2.6 Control on the limiting measure

In this section, the values of η and ε and n0 are fixed in such a way that the construction of the
previous section holds. Note that everything in the section implicitly depends on those values. On
the event E , if we consider a fragment f ∈ Fk, we have a very good control on the values of πi(T (f))

for i ≥ k. Indeed set

c1 =

∞∏
k=0

(1− n−
ε
4

k+1) and c2 =

∞∏
k=0

(1 + n
− ε4
k+1).

Remark that both c1 and c2 are strictly positive real numbers. Using in cascade the estimations
(23) which hold on the event E , we get that for f ∈ Fk and i ≥ k,

|T (f) ∩ Bi| ≤ c2 |f |

 i∏
j=k+1

aj

 . (25)

In fact we can use the same argument for Bk, which is not empty on the event E . For k large
enough we can write

|Bi| ∈ |Bk|

 i∏
j=k+1

aj

 · [c1 , c2]. (26)

Remark that (26) combined with Lemma 16 yields that almost surely on E ,

n
γ(1−β)
(γ−1)

+o(1)

k ≤ |Bk| ≤ n
γ(1−β)
(γ−1)

+o(1)

k , (27)

where the upper and lower-bound are both deterministic. For πi the normalized mass measure on
Bi, we have:

πi(T (f)) =
|T (f) ∩ Bi|
|Bi|

≤
(25),(26)

c2
c1
· |f ||Bk|

.

If π is a sub-sequential limit of the (πk), using Portmanteau theorem (remark that π is concentrated
on the leaves and the leaves of T (f) belong to the interior of T (f)), we get

π(T (f)) ≤ c2
c1
· |f ||Bk|

.

And then,

max
f∈Fk

π(T (f)) ≤ c2
c1

1

|Bk|
max
f∈Fk

|f | .
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We can now write, for all r > 0, for all x ∈ T ,

π(B(x, r)) ≤
∑

f∈Fk, f∩B(x,r)6=∅

π(T (f)) ≤ #{f ∈ Fk, f ∩ B(x, r) 6= ∅} · max
f∈Fk

π(T (f)).

Putting everything together we get

π(B(x, r)) ≤ #{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2
c1

1

|Bk|
max
f∈Fk

|f | . (28)

5.2.7 Control on the number of fragments intersecting a ball

From (28), we see that the last thing that we have to estimate is #{f ∈ Fk, f ∩ B(x, r) 6= ∅}, the
number of fragments of Fk that have a non-empty intersection with a ball of radius r. Since the
measure π only charges

⋂
k≥1 T (Bk), we are only interested in balls centred around points belonging

to this set. Let us fix some notation again. For all k ≥ 0, we set

∆k := inf {d(x, y) | x ∈ Bk−1, y ∈ Bk} ,

the set distance between Bk−1 and level Bk, for the integers k for which it is possible. On the event
E , this quantity is well-defined for all k ≥ 1 and the following upper and lower-bounds are almost
surely satisfied

n
−α+o(1)
k =

C−1

2
min
n∈Gnk

λn ≤ ∆k ≤ C max
n∈Gnk

λn = n
−α+o(1)
k . (29)

Now let us state a lemma.

Lemma 18. Let x ∈ ⋂k≥1 T (Bk). For k ≥ 0, we denote xk := [x]2nk ∈ Bk. If bn is the block of
Bk such that xk ∈ bn, we have, ∀r ∈ [0 ,∆k],

{f ∈ Fk | f ∩ B(x, r) 6= ∅} ⊂ {f ∈ Fk | f ∩ B(xk, r) ∩ bn 6= ∅} . (30)

The proof of this lemma is simple and left to the reader. It tells us is that in fact, if r is small
enough, then all the fragments f ∈ Fk who intersect the ball of centre x and radius r belong to the
same block. This will allow us in the sequel, combined with Lemma 17(ii), to bound the number
of fragments involved, which is what we wanted.

5.2.8 Obtaining the lower-bound

In order to get the lower-bound on the Hausdorff dimension of L matching that of the theorem, we
have to distinguish between the case α < 1

d and the case α > 1
d . The case α = 1

d can be recovered
by a monotonicity argument, as seen in Section 2.4. Whenever d = 0, we have 1

d = +∞ and only
the first case can happen.

Case β > 1 and α < 1/d We use the construction of Section 5.2.3 with η = α. Recall (24)
for the admissible parameters of the construction. In this case, if ε is fixed and small enough, the
only condition on γ implied by (24) is γ > β−αd

1−αd−ε since γ > α
η reduces to γ > 1, which is already

contained in the previous inequality because β−αd
1−αd−ε > 1. We define

Λk := ∆k ∧
(

minn∈Gnk λn

log nk

)
.

Using (29), we get n−α+o(1)k ≤ Λk ≤ n
−α+o(1)
k , almost surely, with deterministic bounds. Here the

choice of 1
lognk

is rather arbitrary and we could change it to any quantity that tends to 0 and is

n
o(1)
k as nk →∞. Now we claim the following

Lemma 19. On the event E, for all k ≥ 0, for any d ≥ 0, we almost surely have

∀r ∈ [Λk+1 ,Λk], # {f ∈ Fk | f ∩ B(x, r) 6= ∅} ≤ rd+o(1)nαγd+o(1)k . (31)
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Note that the the bounds Λk of the interval on which we consider r are random, but the upper
bound given by (31) is deterministic.

Proof. For r ∈ [Λk+1 ,Λk], we have r ≤ Λk ≤ ∆k so using Lemma 18, with xk = [x]2nk and n such
that xk ∈ bn, we know that (30) holds. In the case d > 0, the fragments of Fk that come from bn
were constructed as fragments of Bn of size rn := λ−1n n−αk+1. Recall that we denote F (Bn, rn) the set
of these fragments, seen as subsets of Bn, and denote xk the point of Bn corresponding to xk ∈ bn.
The analogue of the ball B(xk, r) in Bn is then the ball of centre xk and radius r′n := λ−1n r. From
our definition of Λk we have

r′n = λ−1n r ≤ λ−1n
minn∈Gnk λn

log nk
≤ 1

log nk
−→
k→∞

0,

as well as rn := λ−1n n−αk+1 = n
α−γα+o(1)
k → 0 when k →∞. Applying Lemma 17(ii) yields

# {f ∈ F (Bn, rn) | f ∩ B(xk, rn) 6= ∅} ≤
Lem.17(ii)

(rn ∨ r′n)d+ψ(rn∨r
′
n) · r−d+φ(rn)n

≤
(
(λ−1n n−αk+1) ∨ (λ−1n r)

)d+o(1) · (λ−1n n−αk+1)−d+o(1)

≤ rd+o(1)nαγd+o(1)k ,

and the last quantity is deterministic. Since any fragment in {f ∈ Fk | f ∩ B(x, r) 6= ∅} corresponds
to a fragment in {f ∈ F (Bn, rn) | f ∩ B(xk, rn) 6= ∅}, the cardinal of {f ∈ Fk | f ∩ B(x, r) 6= ∅} is
almost surely bounded above by the last display, which proves that (31) holds whenever d > 0. In
the case d = 0, from our definition of fragments and the property (P0), we easily have

# {f ∈ Fk | f ∩ B(xk, r) ∩ bn 6= ∅} ≤ C ≤ rd+o(1)nαγd+o(1)k ,

and so (31) also holds whenever d = 0.

We can compute:

π(B(x, r)) ≤
(28)

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2
c1
· 1

|Bk|
· max
f∈Fk

|f |

≤
(31),(27),(22)

(rd+o(1)n
αγd+o(1)
k ) · ro(1) · (n

γ(β−1)
(γ−1)

+o(1)

k ) · (n−αγd+αd−β+o(1)k )

≤ rd+o(1) · n
1

(γ−1)
(γαd−αd+β−γ+o(1))

k

≤ rd− 1
αγ(γ−1)

(γαd−αd+β−γ)+o(1).

In the last line we used that r > Λk+1 ≥ n
−α+o(1)
k+1 = n

−γα+o(1)
k and so nk > r−

1
αγ+o(1) and

the fact that γαd − αd + β − γ < 0 because γ > β−αd
1−αd . Let us now maximise the quantity

d − γαd−αd+β−γ
αγ(γ−1) for γ ∈ (β−αd1−αd ,+∞). It is an easy exercise to see that the maximum is attained

at γ̄ =
β−αd+

√
(β−1)(β−αd)
1−αd , with value

2β − 1− 2
√

(β − 1)(β − αd)

α
.

If we fix ε small enough then, the value of γ that maximises the last display satisfies γ > β−αd
1−αd−ε

and so, using this value to construct π, we get that on the event E , for all x ∈ ⋂k≥1 T (Bk),

π(B(x, r)) ≤ r
2β−1−2

√
(β−1)(β−αd)
α +o(1),

which allows us to conclude using Lemma 20.
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Case β > 1 and α > 1/d Here we suppose that d > 0. We fix η < 1
d which we suppose to be

very close to 1
d and a small ε > 0 and use the construction of Section 5.2.3 with these values, which

satisfy (24) if we take γ > max
(

β−αd
1−ηd−ε ,

α
η

)
.

• For r ∈ [Λk+1 , n
−η
k+1], we apply Lemma 19 to get

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} ≤ no(1)k .

Now we can use the upper-bound (28), replacing term by term

π(B(x, r)) ≤
(28)

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2
c1

1

|Bk|
max
f∈Fk

|f | .

≤
(27),(22)

n
o(1)
k · c2

c1
n
γ(β−1)
(γ−1)

+o(1)

k n
−ηdγ+αd−β+o(1)
k

≤ n
γ(β−1)
(γ−1)

−γηd+αd−β+o(1)
k .

Hence, using the fact that r > Λk+1 = n
−γα+o(1)
k and that the exponent in the last display is

negative, we get

π(B(x, r)) ≤ r− 1
γα ·(

γ(β−1)
(γ−1)

−γηd+αd−β)+o(1)

≤ r
ηd
α −

1
αγ (

γ(β−1)
(γ−1)

+αd−β)+o(1).

• For r ∈ [n−ηk+1 ,Λk], we have once again using Lemma 19,

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} ≤ rd+o(1)nηd+o(1)k+1 .

Replacing in (28) yields

π(B(x, r)) ≤ rd+o(1)nηd+o(1)k+1 · c2
c1

1

n
γ(1−β)
(γ−1)

+o(1)

k

n
−ηdγ+αd−β+o(1)
k

≤ rd+o(1) · nαd−1+
β−1
γ−1+o(1)

k .

Since r ≤ Λk ≤ n−α+o(1)k , we have nk ≤ r−
1
α+o(1). Since the quantity αd− 1 + β−1

γ−1 is positive, we
can write

π(B(x, r)) ≤ rd+o(1) · r− 1
α (αd−1+ β−1

γ−1 )+o(1)

≤ rd−
αd−1
α − β−1

α(γ−1)
+o(1)

≤ r 1
α−

β−1
α(γ−1)

+o(1).

Now the result is obtained by taking ε→ 0 and η → 1
d and γ →∞.

To conclude the proof of Proposition 14, we have to prove that in the case α = 1/d, the dimension
of L is bounded below by d. To that end, we use the monotonicity of the Hausdorff dimension of
L, with respect to the scaling factors (λn), proved in Section 2.4. Suppose the sequences (λn) and
(wn) satisfy Hypothesis �α,β for α = 1/d. If for some ε > 0, we set for all n ≥ 1, λ′n = n−ελn, then
the sequences (λ′n) and (wn) satisfy Hypothesis �α+ε,β . Now for n ≥ 1, we have λn ≥ λ′n, and T is
compact with probability 1 from Proposition 6. Hence (6) holds and so we have, a.s.

dim(L) ≥ 1

α+ ε
.

In the end, dim(L) ≥ d.

Proof of Theorem 1. Use Proposition 6, Proposition 7 for the upper-bounds and Proposition 12
and Proposition 14 for the lower-bounds.
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A Appendix

A.1 Lifting to the Urysohn space

In this section, we prove that it is always possible to work with random measured metric spaces
that are embedded in the Urysohn space. Let us first recall the definition of the Gromov-
Hausdorff-Prokhorov distance. If (X, d) is a metric space, and A ⊂ X then we denote A(ε) :=

{x ∈ X | d(x,A) < ε} , the ε-fattening of A. Then dH the Hausdorff distance on the set of non-
empty compact subsets of X, is defined as

dH(K,K ′) := inf {ε > 0 | K ⊂ (K ′)ε, K ′ ⊂ (K)ε} .

Also we denote the so-called Lévy-Prokhorov distance on the Borel probability measures by

dLP(ν, ν′) := inf {ε > 0 | ∀A ∈ B(X), ν(A) ≤ ν′ ((A)ε) + ε and ν′(A) ≤ ν ((A)ε) + ε} ,

where B(X) is the set of Borel sets of X. Now let (X,d, ρ, ν) and (X ′,d′, ρ′, ν′) be two compact,
rooted, metric spaces endowed with a probability measure. Their Gromov-Hausdorff-Prokhorov
distance is defined as

dGHP

(
(X,d, ρ, ν), (X ′,d′, ρ′, ν′)

)
:= inf

E,φ,φ′
max(d(ρ, ρ′),dH(φ(X), φ(X ′)),dLP(φ∗ν, φ

′
∗ν
′)),

where the infimum is taken over all Polish spaces (E, δ) and all isometric embeddings φ : X → E

and φ′ : X ′ → E, of respectively X and X ′ into E. The notation φ∗ν denotes the push-forward of
the measure µ through the map φ. As it is, this is only a pseudo-distance and becomes a distance
on the set K of GHP-isometry (root and measure preserving isometry) classes of compact, rooted,
metric spaces endowed with a probability measure, which from [1, Theorem 2.5], is a Polish space.
We consider all our blocks as (possibly random) elements of the set K.

We would like to see all the blocks as compact subsets of the same space. To that end, we consider
(U, δ) the Urysohn space, and fix a point u0 ∈ U . The space U is defined as the only Polish metric
space (up to isometry) which has the following extension property (see [14] for constructions and
basic properties of U): given any finite metric space X, and any point x ∈ X, any isometry from
X \ {x} to U can be extended to an isometry from X to U . This property ensures in particular
that any separable metric space can be isometrically embedded into U . In what follows we will use
the fact that if (K,d, ρ) is a rooted compact metric space, there exists an isometric embedding of
K to U such that ρ is mapped to u0. We set

K(U) := {(K, ν) | K ⊂ U, K compact, u0 ∈ K, ν is a Borel measure and supp(ν) ⊂ K} ,

where supp(ν) denotes the topological support of ν. We endow K(U) with the "Hausdorff-
Prokhorov" distance

dHP((K, ν), (K ′, ν′)) = max (dH(K,K ′),dLP(ν, ν′)) .

It is easy to see that (K(U),dHP) is a Polish space. Now, we have a map f : K(U) → K, which
maps every (K, ν) to the isometry class of (K, δ|K , u0, ν) in K. This map is continuous and hence
measurable. The properties of U ensure that f is surjective. Using a theorem of measure theory
from [16], every probability distribution τ on K can be lifted to a probability measure σ on K(U),
such that f∗σ = τ . Hence, for all n ≥ 1, we can have a version of (bn,dn,ρn,νn) = (Bn, λn ·
Dn, ρn, wn · νn) that is embedded in the space U .

A.2 Hausdorff dimension

We recall some notations and definitions that are in relation with Hausdorff dimension and that we
use throughout the paper. Let (X,d) be a metric space and δ > 0. We say that the family (Oi)i∈I
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of subsets of X is a δ-cover of X if it is a covering of X, and the set I is at most countable and for
all i ∈ I, the set Oi is such that its diameter satisfies diam(Oi) < δ. We set

Hδs(X) := inf

{∑
i∈I

diam(Oi)
s

∣∣∣∣∣ (Oi)i∈I is a δ-cover of X

}
,

As this quantity increases when δ decreases to 0, we define its limit

Hs(X) := lim
δ→0
Hδs(X) ∈ [0 ,∞],

the s-dimensional Hausdorff measure of X. Now the Hausdorff dimension of X is defined as

dimH(X) := inf {s > 0 | Hs(X) = 0} = sup {s > 0 | Hs(X) =∞} .

We refer to [10] for details. A useful tool for deriving lower-bounds on the Hausdorff dimension of
a metric space is the so called Frostman’s lemma. In this paper we use the following version.

Lemma 20 (Frostman’s lemma). Let (X,d) be a metric space. If there exists a non-zero finite
Borel measure µ on X and s > 0 such that for µ-almost every x ∈ X, we have

µ (B(x, r)) ≤
r→0

rs+o(1),

then
dimH(X) ≥ s.

A.3 Decomposition into fragments

In this section, we prove Lemma 17. We first construct our fragments in a deterministic setting
and then show how we can apply this to random blocks.

Decomposition of a deterministic block Let (b,d,ρ,ν) be a (deterministic) pointed
compact metric space endowed with a Borel probability measure. We are interested in how we
can decompose b into a partition of subsets that all have approximately the same diameter r. For
r > 0, we set

Pr(b) :=
{
{x1, x2, . . . , xn} ⊂ b

∣∣∣ n ≥ 1 and ∀i 6= j, d(xi, xj) ≥
r

2

}
.

It is easy to verify that we can find p = {x1, x2, . . . , xn} ∈ Pr(b) such that b ⊂ ⋃ni=1 B(xi, r)

and the balls
(
B(xi,

r
4 )
)
1≤i≤n are disjoint. Indeed, any r

2 -net of b belongs to Pr(b) (they are the
maximal elements of Pr(b) for the order relation of inclusion). We denote P∗r (b) the set

P∗r (b) :=

{
{x1, x2, . . . , xn} ∈ Pr(b)

∣∣∣∣∣ b ⊂
n⋃
i=1

B(xi, r)

}
,

which is non-empty from what precedes. Considering the collection of balls of radius r with centres
in p ∈ P∗r (b) gives rise to a covering of b which is close to optimal in a sense specified by the
following lemma. We recall the notation Nr(b) which denotes the minimal number of balls of
radius r needed to cover b.

Lemma 21. For any p = {x1, x2, . . . , xn} ∈ P∗r (b), we have n ≤ Nr/4(b).

Proof. Let p = {x1, x2, . . . , xn} ∈ P∗r (b). Remark that, for any set S such that the union of the
balls

(
B(s, r4 )

)
s∈S covers b, each of the balls B(xi, r/4), for 1 ≤ i ≤ n, contains at least a point of

S. Since those balls are disjoint, the cardinality of S is at least n.
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From any element p = {x1, x2, . . . , xn} ∈ P∗r (b), we can then construct a partition of b, into
subsets (fi)1≤i≤n that we call fragments, and such that

∀i ∈ J1 , nK, B
(
xi,

r

4

)
⊂ fi ⊂ B(xi, r).

We define the (fi) recursively as follows,
f1 :=

{
x ∈ b

∣∣∣∣ d(x, x1) = min
1≤i≤n

d(x, xi)

}
fk+1 :=

{
x ∈

(
b \

k⋃
i=1

fi

) ∣∣∣∣∣ d(x, xk+1) = min
1≤i≤n

d(x, xi)

}
.

If we suppose that b satisfies the condition (?r0), and that r < r0 then, for p = {x1, x2, . . . , xn} ∈
P∗r (b), we get

n
(r

4

)d+ϕ(r)
≤

n∑
i=1

ν
(

B
(
xi,

r

4

))
≤ ν(b) = 1,

so that we have
n ≤

(r
4

)−d−ϕ(r/4)
, (32)

and also, for all i ∈ J1 , nK,

diam fi ≤ 2r and
(r

4

)d+ϕ(r/4)
≤ ν(fi) ≤ rd−ϕ(r). (33)

Let us state another lemma.

Lemma 22. Let r0 < 1. Under the condition (?r0), there exists two functions ψ and φ defined on
[0 , r0/3], which tend to 0 at 0 such that for all r ∈ (0 , r0/3), for all p = {x1, x2, . . . , xn} ∈ P∗r (b)

and fragments (fi) constructed as above, we have

∀x ∈ b,∀r′ ∈ (0 , r1), # {1 ≤ i ≤ n | B(x, r′) ∩ fi 6= ∅} ≤ (r ∨ r′)d+ψ(r∨r′) · r−d+φ(r).

Proof. Let x ∈ b. If for an i ∈ J1 , nK, we have y ∈ B(x, r′) ∩ fi 6= ∅, then d(x, y) < r′ and
d(xi, y) < r so d(x, xi) < r + r′, and so we get that B(xi, r) ⊂ B(x, r′ + 2r). Then, using that
fi ⊂ B(xi, r),  ⋃

i: fi∩B(x,r′)6=∅

B
(
xi,

r

4

) ⊂
 ⋃
i: fi∩B(x,r′)6=∅

fi

 ⊂ B(x, r′ + 2r).

We can use the condition (?r0) to get, for all r, r′ ∈ [0 , r0/3],

# {1 ≤ i ≤ n | B(x, r′) ∩ fi 6= ∅} ·
(r

4

)d+ϕ(r/4)
≤ (r′ + 2r)d−ϕ(r

′+2r).

And so,

# {1 ≤ i ≤ n | B(x, r′) ∩ fi 6= ∅} ≤ 4d+ϕ(r/4)
(r′ + 2r)d−ϕ(r

′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4)
(3(r ∨ r′))d−ϕ(r′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4)3d−ϕ(r
′+2r)(r ∨ r′)d−ϕ(r′+2r)r−d−ϕ(r/4),

≤ (r ∨ r′)d−ϕ(3(r∨r′))r−d−ϕ(r/4)+
log(123d/2)

log r ,

which proves the lemma.

This lemma gives us an abstract result for the existence and the properties of these decomposi-
tions in fragments. The next paragraph explains a procedure to construct one using a sequence of
i.i.d. random points, on a possibly random block.
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Finding an element of P∗
r (b) Suppose that the measure ν charges all open sets. Remark that

this is almost surely true for our random block (B,D, ρ, ν) because they satisfy Hypothesis Hd(i).
Let (Xn)n≥1 be a sequence of i.i.d. random variables with law ν. Let us construct a random element
of P∗r (b) for some fixed r > 0. Define the set En recursively as follows:

E1 := {1} and


En+1 := En if Xn+1 ∈

⋃
i∈En

B
(
Xi,

r

2

)
,

En+1 := En ∪ {n+ 1} otherwise.

We set E∞ =
⋃
n≥1En. Note that from the construction, {Xi, i ∈ E∞} ∈ Pr(b).

Lemma 23. Almost surely, we have {Xi, i ∈ E∞} ∈ P∗r (b).

Proof. The fact that the balls
(
B(Xi,

r
4 )
)
i∈E∞

are disjoint follows directly from the construction.
Now let x ∈ b. Since ν

(
B
(
x, r4

))
> 0, by the the Borel-Cantelli lemma there exists at least one n

such that Xn ∈ B
(
x, r4

)
. If n ∈ E∞ then x ∈ B

(
Xn,

r
4

)
. Otherwise n /∈ E∞, in which case there

exists k ≤ n such that Xn ∈ B
(
Xk,

r
2

)
and so x ∈ B

(
Xk,

3
4r
)
. In both cases

B
(
x,
r

4

)
⊂
⋃
i∈E∞

B(Xi, r).

Since we can apply the same reasoning to every point of a countable dense sequence (yk)k≥1, the
lemma is proved.

Proof of Lemma 17. This is just a consequence of Lemma 21, Lemma 22 and Lemma 23 and
equations (32) and (33), which almost surely apply to the random block (B,D, ρ, ν).

A.4 Computations

Lemma 24. Suppose that there exists γ ≥ 0 such that for all n ∈ N, Wn ≤ nγ . Then there exists
a constant C such that

n∑
k=1

wk
Wk
≤ C log n.

Proof. If the series
∑
wk converges then the results is trivial so let us suppose that it diverges. For

k ≥ 0, we define nk := inf
{
i ≥ 1

∣∣Wi ≥ 2k
}
and write

n∑
k=n0

wk
Wk
≤
d logWn

log 2 e∑
i=0

ni+1−1∑
k=ni

wk
Wk
≤
d logWn

log 2 e∑
i=0

1

2i

ni+1−1∑
k=ni

wk ≤
d logWn

log 2 e∑
i=0

2i+1

2i

≤ 2

⌈
logWn

log 2

⌉
,

which grows at most logarithmically thanks to our assumption on the sequence (Wn).

Lemma 25. Let β < 1 and assume that wn ≤ n−β+o(1) and Wn = n1−β+o(1) and that for some
ε > 0 we have:

lim inf
n→∞

1

Wn

n∑
k=1
k∈Gε

wk > 0.

Then there exists a constant Cε such that for N large enough we have

N1+ε∑
k=N
k∈Gε

wk
Wk
≥ Cε logN.
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Proof. Let c be such that, for n large enough 1
Wn

∑n
k=1 wk1{k∈Gε} > c. Let C := 3

c , note that
C > 1 because c ≤ 1. For all i ≥ 1, we set ni = inf

{
n
∣∣Wn ≥ Ci

}
. For all i ≥ 1, we have

Wni−1 ≤ Ci ≤Wni ≤ Ci + wni . We get,

ni+1∑
k=ni+1

wk1{k∈Gε} ≥ cWni+1
−Wni ≥ cCi+1 − Ci − wni ≥ Ci(cC − 1− wni

Ci
)

≥ Ci(1 + o(1)).

for i tending to infinity. Now for N a large integer, we set

IN := inf {i | ni ≥ N} =

⌈
logWN

logC

⌉
and JN := sup

{
i
∣∣ ni ≤ N1+ε

}
=

⌊
logWbN1+εc

logC

⌋
.

Then we compute

N1+ε∑
k=N

wk
Wk

1{k∈Gε} ≥
JN∑
i=IN

ni+1∑
k=ni+1

wk
Wk

1{k∈Gε}

≥
JN∑
i=IN

1

Wni+1

ni+1∑
k=ni+1

wk1{k∈Gε}

≥
JN∑
i=IN

1

Ci+1(1 + o(1))
Ci(1 + o(1))

≥ JN − IN
C

(1 + o(1)).

We finish the proof by noting that, thanks to the hypothesis on the growth of Wn, the last display
grows logarithmically in N .

Proof of Lemma 16. From our assumptions, it is easy to see that we have ak = n
1−β+o(1)
k . For all

k, we write
log ak = (1− β + rk) log nk,

with rk → 0 as k →∞. We write

k∑
i=1

log ai =

k∑
i=1

(1− β + ri) log ni =

k−1∑
i=0

(1− β + rk−i) log nk−i. (34)

For any k ≥ 0, from the recursive definition of the sequence (nk), we have nk+1 − 1 < nγk ≤ nk+1,
which entails log nk = 1

γ log nk+1 + sk, with |sk| ≤ 1. Using this recursively yields∣∣∣∣log nk−i −
1

γi
log nk

∣∣∣∣ ≤ γ

1− γ .

Hence using (34) and the fact that log nk grows exponentially in k,

k∑
i=1

log ai = log nk

(1− β)

k−1∑
i=0

1

γi
+

k∑
i=0

rk−i
γi︸ ︷︷ ︸

→0

+

k−1∑
i=0

(1− β + rk−i)

(
log nk−i −

1

γi
log nk

)
︸ ︷︷ ︸

=O(k)

= log nk

(
(1− β)γ

γ − 1
+ o(1)

)
,

which proves the lemma.
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