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Introduction

Let us recall Aldous' famous line-breaking construction of the Brownian CRT (Continuum Random Tree) in [START_REF] Aldous | The continuum random tree. I[END_REF]. On the half-line [0 , ∞), consider C 1 , C 2 , . . . , C n the points of a Poisson process with intensity tdt. Cut the half-line in closed intervals [C i , C i+1 ], which we call branches (of length C i+1 -C i ). Starting from [0 , C 1 ], construct a tree by recursively gluing the branch [C i , C i+1 ] to a random point chosen uniformly on the tree already constructed (i.e. under the normalised length measure). Aldous' Brownian CRT is the completion of the tree constructed after an infinite number of steps. This process can be generalised by using any arbitrary sequence (λ n ) for the length of the successive branches. This model was introduced and studied by Curien and Haas in [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF], who proved that when λ n = n -α+o (1) for some α > 0, the tree obtained is a.s. compact and has Hausdorff dimension (1 ∨ α -1 ). In [START_REF] Amini | Explosion and linear transit times in infinite trees[END_REF], Amini et. al. obtained a necessary and sufficient condition on the sequence (λ n ) for the almost sure compactness of the resulting tree, under the assumption that this sequence is non-increasing. In [START_REF] Haas | Asymptotics of heights in random trees constructed by aggregation[END_REF], Haas describes how the height of the tree explodes when n → ∞ under the assumption that λ n ≈ n α , with α ≥ 0.

Our goal is to define a more general version of this model, in which the branches are replaced by arbitrary (and possibly random) measured metric spaces, and to investigate the compactness Figure 1: Gluing of circles of radii λ n = n -3/5 , with weights w n = n -3/2 . The Hausdorff dimension of the resulting metric space is ( 10 3 -√ 5).

and the Hausdorff dimension of the resulting metric space. As we will see, in this broader context, a striking phenomenon (absent from [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF]) pops up. In all the paper we will work with

(λ n ) n≥1 and (w n ) n≥1 ,
two sequences of non-negative real numbers that will be the scaling factors and weights of the metric spaces that we glue. All the scaling factors (λ n ) n≥1 are considered strictly positive, but the weights, except for the first one w 1 , can possibly be null.

Definition of the model and main results

Let us first present a simpler version of our construction, in which we construct a tree through an aggregation of segments. For now the branches, which we denote (b n ) n≥1 , are segments of length (λ n ) n≥1 , rooted at one end and endowed with the Lebesgue measure normalised so that their respective total measure is (w n ) n≥1 (or endowed with the null measure for branches with vanishing weight). We then define a sequence (T n ) n≥1 of increasing trees by gluing those branches as follows. First, T 1 = b 1 . Then, if T n is constructed, we build T n+1 by first sampling a point X n chosen proportionally to the measure µ n obtained by aggregating the measures concentrated on the branches b 1 , . . . , b n and then gluing b n+1 onto T n by identifying its root with X n . Let T * be the increasing union of the trees T n for n ≥ 1 and T be the completion of T * . Note that if (w n ) = (λ n ), this model coincides with the one studied in [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF].

We can compute the Hausdorff dimension of the resulting tree in the case where (λ n ) and (w n ) behave like powers of n, say λ n = n -α and w n = n -β . We define L := (T \ T * ) to which we refer as the set of leaves of T . In this particular case it coincides, up to a countable set, with the set of points x such that T \ {x} remains connected. In the above context a trivial consequence of our main theorem is that T is a.s. compact and

dim H (L) = 2β -1 -2 (β -1)(β -α) α if β > 1 and α < 1, = 1 α otherwise,
where dim H (X) stands for the Hausdorff dimension of the metric space X, see Section A.2.

Note that, since we can check that the dimension of the skeleton T * is always 1, we can recover the dimension of T as dim H (T ) = max(1, dim H (L)). We see that dim H (L) = 1 α as in [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF] for most values of β, however, a new phenomenon, absent from [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF], happens in the case β > 1 (the sum of the weights is finite) and α < 1 (the total length is infinite). In this case, the Hausdorff dimension of T depends in a non-trivial manner on α and β. Now we want to generalise it to sequences (b n ) of more general metric spaces that we call blocks, which can be random and possibly more elaborate than just segments. Specifically, our blocks are based on the distribution of a random pointed measured compact metric space, (B, D, ρ, ν), with underlying set B, distance D, distinguished point ρ and endowed with a probability measure ν. We sometimes denote it B by abuse of notation when no confusion is possible and we refer to it as the underlying random block. We consider a sequence ((B n , D n , ρ n , ν n )) n≥1 of i.i.d. random variables with the distribution of (B, D, ρ, ν) and define our blocks by setting

∀n ≥ 1, (b n , d n , ρ n , ν n ) := (B n , λ n • D n , ρ n , w n • ν n ), (1) 
meaning that we dilate all the distances in the space B n by the factor λ n and scale the measure by w n . We suppose that, λ n ≈ n -α for some α > 0, and w n ≈ n -β for some β ∈ R, in some loose sense which we make precise in the sequel. For technical reasons, we have to separate the case β < 1, the case β > 1 and β = 1. This gives rise to the three hypotheses Hyp. α,β , Hyp. α,β and Hyp. α,1 . For any d ∈ [0 , ∞), we will introduce the Hypothesis H d and suppose that the distribution of our underlying random block (B, D, ρ, ν) satisfies this hypothesis for some d ≥ 0. This hypothesis ensures that our random block exhibits a d-dimensional behaviour. We set out all these hypotheses just below the statement of our theorem.

Except in Section 2.1, we will always assume that the blocks are of the form (1). This is implicit in all our results.

In this extended setting, we can perform the same gluing algorithm and build a sequence (T n ) n≥1 of random compact metric spaces by iteratively gluing the root of b n+1 onto a point chosen in T n according to the measure µ n obtained as the sum of the measures of the blocks b 1 , . . . , b n . Again T * = n≥1 T n is called the skeleton of the construction and its completion is still denoted T . See Figure 1 for non-isometric, non-proper representation in the plane of a simulation of this model, with B chosen to be almost surely a circle of unit length. As for the case of segments, we refer to L = (T \ T * ) as the set of leaves of the construction. We can now state our main theorem.

Theorem 1. Suppose that there exists d ≥ 0, such that (B, D, ρ, ν) satisfies Hypothesis H d , and α > 0 and β ∈ R such that the sequences (w n ) and (λ n ) satisfy either Hyp. α,β or Hyp. α,β , or Hyp. α,1 . Then, almost surely, the structure T resulting from the construction is compact, and

dim H (L) = 2β -1 -2 (β -1)(β -αd) α , if β > 1 and α < 1 d , = 1 α otherwise.
Remark that for β > 1 the dimension of the set L depends on the geometry of the underlying random block through d, its dimension. For β ≤ 1, it is not the case, and actually the theorem remains true under much weaker hypotheses for the distribution of (B, D, ρ, ν), namely that ν is not almost surely concentrated on {ρ}, and that ∀k ≥ 0, E (diam(B)) k < ∞, where diam(•) denotes the diameter of a metric space. We could even replace the assumption that the blocks ((B n , D n , ρ n , ν n )) n≥1 are i.i.d. by some weaker assumption but we do not do it for the sake of clarity. The proofs when β ≤ 1 are quite short and the interested reader can easily generalise them to a more general setting.

Hypotheses of the theorem Let us define and discuss the precise hypotheses of our theorem.

First, let us describe the assumptions that we make on the sequences (λ n ) and (w n ). We define

W n = n k=1 w k ,
and for all > 0, we set

G := k ≥ 1 w k ≥ k -β-, λ k ≥ k -α-, (2) 
and also 

G n := k ∈ n , 2n w k ≥ n -β-, λ k ≥ n -α-. (3) 
( √ β -αd - √ β -1) 2 α
This expression is always larger than d and smaller than 1 α , and it is decreasing in α and β on the domain on which we consider it. When β → 1, it converges to the value

1 α so that the function (α, β) → dim H (L) is continuous on the domain R * + × R.
As said earlier, we separate the case β < 1, the case β > 1 and the case β = 1.

Hypothesis α,β . We have α > 0 and β < 1 and for all n ≥ 1, λ n ≤ n -α+o (1) and w n ≤ n -β+o (1) . Furthermore W n = n 1-β+o (1) and for all > 0, lim inf

n→∞ n k=1 w k 1 {k∈G } n k=1 w k > 0.
The last display ensures that for all > 0, the set G contains asymptotically a positive proportion of the total weight. Hypothesis α,β . We have α > 0 and β > 1 and for all n ≥ 1, λ n ≤ n -α+o (1) and w n ≤ n -β+o (1) . Furthermore, for all > 0, #G n = n→∞ n 1+o (1) .

Under the stronger assumption λ n = n -α+o (1) and w n = n -β+o (1) , Hypothesis α,β holds if β > 1 (resp. Hypothesis α,β , if β < 1). The case β = 1 is slightly different and in this case we set Hypothesis α,1 . We have α > 0 and β = 1 and for all n ≥ 1, λ n ≤ n -α+o (1) and w n ≤ n -1+o (1) . Furthermore, for all > 0,

1 log log log N N 1+ k=N w k W k 1 {k∈G } -→ N →∞ +∞.
Note that this last hypothesis requires in particular that W n → ∞ as n → ∞. Now let us define Hypothesis H d , for any d ≥ 0, which will ensure that our random underlying block has the appropriate d-dimensional behaviour.

Hypothesis H d . The law of the block (B, D, ρ, ν) satisfies the following conditions:

(i) •If d = 0,
the block B is a finite metric space which is not a.s. reduced to a single point and such that the measure ν satisfies ν({x}) > 0, for all points x ∈ B.

•If d > 0, there exists an increasing function ϕ :

[0 , 1] → [0 , d/2], satisfying lim r→0 ϕ(r) = 0,
such that almost surely, there exists a (random) r 0 ∈ (0 , 1) such that

∀r ∈ [0 , r 0 ), ∀x ∈ B, r d+ϕ(r) ≤ ν (B(x, r)) ≤ r d-ϕ(r) . ( r0 ) 
(ii) Let N r (B) be the minimal number of balls of radius r needed to cover B. Then (1) as r → 0.

E [N r (B)] ≤ r -d+o
(iii) For all k ≥ 0, we have E diam(B) k < ∞.

Here B(x, r) is the open ball centred at x with radius r and the notation diam(B) denotes the diameter of B, defined as the maximal distance between two points of B. The conditions (i) and (ii) ensure that the blocks that we glue together have dimension d. The condition (iii) ensures that the blocks cannot be too big. In the paper, some results are stated under some weaker assumptions on the distribution of random block (B, D, ρ, ν) and they are hence all still valid under Hypothesis H d .

Motivations

The assumptions of Theorem 1 are rather general and various known models fall into our setting. First, let us cite two constructions that were already covered by the work presented in [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF]. Of course we have Aldous' line-breaking construction of the CRT but let us also cite the work of Ross and Wen in [START_REF] Ross | Scaling limits for some random trees constructed inhomogeneously[END_REF], in which the authors study a discrete model of growing trees and prove that its scaling limit can be described as a line-breaking procedure à la Aldous using a Poisson process of intensity t l dt, with l an integer. The Hausdorff dimension of the resulting tree is then (l + 1)/l. Our extended setting now also includes the Brownian looptree, defined in [START_REF] Curien | Scaling limits and influence of the seed graph in preferential attachment trees[END_REF], which appears as the scaling limit of the so-called discrete looptree associated with Barabási-Albert model. This random metric space also has a natural construction through an aggregation of circles, and our theorem proves that this object has almost surely Hausdorff dimension 2. These examples do not really use our theorem in its full generality since their underlying block is deterministic. In fact, Hypothesis H d is very general and is satisfied (for the appropriate d ≥ 0) by many distributions of blocks, including the Brownian CRT (d = 2), see [START_REF] Duquesne | Exceptionally small balls in stable trees[END_REF], the Brownian map (d = 4), see [START_REF] Serlet | A large deviation principle for the Brownian snake[END_REF][START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF], the θ-stable trees (d = θ+1 θ ), see [START_REF] Duquesne | Decomposition of Lévy trees along their diameter[END_REF]. Hence, our results can apply to a whole variety of such constructions, with a very general distributions for the blocks, and we are currently working on some examples in which this construction naturally arises as the limit of discrete models.

Indications on the proofs

The computations of the dimension in Theorem 1 differ, depending on the assumptions we make on α and β, and always consist of an upper bound, that we derive by providing explicit coverings, and a lower bound that arises from the construction of a probability measure satisfying the assumptions of Frostman's lemma, see Lemma 20 in the Appendix for a statement.

If we just assume that the scaling factors are smaller than n -α+o (1) , we can prove that the dimension is bounded above by 1 α for rather general behaviours of the weights. To do so, we adapt arguments from [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF] to our new setting. The essential idea behind the proof is that the sub-structure descending from a block b n has size n -α+o (1) , and so that one only needs to cover every block b n with a ball of radius n -α+o (1) to cover the whole structure.

When α < 1 d and β > 1, although the sub-structure descending from a block b n may have diameter of order n -α+o (1) , we can also check that the index of the first block glued on block n has index roughly n β , which is large compared to n. Hence the diameter of the substructure descending from b n is essentially due to b n itself. This gives us a hint that we can cover the whole substructure descending from the block b n , using a covering of b n with balls that are really small compared to the size of b n , and that it would lead to a more optimal covering. In fact we use these two observations to recursively construct a sequence of finer and finer coverings, which lead to the optimal upper-bound. The idea of the proof is presented in more details in Section 4.2.1.

Concerning the lower bounds, for all values of α and β, we can define a natural probability measure μ on T as the limit of (a normalised version of) the measure µ n defined on T n for every n ≥ 1, see Section 3. In the case β ≤ 1, this probability measure only charges the leaves of T , and an application of Lemma 20 gives the lower bound 1 α . For β > 1, the measure μ does not charge the leaves and so the preceding argument does not work. We construct another measure as the sub-sequential limit of a sequence of measures (π k ) which are concentrated on sets of the form (T 2n k \ T n k ) with (n k ) chosen appropriately, see Section 5.2.1 for a presentation of the idea of the proof. The limiting measure is then concentrated on a strict subset of leaves and again, using Lemma 20 yields the appropriate lower bound.

Related constructions

Let us also cite some other models that have been studied in the literature and which share some features with ours. First, the line-breaking construction of the scaling limit of critical random graphs in [START_REF] Addario-Berry | Critical random graphs: limiting constructions and distributional properties[END_REF] by Addario-Berry, Broutin and Goldschmidt, that of the stable trees in [START_REF] Goldschmidt | A line-breaking construction of the stable trees[END_REF] by Goldschmidt and Haas, and that of the stable graphs in [START_REF] Goldschmidt | Stable graphs: distributions and line-breaking construction[END_REF] by Goldschmidt, Haas and Sénizergues, use a gluing procedure that is identical to ours. Their constructions are not directly handled by Theorem 1 but they fall in a slightly more general setting, for which our proofs still hold. In [START_REF] Borovkov | On the asymptotic behaviour of random recursive trees in random environments[END_REF], Borovkov and Vatutin study a discrete tree constructed recursively, which corresponds to the "genealogical tree" of the blocks in our model. Last, in [START_REF] Rembart | Recursive construction of continuum random trees[END_REF], Rembart and Winkel study the distribution of random trees that satisfy a self-similarity condition (in law). They provide an iterative construction of those trees in which infinitely many branches are glued at each step.

Plan of the paper

In Section 2, we give a rigorous definition of our model, set up some useful notation, and discuss some general properties. In the second section, we study the (normalised) natural measure μn on T n and prove that it converges to a measure μ on T under suitable assumptions. In Section 4.1, we prove the almost sure compactness of T and some upper-bounds on its Hausdorff dimension under some relatively weak hypotheses. In Section 4.2, we develop a new (more involved) approach that allows us to obtain a better upper-bound for some parameters for which the former fails to be optimal. In Section 5, we prove the lower bounds that match the upper-bounds obtained in Section 4. It is again divided in two subsections, each providing a proof that is only valid for some choices of parameters α and β. The Appendix A.2 contains a short reminder of basic properties concerning Hausdorff dimension. The Appendices A.1, A.3 and A.4 contain some technical proofs that can be skipped at first reading.

General framework

In this section, we start by providing a precise definition of our model and then we investigate some of its general properties.

Construction

Consider ((b n , d n , ρ n , ν n )) n≥1 a sequence of compact pointed metric spaces endowed with a finite Borel measure. Recall from the introduction the heuristics of our recursive construction. We define T 1 as the first block b 1 endowed with its measure ν 1 . Then at each step, we construct T n+1 from T n by gluing the root of the block b n+1 to a random point X n ∈ T n , which has distribution (a normalised version of) µ n . The measure µ n+1 is defined as the sum of the measures µ n and ν n+1 , the measure supported by b n+1 . We define T * as the increasing union of all the T n for n ≥ 1, and its completion is denoted T . In the next paragraph, we describe formally how to construct such growing metric spaces as subsets of a larger ambient space. The definitions here are rather technical and the proofs in the paper do not use the details of the construction, so the reader can skip this part at first reading.

Embedded construction

We consider (U, δ) the Urysohn space, and fix a point u 0 ∈ U . The space U is defined as the only Polish metric space (up to isometry) which has the following extension property (see [START_REF] Hušek | Urysohn universal space, its development and Hausdorff's approach[END_REF] for constructions and basic properties of U ): given any finite metric space X, and any point x ∈ X, any isometry from X \ {x} to U can be extended to an isometry from X to U . In the rest of the construction, we assume that the measured metric spaces ((b n , d n , ρ n , ν n )) n≥1 are all embedded in the space U and that their root is identified to u 0 . From the properties of the Urysohn space, this is always possible (see Appendix A.1 for a construction in the case of random blocks). 
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Figure 3: Substructure descending from a set, and projection on a substructure, illustrating some notation introduced in the paper in the case of the gluing of segments.

We introduce

1 (U, u 0 ) := (x n ) n≥1 ∈ U N * ∞ n=1 δ(x n , u 0 ) < +∞ . If we endow 1 (U, u 0 ) with the distance d((x n ) n≥1 , (y n ) n≥1 ) = ∞ n=1 δ(x n , y n ),
it is an easy exercise to see that it makes this space Polish. We can now construct the T n recursively, by T 1 = {(x, u 0 , u 0 , . . . ) | x ∈ b 1 }, and identifying T 1 to the block b 1 , we set µ 1 = ν 1 . For n ≥ 1, the point X n is sampled according to μn a normalised version of µ n with total mass 1. The point X n is of the form x

(n) 1 , x (n) 2 , . . . , x (n) 
n , u 0 , . . . and we set

T n+1 := T n ∪ x (n) 1 , x (n) 2 , . . . x (n) n , x, u 0 . . . x ∈ b n+1 .
We set µ n+1 := µ n +ν n , where as in the preceding section, we see b n+1 as the corresponding subset of T n+1 . Then T * = n≥1 T n and T = (T * ) is its closure in the space ( 1 (U, u 0 ), d). At the end T is a random closed subset of a Polish space.

In the rest of the paper, we will not refer to this formal construction of T and we will identify b n with the corresponding subset in T . We recall the notation W n = n k=1 w n for the total mass of the measure µ n .

Some notation

Let us introduce some notation that will be useful in the sequel, some of which is illustrated in Figure 3. Recall that from now on, we always assume that the blocks are of the form (1).

• If (E, d, ρ) is a pointed metric space, and x ∈ E, we define ht(x), the height of x, as its distance to the root d(ρ, x). We also denote ht(E) = sup x∈E ht(x), the height of E. Let us consider (B, D, ρ, ν), a random block of our model before scaling, and X a point of B which conditionally on (B, D, ρ, ν), has distribution ν. We denote

H := ht(X) = D(ρ, X), (4) 
the height of a uniform random point in the block. Remark that Hypothesis H d implies that E H 2 < ∞, and that P (H > 0) > 0. Some of our results are stated under these weaker assumptions.

• Whenever we sample the point X n under μn , we do it in the following way: first we sample

K n such that for all 1 ≤ k ≤ n, P (K n = k) = w k
Wn and then, conditionally on K n = k, the point X n is chosen on the block b k using the normalised version of the measure ν k . Whenever K n = k, we say that b n+1 is grafted onto b k and write b n+1 → b k . Remark that this entails that X n ∈ b k , but this condition is not sufficient in the case where X n belongs to several blocks (which only happens if the measures carried by the blocks have atoms). We denote

μ * n := law of (K n , X n ), (5) 
seen as a measure on n k=1 {k} × b k . In this way, the random variables ((K n , X n )) n≥1 are independent with respective distributions (μ * n ) n≥1 . We remain loose on the fact that we sometimes consider the blocks as abstract metric spaces and at other times we see them as subsets of T . It is implicit in the preceding discussion that everything is expressed conditionally on the sequence of blocks (b n ) n≥1 .

• We simultaneously construct a sequence of increasing discrete trees (T n ) n≥1 by saying that for n ≥ 1, the tree T n has n nodes labelled 1 to n and i is a child of j if and only if b i → b j . Also define T their increasing union. We denote ≺ the genealogical order on N * induced by this tree. We denote d T (i, j) for the graph distance between the nodes with label i and j in this tree and ht T (•) for their height.

• For x ∈ T , we define [x] n , the projection of x on T n , as the unique point y of T n that minimizes the distance d(x, y).

• Similarly, for k ≥ 1, we define [k] n , the projection of k on T n , as the unique node i ≤ n that minimizes the distance d T (i, k).

• If S is a subset of a block b n for some n ≥ 1 then we define T (S), the substructure descending from S as

T (S) := S ∪ i n [Xi-1]n∈S b i . If S = b n , this reduces to T (b n ) = i n b i ,
and we consider (T (b n ), d, ρ n ) as a rooted metric space.

• Remark that if x ∈ T (b k ) for some k ≥ 1 then we have [x] k ∈ b k and more generally, for any n ≤ k, we have

[x] n ∈ b [k]n .
• We often use the little-o notation and denote o(1) a deterministic function that tends to 0 when some parameter tends to 0 or ∞, depending on the context. For such functions that are random, we write instead o ω (1).

Zero-One law for compactness, boundedness and Hausdorff dimension

The main properties of T and L that we study are compactness and Hausdorff dimension. One can check that some of these properties are constants almost surely by an argument using Kolmogorov's zero-one law.

Indeed, take the whole construction T and contract the compact subspace T n into a single point. We can easily check that the resulting space is compact (resp. bounded) iff the former is compact (resp. bounded). Also, the subset L and its image after the contraction of T n have the same Hausdorff dimension. Now remark that the space that we just described only depends on the randomness of the blocks and the gluings after n steps. Indeed, if we start at time n with a unique point with weight W n and then follow the procedure by gluing recursively b n+1 , b n+2 , . . . , we get exactly the same space.

Hence, as this is true for all n, these properties only depend on the tail σ-algebra generated by the blocks and the gluings, and are therefore satisfied with probability 0 or 1.

Remark 2. In the setting of [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF], where the blocks are segments and the weights correspond to the lengths of those segments, the authors proved that the event of boundedness and compactness for T coincide almost surely. This is not the case in our more general setting: consider the case of branches with weights and lengths defined as

w n = 2 n , λ n = 2 -n for n / ∈ 2 k k ∈ N , w 2 k = 1, λ 2 k = 1, for k ∈ N.
In this case, an application of Borel-Cantelli lemma shows that a.s. for n large enough, no branch b n is ever grafted onto a branch b 2 k for any k. It is then clear that the resulting tree is a.s. bounded since the sum of the lengths of the branches b n for n / ∈ {2 k | k ∈ N} is finite, but it cannot be compact since there exists an infinite number of branches with length 1.

Monotonicity of Hausdorff dimension

Let us present an argument of monotonicity of the Hausdorff dimension of L with respect to the sequence (λ n ), on the event on which T is compact. Let (w n ) be a sequence of weights and (λ n ) and (λ n ) be two sequences of scaling factors such that for all n ≥ 1, we have

λ n ≥ λ n . Suppose that ((B n , D n , ρ n , ν n ))
n≥1 is a sequence of random compact metric spaces endowed with a probability measure. Then, let T (resp. T ) be the structure constructed using the blocks

(b n , d n , ρ n , ν n ) = (B n , λ n • D n , ρ n , w n • ν n ), for n ≥ 1, (resp. (b n , d n , ρ n , ν n ) = (B n , λ n • D n , ρ n , w n • ν n )).
Note that since we use the same sequence of weights we can couple the two corresponding gluing procedures.

Let f be the application that maps each of the block b n to the corresponding b n . Recall here that we see the blocks as subsets of the structure. We can verify that f :

T * -→ (T ) * , is 1- Lipschitz. We can then extend uniquely f to a function f : T -→ T , which is also 1-Lipschitz. Suppose T is compact. Then its image f (T ) is compact, hence closed in T . Since (T ) * ⊂ f (T ) and (T ) * is dense in T , we have f (T ) = T and so f is surjective. Now since (T ) * = f (T * ), we also have L = f (L), and since f is Lipschitz, dim H (L ) ≤ dim H (L). (6) 
3 Study of a typical point

In this section we study the height of a typical point of T n , i.e. the distance from the root to a point sampled according to μn . The proofs in this section are really close to those of [7, Section 1], to which we refer for details.

Coupling with a marked point

We construct a sequence of points (Y n ) n≥1 coupled with the sequence (T n ) n≥1 in such a way that for all n ≥ 1, the point Y n has distribution μn conditionally on T n and such that the distance from Y n to the root is non-decreasing in n. For technical reasons, we in fact define a sequence

((J n , Y n )) n≥1 such that for any n ≥ 1, (J n , Y n ) has distribution μ * n conditionally on (T n , T n ), see (5) 
. The properties of this construction are stated in the following lemma. Lemma 3. We can couple the construction of

((T n , T n )) n≥1 with a sequence ((J n , Y n )) n≥1 such that for all n ≥ 1, (i) we have J n ∈ {1, . . . , n} and Y n ∈ b Jn , (ii) conditionally on (T n , T n ), the couple (J n , Y n ) has distribution μ * n , (iii) for all 1 ≤ k ≤ n, ([J n ] k , [Y n ] k ) = (J k , Y k ).

Furthermore, under the assumption

H d (iii), the sequence (Y n ) n≥1 almost surely converges in T iff ∞ n=1 λ n w n W n 1 {λn≤1} < ∞ and ∞ n=1 w n W n 1 {λn>1} < ∞. (7) 
Note that if either

W ∞ := ∞ n=1 w n < ∞ or ∞ n=1 w n λ n W n < ∞, then (7) 
is satisfied, and this is the case under the assumptions of Theorem 1. In this case we let

Y := lim n→∞ Y n .
Proof. Let n ≥ 2. Conditionally on T n and T n , sample a couple (J n , Y n ) under the measure μ * n . Then two cases may happen:

• with probability 1 -w n /W n : we have J n < n, so the point Y n belongs to T n-1 , that is [Y n ] n-1 = Y n , and conditionally on this event ([J n ] n-1 , [Y n ] n-1 ) has the same distribution as (J n-1 , Y n-1 ),
• with probability w n /W n : we have J n = n. In this case the point Y n is located on the last block b n grafted on T n-1 . Conditionally on this event (if w n > 0), Y n is distributed on this block under the measure ν n and the couple

([J n ] n-1 , [Y n ] n-1
) is independent of the location of Y n on the n-th block and has the same distribution as

(J n-1 , Y n-1 ).
From this observation we deduce that

(T n-1 , T n-1 , [J n ] n-1 , [Y n ] n-1 ) = (T n-1 , T n-1 , J n-1 , Y n-1 )
in distribution and more generally,

(T k , T k , [J n ] k , [Y n ] k ) = (T k , T k , J k , Y k ) in distribution for all 1 ≤ k ≤ n.
Reversing this observation, we can construct a sequence (J n , Y n ) n≥1 (coupled to the K n and X n involved in the construction of T * ) such that conditionally on T n and T n , the couple

(J n , Y n ) has distribution μ * n and that for all 1 ≤ k ≤ n, we have ([J n ] k , [Y n ] k ) = (J k , Y k ).
To do so, we consider:

• a sequence (U n ) n≥1 of uniform random variables on (0 , 1),
• a sequence (Z n ) n≥1 of points respectively sampled on (b n ) n≥1 with respective distribution (a normalised version of) the measure (ν n ) n≥1 whenever it is non-zero, (set Z n = ρ n a.s. whenever ν n is trivial),

• a sequence (I n , P n ) n≥1 , sampled with respective distributions (μ * n ) n≥1 , independently for all these random variables. Then we construct (K n , X n ) and (J n , Y n ) as follows. We set (J 1 , Y 1 ) = (1, Z 1 ). Then recursively for n ≥ 1, we assume that X n-1 (if n = 1) and Y n have been constructed:

• if U n+1 ≤ wn+1 Wn+1 , then we set (K n , X n ) := (J n , Y n ), J n+1 := n + 1 and Y n+1 := Z n+1 , • if U n+1 > wn+1
Wn+1 , then we set (K n , X n ) := (I n , P n ), J n+1 := J n and Y n+1 := Y n . We can check that with this construction, for all 1 ≤ k ≤ n, we have

([J n ] k , [Y n ] k ) = (J k , Y k ), the (K n , X n ) n≥1
are independent with the appropriate distribution and for all n ≥ 1 conditionally on T n and T n the couple

(J n , Y n ) has distribution μ * n . Notice that the distance from Y n to the root ρ is non-decreasing. Denoting T 0 = {ρ} and Y 0 = ρ, for all 0 ≤ m ≤ n we have d(Y n , Y m ) = d(Y n , T m ) = n k=m+1 d(Z k , ρ k )1 U k ≤ w k W k , (8) 
which is equal in distribution to

n k=m+1 λ k H k 1 U k ≤ w k W k
, where the (H k ) k≥1 are i.i.d., independent of the (U k ) k≥1 and have the law of H, see [START_REF] Amini | Explosion and linear transit times in infinite trees[END_REF]. Under H d (iii) the random variable H has a finite second moment, and an application of Kolmogorov's three series theorem tells us that the almost sure convergence of

k≥1 λ k H k 1 U k ≤ w k W k
is equivalent to [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF]. In this case, (Y n ) n≥1 is a Cauchy sequence in the complete space T and hence it converges.

Also notice that with this construction, the discrete counterpart of ( 8) is

d T (J n , J m ) = n k=m+1 1 U k ≤ w k W k and so ht T (J n ) = n k=2 1 U k ≤ w k W k . (9) 
Remark that for any θ ∈ R,

E [exp (θ ht T (J n ))] = E exp θ n k=2 1 U k ≤ w k W k = n k=2 W k -w k W k • 1 + w k W k e θ = exp n k=2 log 1 + (e θ -1) w k W k ≤ exp (e θ -1) n k=2 w k W k , (10) 
where in the last line we use the inequality log(1 + x) ≤ x, valid for all x > -1.

Convergence of the measure μn

Proposition 4. Assume that E H 2 < ∞ and P (H > 0) > 0 and that (7) holds. Then almost surely there exists a probability measure μ on T such that

μn -→ n→∞ μ weakly. Furthermore, conditionally on (T , μ), the point Y is distributed according to μ almost surely. If W ∞ < ∞, then μ = 1 W∞ µ ∞ , and μ is concentrated on T * . If W ∞ = ∞, then μ is concentrated on L.
The proof of the last proposition is very similar to the proof of [START_REF] Curien | Random trees constructed by aggregation. Annales de l'institut Fourier[END_REF]Theorem 4], and is left to the reader. We can easily check that the assumptions of Proposition 4 are satisfied under the hypotheses of Theorem 1. We now state an additional lemma that will be useful later in the paper.

Lemma 5. Suppose that the assumptions of Proposition 4 hold, that μ is concentrated on the set L and that the sequence of weights satisfies wn Wn ≤ n -1+o (1) . Then almost surely, we have 1) ,

μ(T (b n )) ≤ n -1+o ω (
where the random function o ω (1) is considered as n → ∞.

Proof. Let us introduce some notation.

If i ≥ n, we set M (n) i := μi (T (b n ))
the relative mass of the tree descending from b n in T i . As i varies, this sequence of random variables evolves like one of Pemantle's time-dependent Pólya urns (see [START_REF] Pemantle | A time-dependent version of Pólya's urn[END_REF]) and is therefore a martingale. The topological boundary of T (b n ) in T is either the empty set or the singleton {ρ n }, thus it has zero μ-measure 1 . It follows from Portmanteau theorem that the quantity of interest μ(T (b n )) corresponds to M (n) ∞ , the almost sure limit of this positive martingale. We can write

M (n) i+1 = W i W i+1 M (n) i + w i+1 W i+1 1 Ui+1≤M (n) i ,
with (U i ) i≥1 a sequence of i.i.d. random variables, uniform on (0 , 1). We are going to show by induction on k ≥ 1 that there exists a function o(1) as n → ∞ such that for all i ≥ n, we have (1) .

E (M (n) i ) k ≤ n -k+o
1 Indeed, under the assumptions of the lemma, μ is carried on the leaves.

Note that we use the notation o( 1) for all such functions, but that in this proof, the corresponding functions can depend on k but not on i.

• For k = 1, the result follows from the fact that (M

(n) i ) i≥n is a martingale and that almost surely M (n) n ≤ wn Wn ≤ n -1+o(1) . • Let k ≥ 2. Suppose that the result is true for all 1 ≤ l ≤ k -1. Then E M (n) i+1 k M (n) i = E W i W i+1 M (n) i + w i+1 W i+1 1 Ui+1≤M (n) i k M (n) i = W i W i+1 k M (n) i k + E k-1 l=0 k l W i W i+1 l M (n) i l w i+1 W i+1 1 Ui+1≤M (n) i k-l M (n) i = W i W i+1 k M (n) i k + k-1 l=0 k l W i W i+1 l M (n) i l+1 w i+1 W i+1 k-l ≤ M (n) i k W i W i+1 k + k • w i+1 W i+1 W i W i+1 k-1 + k-2 l=0 k l M (n) i l+1 w i+1 W i+1 k-l
. Now taking the expectation and using the fact that ∀x ∈

[0 , 1], (1 -x) k + k(1 -x) k-1
x ≤ 1, we get, using the induction hypothesis,

E (M (n) i+1 ) k ≤ E (M (n) i ) k + k-2 l=0 k l E M (n) i l+1 w i+1 W i+1 k-l ≤ E (M (n) i ) k + k-2 l=0 k l n -(l+1)+o(1) (i -1+o(1) ) k-l .
Summing over all i we get that, for all i ≥ n:

E (M (n) i ) k ≤ E (M (n) n ) k + ∞ j=n k-2 l=0 k l n -l-1+o(1) j -k+l+o(1) ≤ E (M (n) n ) k + k-2 l=0 k l (n -l-1+o(1) ) ∞ j=n j -k+l+o(1) ≤ n -k+o(1) + k-2 l=0 k l n -l-1+o(1) n -k+l+1+o(1)
≤ n -k+o (1) .

This finishes the proof by induction. This property passes to the limit by dominated convergence so, for all n ≥ 1, we have (1) . For N an integer and > 0, (1) .

E (M (n) ∞ ) k ≤ n -k+o
P M (n) ∞ ≥ n -1+ ≤ n N -N E (M (n) ∞ ) N ≤ n -N +o
If we take N large enough, those quantities are summable and so, using the Borel-Cantelli lemma we get that with probability one, M (n) ∞ ≤ n -1+ for all n large enough. This completes the proof.

Upper-bounds and compactness for the (α, β)-model

In this section, we compute upper-bounds on the Hausdorff dimension of the set L. We first prove Proposition 6, which tells us that, under the condition that λ n ≤ n -α+o (1) for some α > 0 and in a very general setting for the behaviour of the weights (w n ), the dimension is bounded above by 1/α. The techniques used in the proof are very robust, and do not depend on the geometry of the blocks nor on the sequence of weights. In a second step, in Proposition 7, we handle the more specific case where the underlying block satisfies Hypotheses H d and that λ n ≤ n -α+o (1) for some 0 < α < 1/d and w n ≤ n -β+o (1) for some β > 1. In the proof of this proposition, a careful analysis allows us to refine some of the arguments of the previous proof and prove upper-bounds on the Hausdorff dimension of L that are below the "generic" value 1/α, given by Proposition 6. The techniques used for the proof are new and really take into account the behaviour of the weights and the geometry of the blocks.

Upper-bound independent of the weights and compactness

Notice that under H d (iii), the underlying block (B, D, ρ, ν) satisfies, for any N > 0,

P (diam(B) ≥ n ) ≤ E diam(B) N n -N , which is summable if N is large enough. Hence if (B n ) is an i.i.d.
sequence with the same law as B, then using the Borel-Cantelli lemma we have almost surely,

diam(B n ) ≤ n o ω (1) . ( 11 
)
Proposition 6. Suppose λ n ≤ n -α+o (1) , with α > 0, and that for all n, we have W n ≤ n γ for some γ > 0. Suppose also that (11) holds. Then the tree-like structure T is almost surely compact and we have

(i) d H (T n , T ) ≤ n -α+o ω (1) , (ii) dim H (L) ≤ 1 α .
Since our model is invariant by multiplying all the weights by the same constant, we can always assume that w 1 ≤ 1. Hence, the assumption in the lemma is always satisfied if W n grows at most polynomially in n, which is the case if Hyp. α,β , Hyp. α,1 or Hyp. α,β is fulfilled, for any choice of α > 0 and β ∈ R.

Proof of Proposition 6. We start with point (i). First,

d H (T 2 i , T 2 i+1 ) ≤ sup 2 i +1≤k≤2 i+1 λ k diam(B k ) + sup 2 i +1≤k≤2 i+1 d(ρ k , T 2 i ).
For any 2 i ≤ k ≤ 2 i+1 -1, the point ρ k+1 in the tree is identified with the point X k , taken under the measure μk on the tree T k . From our construction in Section 2.2, the point X k belongs to some b K k , and the couple (K k , X k ) is sampled with measure μ * k . Bounding the contribution of every block along the ancestral line with their maximum, we get

d(X k , T 2 i ) ≤ sup 2 i +1≤k≤2 i λ k diam(B k ) ht T (K k ). ( 12 
)
Now using Lemma 24 in Appendix A.4, we know that there exists a constant C > 0 such that n i=1 wi Wi ≤ C log n. Combining this with equation (10) (which holds for K k because it has the same distribution as J k ) and Markov inequality, we get for any u > 0,

P (ht T (K n ) ≥ u log n) ≤ exp ((C(e -1) -u) log n) = n C(e-1)-u .
The last display is summable in n if we choose u large enough. Hence using the Borel-Cantelli lemma, we almost surely have ht T (K n ) ≤ u log n for n large enough. Hence, in [START_REF] Goldschmidt | Stable graphs: distributions and line-breaking construction[END_REF] we have (1) . Combining this with [START_REF] Goldschmidt | A line-breaking construction of the stable trees[END_REF] and the upper-bound on λ n we get, (1) . (1) , hence the sequence of compact sets (T 2 i ) is a.s. a Cauchy sequence for Hausdorff distance between compacts of the complete space T . So the sequence (T n ) n≥1 is also Cauchy because of the increasing property of the construction, and T is then almost surely compact. Moreover we have, a.s. (1) , and this entails (i). Remark that since ht(T (b n )) ≤ d H (T n-1 , T ), this implies that a.s. we have

ht T (K k ) = (2 i ) o ω
d H (T 2 i , T 2 i+1 ) ≤ (2 i ) -α+o ω

Replacing i by k and summing the last display over

k ≥ i, ∞ k=i d H (T 2 k , T 2 k+1 ) ≤ (2 i ) -α+o ω
d H (T 2 i , T ) ≤ (2 i ) -α+o ω
ht (T (b n )) ≤ n -α+o ω (1) . ( 13 
)
We now prove point (ii). Let > 0. From ( 13), the collection of balls B(ρ n , n -α+ ), for n ≥ N , where N is an arbitrary number, is a covering of L whose maximal diameter tends to 0 as N → ∞. Besides, if we fix δ, for N large enough, and s > 1 α-, we have:

H δ s (L) ≤ ∞ n=N diam(B(ρ n , n -α+ )) s ≤ ∞ n=N 2 s n (-α+ )s -→ N →∞ 0.
Hence for all such s, we have H s (L) = 0 and so dim H (L) ≤ 1 α-. Letting → 0 finishes the proof.

Upper-bound for α < 1/d and β > 1

Now let us study the specific case where the blocks satisfy Hypothesis H d and that λ n ≤ n -α+o (1) for some 0 < α < 1/d and w n ≤ n -β+o (1) for some β > 1. The preceding Proposition 6 still holds but it is not optimal in this specific case. As in the previous proof we construct explicit coverings of the set L in order to bound its Hausdorff dimension. We construct them using an iterative procedure, which strongly depends on the dimension d and the exponent β. Starting from the covering given in the proof of Proposition 6, the procedure provides at each step a covering that is "better" in some sense than the preceding. In the limit, we prove the bound given in Proposition 7, which explicitly depends on β and d. Proposition 7. Suppose 0 < α < 1 d and β > 1 and that for all n ≥ 1, λ n ≤ n -α+o (1) and w n ≤ n -β+o (1) . Suppose also that H d (iii) and H d (ii) hold for some d ≥ 0. Then the Hausdorff dimension of L almost surely satisfies:

dim H (L) ≤ 2β -1 -2 (β -1)(β -αd) α .
For our purposes, we will work with countable sets of balls of T , i.e. sets of the form

R = {B (x i , r i ) | ∀i ≥ 1, x i ∈ T , r i > 0} ,
where B(x, r) denotes the open ball centred at x with radius r. Let us introduce some notation. If R is such a set of balls of T , we say that R is a covering of the subset X ⊂ T if X ⊂ B∈R B. We can also define the s-volume of R as

Vol s (R) := B∈R diam(B) s .
In this way if the diameters of the balls that belong to R are bounded above by some δ > 0, and R is a covering of X, then H δ s (X) ≤ Vol s (R), see Section A.2 in the Appendix for the definition of H δ s (X). Also, if R and R are collections of balls and R covers X and R covers X , then obviously R ∪ R is a countable set of balls that covers X ∪ X and for any s, we have

Vol s (R ∪ R ) ≤ Vol s (R) + Vol s (R ). (14) 
In what follows, we construct random sets of balls and we prove that they are coverings of our set L, which allow us to prove upper-bounds on the Hausdorff dimension of L.

An idea of the proof

We briefly explain the idea of the proof before going into technicalities. The goal will be to provide a covering of each T (b n ), for all n large enough. Since from the definition of L we have for any

N ≥ 1, L ⊂ n≥N T (b n ), (15) 
then the union over all n large enough of coverings of the T (b n ) is indeed a covering of L.

We recall how we derived the upper-bound 1 α for the Hausdorff dimension of L in the proof of Proposition 6 (ii). The idea is to consider for every n ≥ 1, a ball of radius n -α+ , say centred at ρ n . For n large enough, this ball covers T (b n ) by [START_REF] Haas | Asymptotics of heights in random trees constructed by aggregation[END_REF]. Thanks to [START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF], the set of balls

{B(ρ n , n -α+ ) | n ≥ N }, for any N ≥ 1, is a covering of L.
For β ≤ 1, this covering is good because, as a block of index n has relative weight w n /W n which can be of order up to n -1+o (1) when it appears, the indices of the first blocks that are glued on b n can have also an index of the order of n, and so a height of order up to n -α . On the contrary, if β > 1, we will see that the first block to be grafted on b n has index roughly of order n β , and so a height at most of order n -αβ , which is very small compared to n -α . This gives us a hint that we can provide a "better" covering using a big number of smaller balls to cover b n instead of just a "big" one, see Figure 4. We will use this rough idea to provide an algorithm which will construct finer and finer (random) coverings. Let us fix β > 1 from now on and take s > d, and explain informally how the algorithm works.

Goal: At each step i of the algorithm, we want to construct for all n ≥ 1 a set of balls R s n,i such that, for n large enough, this set of balls is a covering of T (b n ). Such a set of balls R s n,i will have an s-volume of roughly n fi(s) , say. From step to step, we try to lower the s-volume of the set of balls constructed by the algorithm, which corresponds to lowering this exponent f i (s). Whenever we manage to get an exponent below -1, we stop the algorithm. We will see that it implies that the Hausdorff dimension of L is lower or equal to s.

Step 1: The first step of the algorithm is deterministic and corresponds to what we did in the proof of Proposition 6. For each n we take a ball centred at ρ n of radius roughly n -α (in fact n -α+ but let us not consider these technicalities for the moment). As seen before, for n large enough, it is a covering of T (b n ). The s-volume of this covering is then of order n -αs . Denote f 1 (s) = -αs. If f 1 (s) < -1, stop. Otherwise, proceed to step 2.

Step 2: As represented in Figure 4a, decompose T (b n ) as

T (b n ) = b n ∪ b k →bn T (b k ).
Since the first block grafted on the block b n has typically an index that is very large compared to n, we design a covering using smaller balls. We fix γ > 1 and decide to cover b n with balls of size n -αγ , so that the blocks (and their descending substructure) of index > n γ are included in these balls, see Figure 4b. Since the blocks have dimension d, this covering uses roughly n -α n -αγ d balls, each with s-volume n -αγs . So the total volume used is around n -αd+αγd-αγs .

But doing so, we forgot to cover the blocks b k such that b k → b n and k ≤ n γ . To take care of them, we use the preceding step of the algorithm and cover each of them with a ball of radius k -α , see Figure 4c. Recalling that s ≤ 1/α, we get that in expectation, these balls have a s-volume of order

n γ k=n+1 P (b k → b n ) k -αs ≈ n -β n γ k=n+1 k -αs ≈ n -β+γ(1-αs) .
Hence, the total s-volume used to cover T (b n ) has order n max(-β+γ(1-αs),-αd+αγd-αγs) . Since we want to construct a covering having the smallest possible volume, we can optimize on γ the last We can check that the new exponent f 2 (s) is smaller than f 1 (s) = -αs. Hence we can cover T (b n ) with balls using a total s-volume of a lower order than the preceding step. If f 2 (s) < -1, stop.

Otherwise, proceed to step 3.

Step i: Now we recursively repeat the preceding step. Thanks to step i -1, we know that we can provide a covering of T (b n ) for any n, using a s-volume of approximately n fi-1(s) . Now we fix a number γ > 1 and we cover the block b n with balls of radius n -αγ . As in step 2, this covering has a s-volume of order n -αd+αγd-αγs . Then we take care of the b k such that b k → b n and k < n γ . To cover them we use step i -1, which ensures that we can do that for each k with a s-volume roughly k fi-1(s) . Hence the expectation on the s-volume for all these balls is, if

s is such that f i-1 (s) ≥ -1, n γ k=n+1 P (b k → b n ) k fi-1(s) ≈ n -β n γ k=n+1 k fi-1(s) ≈ n -β+γ(1+fi-1(s)) .
We then choose the optimal γ > 1 that minimizes the maximum of the exponents max(-αd + αγdαγs, -β + γ(1

+ f i-1 (s))).
We denote γ i (s) the value for which the minimum is obtained, which depends on s. The first exponent is linearly decreasing with γ, the other one is linearly increasing, and their value for γ tending to 1, satisfy -αs > -β + 1 + f i-1 (s). Hence, the value of γ i (s) is the value for which the two of them are equal, and this value is strictly greater than 1. We call this minimal exponent f i (s). If f i (s) < -1, stop. Otherwise, proceed to step i + 1.

Upper-bound on Hausdorff dimension Now, suppose s is such that f i (s) is welldefined and f i (s) < -1, for some i ≥ 1. If we cover every T (b n ) using the covering provided by step i of the algorithm, then the union of all those coverings covers L. Furthermore, we only need to cover all the T (b n ) for n sufficiently large to cover L, so we can have a covering of L using arbitrarily small balls. Hence we get that for all δ > 0, we have

H δ s (L) < ∞ n=1 n fi(s) < ∞ and so H s (L) < ∞, which proves that dim H (L) ≤ s.
This rough analysis is turned into a rigorous proof in what follows. We begin with elementary definitions and calculations that arise from what precedes.

Study of a sequence of functions

We begin by defining recursively the sequence of functions (f i ) i≥1 , together with a sequence (s i ) i≥1 of real numbers.

Definition-Proposition 8. We set s 0 := ∞. We define a sequence (f i ) i≥1 of functions as follows.

We set

∀s ∈ [d , ∞), f 1 (s) := -αs,
and set s 1 := 1 α . Then for all i ≥ 1, we recursively define:

∀s ∈ [d , s i ], f i+1 (s) := α(-d + βd -βs -f i (s)d) 1 + f i (s) + αs -αd .
Define s i+1 as the unique solution to the equation f i+1 (s) = -1.

Before proving the validity of this definition, let us state some properties of this sequence of functions.

Proposition 9. The following properties are satisfied: (i) For all i ≥ 1, the function f i is continuous, strictly decreasing, and f i (d) = -αd.

(ii) For all i ≥ 1, for all s ∈ (d , s i ], we have f i+1 (s) < f i (s).

(iii) Let s ∞ := 2β-1-2 √ (β-1)(β-αd) α
. Then we have for all s ∈ [d , s ∞ ),

f i (s) -→ i→∞ f ∞ (s), where f ∞ (s) = -(1 + αs) + 1 + 2αs + α 2 s 2 -4αd + 4αβd -4αβs 2 . (iv) For all s ∈ [d , s ∞ ), we have f ∞ (s) > -1.
(v) The sequence (s i ) i≥1 is strictly decreasing and

s i -→ i→∞ s ∞ . (vi) For all i ≥ 1, we have f i+1 (s i ) < -1.
Proof. We define the function F on the set (s, x) ∈ R 2 d ≤ s ≤ 1 α , x > αdαs -1 by the expression:

F (s, x) = α(-d + βd -βs -dx) 1 + x + αs -αd .
We have for all s > d and all x > αdαs -1,

∂ x F (s, x) = α(β -αd)(s -d) (1 + x + αs -αd) 2 > 0.
This shows that for all s > d, the function F (s, •) is strictly increasing, and also strictly concave since the derivative is strictly decreasing.

From these facts we can show by induction on i the points (i) and (ii) of Proposition 9, together with the validity of the definition of f i and s i , in Definition-Proposition 8.

• For i = 1, the function f 1 is well-defined, s 1 is indeed the unique solution to f 1 (s) = -1 and the point (i) is satisfied. Moreover, f 2 (s) is well-defined for s ∈ [d , s 1 ] by f 2 (s) = F (s, -αs) and for all s ∈ (d , s 1 ), we have

F (s, -αs) + αs = α(β -1)(d -s) 1 -αd < 0,
which proves that (ii) holds for i = 1.

• By induction, if f i and s i are defined up to some i ≥ 1 and satisfy (i), then one can verify that for all s ∈ [d , s i ], the function f i+1 is well-defined by the formula:

f i+1 (s) = F (s, f i (s)).
From the monotonicity of F (s, •) and f i , this function is continuous and strictly decreasing. One can check that F (d, x) = -αd for any x > -1 so f i+1 satisfies (i). Then, if i = 1, the initialisation already gives us that (ii) holds. Otherwise, if i ≥ 2, then using the induction hypothesis, for all s ∈ (d , s i-1 ] we have f i (s) < f i-1 (s). Using that F (s, •) is strictly increasing for s > d we get that for all s ∈ (d , s i ], f i+1 (s) < f i (s), and so (ii) holds. Since f i+1 is continuous and strictly decreasing and that f i+1 (d) > -1 and f i+1 (s i ) < f i (s i ) = -1, then s i+1 is well-defined. This finishes our proof by induction.

Let us study at fixed s > d the equation F (s, x) = x. We get the following second order equation:

x 2 + x(1 + αs) + (αd -αβd + αβs) = 0,
for which the discriminant is ∆ s = 1 + 2αs + α 2 s 2 -4αd + 4αβd -4αβs. We can evaluate this quantity at d and at 1 α . We get

∆ d = (αd -1) 2 > 0 and ∆ 1/α = 4(β -1)(αd -1) < 0.
We can check that it vanishes exactly at s = s ∞ so that in the end, ∆ s is strictly positive on [d , s ∞ ), null at s ∞ and strictly negative on (s ∞ , 1 α ]. Hence, the function F (s, •) has 2 (resp. 1, resp. 0) fixed points on the corresponding intervals.

The convergence (iii) is a consequence of the fact that for s ∈ [d , s ∞ ), the function F (s, •) is strictly increasing and concave, has exactly two fixed points and that the initial value f 1 (s) is greater than the smallest fixed point. We then have a convergence of the sequence f i (s) towards the greatest fixed point of F (s, •), the value of which can be computed using the equation above. The property of the limit (iv) can be checked by proving that for all s ∈

[d , s ∞ ], we have f ∞ (s) ≥ f ∞ (s ∞ ) = (β -1)(β -αd) -β > -1.
Let us prove the point (v). According to property (ii), we have f i (s i+1 ) > f i+1 (s i+1 ) = -1, and since f i is decreasing, we get s i+1 < s i . Hence the sequence (s i ) i≥1 is strictly decreasing, bounded below by d, so it converges. Now let s > s ∞ . If the sequence (f i (s)) i≥1 was well-defined for all i ≥ 1, then for all i ≥ 1 we would have f i (s) > -1, so it would be decreasing, bounded below, hence it would have a limit, which would be a fixed point of F (s, •). It is impossible since F (s, •) has no fixed point, so the sequence is not well-defined for all i ≥ 1 and so for i large enough, s > s i . We conclude that lim i→∞ s i ≤ s ∞ . If we had lim i→∞ s i < s ∞ , then it would contradict the property (iv). In the end, lim i→∞ s i = s ∞ .

The last property (vi) follows from property (ii). Indeed, we have f i+1 (s i ) < f i (s i ) = -1.

Construction of the coverings

Let us provide a rigorous proof of our upper-bound, which follows the heuristics that we derived in the beginning of the section. Here, we distinguish two types of negligible functions, o n (1) and o (1). A function denoted o n (1) (resp. o (1)) is negligible as n → ∞ (resp. as → 0) and does not depend on (resp. on n).

Proposition 10. Fix i ≥ 1 and s ≤ s i-1 . For all > 0, we can construct simultaneously for all n ≥ 1 a set of balls R s, n,i , such that the following holds. (i) Almost surely, for n large enough, R s, n,i covers T (b n ). (ii) We have E Vol s (R s, n,i ) ≤ n fi(s)+on( 1)+o (1) .

(iii) The diameter of the balls used are such that max

B∈R s, n,i diam B -→ n→∞ 0.
We will define the set of balls R s, n,i over the block b n and its descendants in an algorithmic way, and each step of the algorithm only depends on the gluings that happen after time n. The proof of the upper-bound will directly follow from this proposition. Let us first state an elementary result, the proof of which is left to the reader. Note that we allow the function o (1) to be infinite for large values of . Lemma 11. Let ξ ≥ -1. Then for all γ > 1, we have: 1)+o (1) ≤ n -β+γ(ξ+1)+on( 1)+o (1) .

E n γ k=n+1 1 {b k →bn} k ξ+on(
Proof of Proposition 10. Let s > 0 and > 0. We prove the proposition by induction on i. The first set of balls that we build is the following: for each block b n , we cover the block with a ball of radius n -α+ , centred on the point ρ n . We write:

R s, n,1 = {B(ρ n , n -α+ )}.
According to [START_REF] Haas | Asymptotics of heights in random trees constructed by aggregation[END_REF], there exists a random N such that for all n ≥ N , the set R s, n,1 covers T (b n ). The diameter of the ball of R s, n,1 tend to 0 as n → ∞. Besides we have, E Vol s (R s, n,1 ) ≤ (2n) -αs+ s = n f1(s)+on(1)+o (1) .

The property is thus proved for i = 1.

Let i ≥ 1 and s < s i . Let us construct R s, n,i+1 n≥1 , using the previous step i. We set γ i+1 (s) > 1 a positive real number that we will choose later, and > 0. We define R s, n,i+1 as follows: it is the union over all the blocks b k for k < n γi(s) that are grafted on the block b n , of their covering R s, k,i of the preceding step, together with the union of a deterministic set of balls that we define hereafter.

We want to cover b n with balls of radius n -αγi+1(s) , which is equivalent to covering B n with balls of radius λ -1 n n -αγi+1(s) . Under Hypothesis H d , for any d ≥ 0, using Lemma 21 and Lemma 23 in Appendix A.3, we can a.s. find a random collection (x m ) 1≤m≤Mr(Bn) of points of B n such that the balls centred on those points with radius r := λ -1 n n -αγi+1(s) cover B n , and such that M r (B n ) ≤ N r/4 (B n ), where N r (B) is the minimal number of balls of radius r needed to cover B.

From the assumption on the sequence (λ n ), we have r ≥ n -αγi+1(s)+α+on (1) . Since N r (B n ) is decreasing in r, using Hypothesis H d (ii) we get that (1) .

E N r/4 (B n ) ≤ n -αd+αγi+1(s)d+on
In the end,

R s, n,i+1 :=   k≤n γ i+1 (s) :b k →bn R s, k,i   ∪ B x m , n -αγi+1(s)+ 1 ≤ m ≤ M r (B n ) .
Now we compute the expectation of the s-volume of these sets of balls.

E Vol s (R s, n,i+1 ) = E   n γ i+1 (s) k=n+1 1 {b k →bn} Vol s (R s, k,i )   + E [M r (B n )] (2n (-αγi+1(s)+ ) ) s ≤ E   n γ i+1 (s) k=n+1 1 {b k →bn} E Vol s (R s, k,i )   + E N r/4 (B n ) (2n (-αγi+1(s)+ ) ) s ≤ E   n γ i+1 (s) k=n+1
1 {b k →bn} k fi(s)+on( 1)+o (1)   + n -αd+αdγi+1(s)+(-αγi+1(s)+ )s+on( 1)+o (1) ≤ n -β+γi+1(s)(fi(s)+1)+on( 1)+o (1) + n -αd+αdγi+1(s)-αγi+1(s)s+on( 1)+o (1) ,

where in the last line we used Lemma 11 which applies because s ≤ s i , hence f i (s) ≥ -1. We then take γ i+1 (s) := β-αd fi(s)+1-αd+αs > 1, which yields:

-β + γ i+1 (s)(f i (s) + 1) = -αd + αγ i+1 (s)d -αγ i+1 (s)s = f i+1 (s).
We then have,

E Vol s (R s, n,i+1
) ≤ n fi+1(s)+on( 1)+o (1) . We can check that max B∈R s, n,i+1 diam B -→ n→∞ 0, and that almost surely, for n large enough, the collections of balls R s, n,i+1 are indeed coverings of T (b n ) thanks again to [START_REF] Haas | Asymptotics of heights in random trees constructed by aggregation[END_REF]. This finishes the proof.

We can now prove the main proposition of this section.

Proof of Proposition 7. Let i ≥ 1. For > 0 small enough, we use Proposition 10 to get a set of balls (R si, n,i+1 ) n≥1 , which satisfies:

E Vol si (R si, n,i+1
) ≤ n fi+1(si)+on( 1)+o (1) . From Proposition 9(vi), we have f i+1 (s i ) < -1, so we can choose small enough such that the exponent is eventually smaller than fi+1(si)-1 2 < -1 as n → ∞. Then, for N ≥ 1, we set R N = n≥N R si, n,i+1 . According to Proposition 10, the set of balls R si, n,i+1 is a covering of T (b n ) for n large enough and so R N is a covering of L, for all N . Since for any δ > 0, we may choose N large enough so that max B∈R N diam B < δ, we get:

H si (L) = lim δ→0 H δ si (L) ≤ lim sup N →∞ Vol si (R N ) ≤ Vol si (R 1 ) < +∞, a.s. since E [Vol si (R 1 )] ≤ ∞ n=1 n f i+1 (s i )-1 2
+on(1) < +∞.

This shows that the Hausdorff dimension of L satisfies dim H (L) ≤ s i , almost surely. In the end, since the sequence (s i ) i≥1 tends to s ∞ , we conclude that almost surely,

dim H (L) ≤ s ∞ = 2β -1 -2 (β -1)(β -αd) α .
5 Lower-bounds for the (α, β)-model

In this section we compute lower-bounds on the Hausdorff dimension of the set L. We do that by constructing Borel measures on L that satisfy the assumptions of Frostman's lemma (Lemma 20 in Appendix A.2). In the case where β ≤ 1 we use the natural measure μ on T which arises as the limit of the normalised weight measures on T n (see Proposition 4). The case β > 1 is a bit more technical because the natural measure μ is not concentrated on L, so we have to construct another measure π, that we define as the subsequential limit of some well-chosen sequence of probability measures on T .

Case β ≤ 1 and use of the measure μ

In this subsection, we suppose that β ≤ 1. Under the assumptions of Proposition 4, the sequences of measures μn almost surely converges weakly to a measure μ, which is concentrated on the set of leaves L. The existence of μ will be useful for the proof of the next proposition. Recall from (4) the definition of the random variable H and the fact that the assumptions on H in the proposition are satisfied under Hypothesis H d for any d ≥ 0.

Proposition 12. Suppose that Hypothesis α,β or Hypothesis α,1 is satisfied. Suppose also that E H 2 < ∞ and that P (H > 0) > 0. Then the Hausdorff dimension of L almost surely satisfies:

dim H (L) ≥ 1 α .
As we said earlier, the idea is to prove this lower bound on the dimension using Frostman's lemma: we will thus prove that almost surely, for μ-almost all leaves x ∈ L, we have an upper bound of the type μ(B(x, r)) ≤ r 1/α-, for r sufficiently small, and for all . An application of Lemma 20 will then finish our proof.

In order to prove this control on the masses of the balls, we will use two lemmas. The first one allows us to compare μ(B(x, r)) with a quantity of the form μ(T (b n )) for an appropriate n. The second one, Lemma 5, provides a good control of the quantities μ(T (b n )) for large n, such that the combination of the two will provide the upper bound that we want. Let > 0. Recall from (2) the definition of G . 

∈ n k , n k+1 ∩ G such that x ∈ T (b n ) and d(x, ρ n ) ≥ n -α-2 .
Proof. Note that in our setting, the hypothesis of Proposition 4 holds and so the random leaf Y constructed in Section 3 is defined a.s. Also, according to Proposition 4, conditionally on (T , μ), the point Y has distribution μ. So it suffices to prove that the lemma holds for the the random leaf Y . We recall

d(Y n , Y m ) law = n k=m+1 λ k H k 1 U k ≤ w k W k and Y = lim n→∞ Y n .
Let us introduce a constant c > 0 and set p := P (H > c) .

For β < 1, thanks to our assumptions, we can fix c such that p is non-zero. We then have:

P ∀i ∈ n k , n k+1 ∩ G , U i > w i W i or H i < c = n 1+ k i=n k i∈G 1 -p w i W i = exp     n 1+ k i=n k i∈G log 1 -p w i W i     ≤ exp     -p n 1+ k i=n k i∈G w i W i     ≤ Lem.25
exp (-pC log(n k )) . 2 The threshold depends on the realisation and on x.

To write the last line we use Lemma 25 in the Appendix and we can see that the last display is summable over k.

For the case β = 1, Hypothesis α,1 allows us to write

P ∀i ∈ n k , n k+1 ∩ G , U i > w i W i or H i < c ≤ exp (-pf (k) log log log(n k )) ,
with a function f (k) tending to infinity. Since n k ≥ 2 (1+ ) k , then log log log(n k ) ≥ (1 + o( 1)) log k and the last display is also summable in k. In both cases, an application of the Borel-Cantelli lemma shows that we have almost surely, for k large enough,

∃n ∈ n k , n k+1 ∩ G , U n ≤ w n W n and H n ≥ c.
Since n ∈ G , we have λ n ≥ n -α-. Combined with the fact that H n ≥ c we get . We know from Lemma 13 that for all k large enough, there exists n ∈ n k , n k+1 such that x ∈ T (b n ) and

d(ρ n , Y ) ≥ λ n H n ≥ cn -α-≥ n -α-2 ,
d(ρ n , x) ≥ n -α-2 ≥ n -α-2 k+1 ≥ n (1+ +o(1))(-α-2 ) k . So if we take k large enough and r ∈ [n -α-2 k+2 , n -α-2 k+1 ), then μ(B(x, r)) ≤ μ(T (b n )) ≤ Lem. 5 n -1+ ≤ n -1+ k = n -1+ (1+ ) 2 +o(1) k+2 ≤ r -1 α+2 -1+ 1+ +o(1)
≤ r 1 α +g( )+o [START_REF] Abraham | A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces[END_REF] , with a function g tending to 0 as → 0.

Since the last display is true almost surely for all r sufficiently small, we use Lemma 20 (Frostman's lemma) to deduce that the Hausdorff dimension of L is a.s. larger than 1 α + g( ). Taking → 0 we get that almost surely, dim H (L) ≥ 1 α .

Case β > 1 and construction of measures on the leaves

The following section is devoted to prove the following proposition.

Proposition 14. Suppose that Hypothesis α,β is satisfied and that the block B satisfies Hypothesis H d for some d ≥ 0. Then the Hausdorff dimension of L almost surely satisfies:

dim H (L) ≥ 2β -1 -2 (β -1)(β -αd) α , if α < 1 d , ≥ 1 α otherwise.
In the case β > 1, we cannot use the natural measure μ to get a good lower bound on the Hausdorff dimension of L since, as stated in Proposition 4, the measure μ does not charge the leaves. So the goal of this subsection is to artificially construct a probability measure concentrated on the leaves that will give us, using Frostman's lemma, the appropriate lower bound on the Hausdorff dimension, that is, the one matching with the upper bound derived in Section 4. The measure will be obtained as a sub-sequential limit of a sequence of measures concentrated on the blocks, and will only charge a strict subset of L.

First, let us fix some notation. Recall the definition of G n in (3).It follows from α,β that there exists a function h(n) tending to 0 such that #G h(n) n = n 1+o (1) . We choose such a function h and let

G n := G h(n) n . ( 16 
)
We will also use an increasing sequence of positive integers (n k ) k≥0 , such that for all k ≥ 0, we have n k+1 = n γ k , with a fixed γ > 1, that we will optimise later. Also we suppose n 0 to be very large, with conditions that we will make explicit in what follows. For all n ≥ 1, we set

b n := x ∈ b n d n (ρ n , x) > ht(b n ) 2 ,
the "upper-half" of block b n . For technical reasons, we will only keep in our construction the blocks that behave reasonably well, see the forthcoming property (P d ), introduced in Section 5.2.2. We recursively define some random sets of integers. Let

G n0 = {n ∈ G n0 | B n satisfies property (P d )} , (17) 
and for k ≥ 0,

G n k+1 = n ∈ G n k+1 B n satisfies property (P d ); ∃i ∈ G n k , b n → b i , X n-1 ∈ b i . (18) 
We then define for all k ≥ 0,

B k = n∈ Gn k b n .
In other words, B 0 is the union of all the upper-halves of the blocks b n , for n in G n0 for which B n behaves well, and B k+1 is defined to be the union of all the upper-halves of the blocks of index n ∈ G n k+1 that are grafted directly on B k , and such that B n behaves well. Note that for the moment, B k can be empty. We define the measure n∈ Gn k ν n and refer to it as the mass measure3 on the k-th generation. To simplify notation we denote it | • |. We do not index it by k since the index for which we consider it is always clear from the context. We also define a sequence (π k ) k≥0 of probability measures on B k by

π k := | • ∩ B k | |B k | ,
the normalised mass measure on B k . Note that the sequence (π k ) is only well-defined on the event where B k has non-zero mass for all k. In what follows we will ensure that it is the case for an event of strictly positive probability and only work conditionally on this event. Remark that, still conditionally on this event and on the event that T is compact, which has probability 1, the sequence (π k ) k≥0 is a sequence of probability measures on a compact space, hence it admits at least one subsequential limit π for the Lévy-Prokhorov distance. We can check using [7, Lemma 17], which is essentially an application of the Portmanteau theorem, that π is concentrated on k≥0 T (B k ) ⊂ L.

Idea of the proof

Let us briefly explain how the measure π that we just constructed enables us to derive the appropriate lower bound for the Hausdorff dimension. We give the intuition for α < 1/d; the idea for α > 1/d is very similar. We will be very rough for this sketch of proof and we keep the notation introduced above. Let us here forget that some blocks may not satisfy (P d ), and that we only deal with half-blocks.

Number of blocks in B k

Suppose that the number of blocks in B k evolves like a power of

n k , say n a k . Then the total weight of B k is |B k | ≈ n a k n -β k , because all the blocks in B k have weight ≈ n -β k .
Since the probability that any block with index in n k+1 , 2n k+1 is grafted on B k is roughly |B k |, and since the number of blocks in B k+1 is roughly n a k+1 , we have

n γa k ≈ n a k+1 ≈ |B k | • n k+1 ≈ n a k n -β k n γ k .
Hence we have a = γ-β γ-1 , and so

|B k | ≈ n γ(1-β) γ-1 k .
Estimation on π For each k ≥ 0, the set B k is made of blocks of size ≈ n -α k . Let us suppose that the quantities of the form π(B(x, r)) are well-approximated by π k (B(x, r)), whenever r ∈ 

[n -α k+1 , n -α k ]. For x close to B k ,
π(B(x, r)) ≈ π k (B(x, r)) = |B(x, r) ∩ B k | |B k | ≈ r d n -β+αd-γ β-1 γ-1 k ≈ r d n 1 γ-1 (γ(αd-1)+β-αd) k .
Then, if α < 1/d, the last exponent is negative for γ large enough. For such γ, using r > n

-α k+1 ≈ n -αγ k yields π(B(x, r)) ≤ r d-1 αγ(γ-1) (γ(αd-1)+β-αd) . (19) 
Optimisation We then choose γ such that the exponent d -γ(αd-1)-αd+β αγ(γ-1)

is maximal. We get the value

2β-1-2 √ (β-1)(β-αd) α
which matches our upper-bound.

Plan of the proof Our goal is now to make those heuristics rigorous. First we will make some precise estimation on how the mass of the blocks with indices in G n k is spread on subsets of T n k -1 . Then we will decompose each block of each B k into subsets that we call fragments for which our preceding estimation holds. After that, we use this decomposition to control the behaviour of the (π k ), and also how the measures π k can approximate the limiting measure π. At the end we conclude by optimising on the parameters. We will distinguish the two cases d = 0 and d > 0 and mostly work on the latter. We then explain quickly how the proof can be adapted to d = 0, in which fewer technicalities are involved.

Mass estimations

Before proving our main proposition, we have to state some technical lemmas that will allow us to control how regularly the mass of B k+1 is spread on B k . Let us now define the property (P d ), in a different way whether d = 0 or d > 0. Let C > 0 be a positive number and remind the definition of ( r0 ) in Hypothesis H d (i). For d > 0 we say that a pointed compact metric space endowed with a probability measure (b, d, ρ, ν) satisfies (P d ) iff

         C -1 ≤ ht(b) ≤ C, ν x ∈ b d(ρ, x) ≥ ht(b) 2 ≥ C -1 , (b, d, ρ, ν) satisfies ( r0 ) with r 0 = C -1 . (P d )
For d = 0 we say that (b, d, ρ, ν) satisfies (P 0 ) iff b is finite and

     C -1 ≤ ht(b) ≤ C, #b ≤ C, ∀x ∈ b, ν ({x}) ≥ C -1 . (P 0 )
In any case, under Hypothesis H d (i), for any d ≥ 0, we can choose C such that the underlying block (B, D, ρ, ν) satisfies (P d ) with a positive probability p > 0. p = P (B satisfies (P d )) > 0.

From now on we fix such a constant C. We also set M

:= ν x ∈ B D(ρ, x) ≥ ht(B)

2

, and

m := E [M | B satisfies (P d )]
. We also denote by M a random variable with the law of M conditional on the event {B satisfies (P d )}, Lemma 15. Let S be a subset of some b i with i ≤ n k -1, measurable with respect to F n k -1 , the σ-field generated by the blocks and the gluings up to time n k -1. Let χ(S) be the total mass of the union of the sets b n n ∈ G n k , b n → b i , X n-1 ∈ S, B n satifies (P d ) , namely, the total mass of the half-blocks that are grafted on S with index in G n k , and such that the corresponding blocks satisfy property (P d ). Then for all x ∈ [0 , 1], This lemma roughly states that, for every subset S ⊂ b i for i ∈ G n k , if the subset has enough mass to attract a substantial number of the blocks coming between time n k and 2n k then we have a good control on how the mass of B k grafted on S can deviate from its expected value.

P χ(S) -a k |S| > xa k |S| F n k -1 ≤ 2 exp -x 2 n 1+o(1) k |S| , where a k := pm i∈Gn k w i W i-1 , is such that E [χ(S) | F n k -1 ] = a k |S|
Proof. First we write χ(S) as:

χ(S) = i∈Gn k 1 Ui≤ |S| W i-1 1 {Bi satisfies (P d )} M i w i ,
where the (U i ) are independent uniform variables on [0 , 1], independent of everything else. Then we can compute

E [χ(S) | F n k -1 ] = i∈Gn k |S| W i-1 pw i • E [M i | B i satisfies (P d )] = |S| • pm   i∈Gn k w i W i-1   = |S| • a k .
Let us bound the exponential moments of χ(S):

E [exp(θχ(S)) | F n k -1 ] = i∈Gn k p |S| W i-1 • E e θwiMi B i satisfies (P d ) + 1 - p |S| W i-1 = i∈Gn k 1 + p |S| W i-1 (E e θwiM -1) ≤ exp   p |S| i∈Gn k 1 W i-1 (E e θwiM -1)   ,
where we used the inequality e z ≥ 1 + z, in the last line. Now,

E [exp(θ(χ(S) -a k |S|)) | F n k -1 ] ≤ exp   p |S| i∈Gn k 1 W i-1 (E e θwiM -1) -θ |S| i∈Gn k pmw i W i-1   ≤ exp   p |S|   i∈Gn k 1 W i-1 (E e θwiM -1 -θmw i )     ≤ exp   p |S|   i∈Gn k 1 W i-1 c(θw i ) 2     .
Here we used the fact that for z ∈ [-1 , 1], we have e z ≤ 1 + z + 3z 2 and so

E e zM -1 -zE [M] ≤ E 1 + zM + 3(zM) 2 -1 -zE [M] ≤ 3E M 2 z 2 ≤ cz 2 ,
for c a constant. Since we ask that z ∈ [-1 , 1], the computation above is valid if we restrict ourselves to |θ| ≤ (sup

i∈Gn k w i ) -1 = n β+o (1) k 
. Note that we can use this inequality for negative values of θ. Hence for x ∈ [0 , 1] we have

P (|χ(S) -a k |S|| > xa k |S| | F n k -1 ) ≤ P (χ(S) -a k |S| > xa k |S| | F n k -1 ) + P (-(χ(S) -a k |S|) > xa k |S| | F n k -1 ) ≤ P exp (θ(χ(S) -a k |S|)) > e θxa k |S| F n k -1 + P exp (-θ (χ(S) -a k |S|)) > e θxa k |S| F n k -1 ≤ 2 exp   p |S|   i∈Gn k 1 W i-1 c(θw i ) 2   -θxa k |S|   = 2 exp   p |S|   i∈Gn k 1 W i-1 (c(θw i ) 2 -θxmw i )     .
Taking θ = xn β- k in the last inequality, which is possible for n k large enough, this gives

P χ(S) -a k |S| > xa k |S| F n k -1 ≤ 2 exp   p |S| x 2   i∈Gn k 1 W i-1 (n β- k w i )(cn β- k w i -m)     .
From our assumptions on the sequence (w n ), we have n β- k w i → 0 and hence (cn β- k w im) is eventually smaller than -m 2 , uniformly for i ∈ G n k . Also 1 Wn is always greater than 1 W∞ . Combining this with the last display we get, for n k large enough

P χ(S) -a k |S| > xa k |S| F n k -1 ≤ 2 exp -x 2 |S| • pm 2W ∞ #G n k ( inf i∈Gn k w i )n β- k ≤ 2 exp -x 2 |S| n 1-+o(1) k .
Now for every > 0, this inequality is true for n k large enough, so this proves the lemma.

Let us also state another technical lemma, the proof of which is in the Appendix A.4.

Lemma 16. Suppose that Hypothesis α,β is satisfied. We have, for the sequence (a i ) defined in Lemma 15,

k i=1 a i = n γ(1-β) (γ-1) +o(1) k
, where the o(1) is considered when k → ∞.

Construction of fragments, case d > 0

Fragments of a random block Let us discuss how we can decompose a metric space into a partition of subsets that we call r-fragments, all of them having a diameter of order r. Suppose that the random block (B, D, ρ, ν) comes with a sequence of random points (X n ) n≥1 , which are i.i.d. with law ν, conditionally on (B, D, ρ, ν), and that this block satisfies Hypothesis H d (i), for some d > 0.

The following lemma ensures that in this setting, we can construct a partition F (B, r) = (f (r)

i ) 1≤i≤N of r-fragments of (B, D, ρ, ν), which have approximately equal diameter and measure. Recall the function ϕ defined in Hypothesis H d (i), and the notation N r (B) for the minimal number of balls of radius r needed to cover B. Lemma 17. Suppose that (B, D, ρ, ν) satisfies Hypothesis H d (i) for some d > 0. For any r ∈ [0 , 1], we construct a finite partition of Borel subsets (f (r) i ) 1≤i≤N of the block (B, D, ρ, ν) in a deterministic way from (B, D, ρ, ν) and the sequence of random points (X n ) n≥1 . There exists two functions ψ and φ defined on the interval [0 , 1], which tend to 0 at 0 such that the following holds almost surely on the event {(B, D, ρ, ν) satisfies ( r0 )}, for any r 0 > 3r,

(i) For all 1 ≤ i ≤ N , diam f i ≤ 2r and r 4 d+ϕ(r/4) ≤ ν(f i ) ≤ r d-ϕ(r) .
(ii) For all r < r 0 /3, we have

∀x ∈ B, # {1 ≤ i ≤ N | B(x, r ) ∩ f i = ∅} ≤ (r ∨ r ) d+ψ(r∨r ) • r -d+φ(r) .
(iii) The (random) number N of fragments satisfies

N ≤ N r/4 (B) and N ≤ r 4 -d-ϕ(r/4)
.

In the paper, we use this construction on (B n , D n , ρ n , ν n ), assuming that for all n ≥ 1, a sequence (X n,j ) j≥1 is defined on the same probability space and that this sequence is i.i.d. with law ν n , conditionally on (B n , D n , ρ n , ν n ). For any n ≥ 1 and r > 0, we denote

F (B n , r) = f (r) i 1 ≤ i ≤ N
the partition of B n into (random) r-fragments which is given by the lemma. The proof of Lemma 17 can be found in the Appendix.

Decomposition of b n into fragments Fix a parameter η ∈ (0 , 1 d ). We want to decompose every b n , for n ∈ G n k , in fragments of size approximately n -η k+1 . For that, it is sufficient to use F (B n , r n ) the decomposition of B n in r n -fragments with r n = (λ -1 n • n -η k+1 ), which is given by Lemma 17. Let us emphasise that these fragments are constructed as subsets of B n , but we consider them as subsets of b n in what follows, without changing notation. We define the set F k is as the collection of all these fragments coming from every b n with n ∈ G n k . We have of course

f ∈F k f = n∈ Gn k b n . (20) 
In our construction, we decided to keep only the blocks that were sufficiently well-behaved with respect to some properties that will be useful now. Recall the definition of the random set G n k in equations ( 17) and [START_REF] Rembart | Recursive construction of continuum random trees[END_REF]. Remark that, from the definition of G n k , we have,

c k := min n∈Gn k λ -1 n • n -η k+1 = n α-γη+o(1) k and C k := max n∈Gn k λ -1 n • n -η k+1 = n α-γη+o (1) k 
.

If γ and η are such that γ > α η , then the last exponent is strictly negative, and so we can take n 0 sufficiently large so that C k < C -1 /3, for all k ≥ 0. For n ∈ G n k , we know that B n satisfies ( r0 ) with r 0 = C -1 . Hence, for all n ∈ G n k , we have 3r n ≤ r 0 , and so the conclusions of Lemma 17 hold simultaneously for all the decompositions F (B n , r n ) for n ∈ G n k .

Control on the mass and number of fragments Recall the function h that we defined in [START_REF] Lubin | Extensions of measures and the von Neumann selection theorem[END_REF], which tends to 0 at infinity, and the function ϕ specified in Hypothesis H d (i), which tends to 0 at 0. Thanks to Lemma 17, we get, for all

f ∈ F k such that f ⊂ b n , |f | = w n • ν n (f ) ≥ (16), Lem.17(i) n -β-h(n k ) k • (λ -1 n • n -η k+1 ) d+ϕ(n -αd+α+o(1) k ) ≥ n -β-h(n k ) k • c d+ϕ(C k ) k .
Note that the last quantity is deterministic and only depends on n k , and so almost surely,

min f ∈F k |f | ≥ n -β-h(n k ) k • c d+ϕ(C k ) k ≥ n -ηdγ+αd-β+o(1) k = n -ηd+ 1 γ (αd-β)+o(1) k+1 . ( 21 
)
Note that a similar computation using upper-bounds instead of lower-bounds also yields, almost surely, max

f ∈F k |f | ≤ n -β+o(1) k • C d-ϕ(c k ) k ≤ n -ηdγ+αd-β+o(1) k , ( 22 
)
where the right-hand side is deterministic. Also, from Lemma 17(iii), we get that the number of fragments obtained from the block b n by that construction is bounded above by (r n /4) -d-ϕ(rn/4) , with

r n = λ -1 n • n -η k+1 = n α-γη+o(1) k
, and so at the end, the total number of fragments in F k is bounded above by a deterministic quantity which grows at most polynomially in n k .

Construction of fragments, case d = 0

In this case, we will consider the finite number of points of each block as a decomposition into fragments, hence we set

F k = {x} x ∈ b n , n ∈ G n k . Note that ∀f ∈ F k , f ⊂ b n , |f | = w n • ν n (f ) ≥ (16), (P0) n -β-h(n k ) k • C -1 ,
and so the equations ( 21) and ( 22) are still valid when d = 0, and also the number of fragments in F k grows linearly, hence polynomially in n k .

Using the mass estimations

Recall that we fixed a parameter η ∈ (0 , 1 d ). We let 0 < < (1ηd). If γ and η are such that γ > β-αd 1-ηd-, then -ηd+ .

We can apply the result of Lemma 15 for every fragment f ∈ F k , with x = n

-/4 k+1 , P χ(f ) -a k+1 |f | > n -/4 k+1 a k+1 |f | F n k+1 -1 ≤ 2 exp -n -/4 k+1 2 n 1+o(1) k+1 min f ∈F k |f | ≤ 2 exp -n -/2 k+1 n 1+o(1) k+1 n -1+ +o(1) k+1 ≤ 2 exp -n /4 k+1
for n k+1 large enough.

For that, again, we impose that n 0 is large enough such that the last display is true for all k and for all f . Now we can sum this over all fragments,

E   ∞ k=0 f ∈F k P χ(f ) -a k+1 |f | > n -/4 k+1 a k+1 |f | F n k+1 -1   ≤ ∞ k=0 E [#F k ] • 2 exp -n /4 k+1 -→ n0→∞ 0,
since (#F k ) is almost surely bounded by a deterministic quantity which grows at most polynomially in n k . The same is true for the B k ,

E ∞ k=0 P χ(B k ) -a k+1 |B k | > n -/4 k+1 a k+1 |B k | F n k+1 -1 -→ n0→∞ 0.
In the rest of Section 5.2, we will fix n 0 large enough and work on the event of large probability E on which we have, for all k ≥ 0 and for all

f ∈ F k χ(B k ) -a k+1 |B k | ≤ n -/4 k+1 a k+1 |B k | and χ(f ) -a k+1 |f | ≤ n -/4 k+1 a k+1 |f | . (23) 
Remark that thanks to Section 2.4, giving a lower bound of the Hausdorff dimension on a set of positive probability is enough to prove that the bound holds almost surely. Note that this construction depends on the parameters η and and γ. The parameters must satisfy

η ∈ (0 , 1 d ), ∈ (0 , 1 -ηd), γ > max α η , β -αd 1 -ηd - , (24) 
and we can choose them in this particular order.

Control on the limiting measure

In this section, the values of η and and n 0 are fixed in such a way that the construction of the previous section holds. Note that everything in the section implicitly depends on those values. On the event E, if we consider a fragment f ∈ F k , we have a very good control on the values of π i (T (f )) for i ≥ k. Indeed set

c 1 = ∞ k=0 (1 -n -4 k+1 ) and c 2 = ∞ k=0 (1 + n -4 k+1 
).

Remark that both c 1 and c 2 are strictly positive real numbers. Using in cascade the estimations (23) which hold on the event E, we get that for f ∈ F k and i ≥ k,

|T (f ) ∩ B i | ≤ c 2 |f |   i j=k+1 a j   . (25) 
In fact we can use the same argument for B k , which is not empty on the event E. For k large enough we can write

|B i | ∈ |B k |   i j=k+1 a j   • [c 1 , c 2 ]. (26) 
Remark that (26) combined with Lemma 16 yields that almost surely on E,

n γ(1-β) (γ-1) +o(1) k ≤ |B k | ≤ n γ(1-β) (γ-1) +o(1) k , (27) 
where the upper and lower-bound are both deterministic. For π i the normalized mass measure on B i , we have:

π i (T (f )) = |T (f ) ∩ B i | |B i | ≤ (25),(26) c 2 c 1 • |f | |B k | .
If π is a sub-sequential limit of the (π k ), using Portmanteau theorem (remark that π is concentrated on the leaves and the leaves of T (f ) belong to the interior of T (f )), we get

π(T (f )) ≤ c 2 c 1 • |f | |B k | .
And then,

max f ∈F k π(T (f )) ≤ c 2 c 1 1 |B k | max f ∈F k |f | .
We can now write, for all r > 0, for all x ∈ T ,

π(B(x, r)) ≤ f ∈F k , f ∩B(x,r) =∅ π(T (f )) ≤ #{f ∈ F k , f ∩ B(x, r) = ∅} • max f ∈F k π(T (f )).
Putting everything together we get

π(B(x, r)) ≤ #{f ∈ F k , f ∩ B(x, r) = ∅} • c 2 c 1 1 |B k | max f ∈F k |f | . (28) 

Control on the number of fragments intersecting a ball

From (28), we see that the last thing that we have to estimate is #{f ∈ F k , f ∩ B(x, r) = ∅}, the number of fragments of F k that have a non-empty intersection with a ball of radius r. Since the measure π only charges k≥1 T (B k ), we are only interested in balls centred around points belonging to this set. Let us fix some notation again. For all k ≥ 0, we set

∆ k := inf {d(x, y) | x ∈ B k-1 , y ∈ B k } ,
the set distance between B k-1 and level B k , for the integers k for which it is possible. On the event E, this quantity is well-defined for all k ≥ 1 and the following upper and lower-bounds are almost surely satisfied

n -α+o(1) k = C -1 2 min n∈Gn k λ n ≤ ∆ k ≤ C max n∈Gn k λ n = n -α+o(1) k . ( 29 
)
Now let us state a lemma.

Lemma 18. Let x ∈ k≥1 T (B k ). For k ≥ 0, we denote x k := [x] 2n k ∈ B k . If b n is the block of B k such that x k ∈ b n , we have, ∀r ∈ [0 , ∆ k ], {f ∈ F k | f ∩ B(x, r) = ∅} ⊂ {f ∈ F k | f ∩ B(x k , r) ∩ b n = ∅} . (30) 
The proof of this lemma is simple and left to the reader. It tells us is that in fact, if r is small enough, then all the fragments f ∈ F k who intersect the ball of centre x and radius r belong to the same block. This will allow us in the sequel, combined with Lemma 17(ii), to bound the number of fragments involved, which is what we wanted.

Obtaining the lower-bound

In order to get the lower-bound on the Hausdorff dimension of L matching that of the theorem, we have to distinguish between the case α < 1 d and the case α > 1 d . The case α = 1 d can be recovered by a monotonicity argument, as seen in Section 2.4. Whenever d = 0, we have 1 d = +∞ and only the first case can happen.

Case β > 1 and α < 1/d We use the construction of Section 5.2.3 with η = α. Recall (24) for the admissible parameters of the construction. In this case, if is fixed and small enough, the only condition on γ implied by ( 24) is γ > β-αd 1-αd-since γ > α η reduces to γ > 1, which is already contained in the previous inequality because β-αd 1-αd-> 1. We define

Λ k := ∆ k ∧ min n∈Gn k λ n log n k .
Using (29), we get n

-α+o(1) k ≤ Λ k ≤ n -α+o(1) k
, almost surely, with deterministic bounds. Here the choice of 1 log n k is rather arbitrary and we could change it to any quantity that tends to 0 and is n o(1) k as n k → ∞. Now we claim the following Lemma 19. On the event E, for all k ≥ 0, for any d ≥ 0, we almost surely have

∀r ∈ [Λ k+1 , Λ k ], # {f ∈ F k | f ∩ B(x, r) = ∅} ≤ r d+o(1) n αγd+o(1) k . ( 31 
)
Note that the the bounds Λ k of the interval on which we consider r are random, but the upper bound given by (31) is deterministic.

Proof. For r ∈ [Λ k+1 , Λ k ], we have r ≤ Λ k ≤ ∆ k so using Lemma 18, with x k = [x] 2n k and n such that x k ∈ b n , we know that (30) holds. In the case d > 0, the fragments of F k that come from b n were constructed as fragments of B n of size r n := λ -1 n n -α k+1 . Recall that we denote F (B n , r n ) the set of these fragments, seen as subsets of B n , and denote x k the point of B n corresponding to x k ∈ b n . The analogue of the ball B(x k , r) in B n is then the ball of centre x k and radius r n := λ -1 n r. From our definition of Λ k we have

r n = λ -1 n r ≤ λ -1 n min n∈Gn k λ n log n k ≤ 1 log n k -→ k→∞ 0,
as well as

r n := λ -1 n n -α k+1 = n α-γα+o(1) k → 0 when k → ∞. Applying Lemma 17(ii) yields # {f ∈ F (B n , r n ) | f ∩ B(x k , r n ) = ∅} ≤ Lem.17(ii) (r n ∨ r n ) d+ψ(rn∨r n) • r -d+φ(rn) n ≤ (λ -1 n n -α k+1 ) ∨ (λ -1 n r) d+o(1) • (λ -1 n n -α k+1 ) -d+o(1) ≤ r d+o(1) n αγd+o(1) k ,
and the last quantity is deterministic. Since any fragment in {f ∈

F k | f ∩ B(x, r) = ∅} corresponds to a fragment in {f ∈ F (B n , r n ) | f ∩ B(x k , r n ) = ∅}, the cardinal of {f ∈ F k | f ∩ B(x,
r) = ∅} is almost surely bounded above by the last display, which proves that (31) holds whenever d > 0. In the case d = 0, from our definition of fragments and the property (P 0 ), we easily have

# {f ∈ F k | f ∩ B(x k , r) ∩ b n = ∅} ≤ C ≤ r d+o(1) n αγd+o(1) k
, and so (31) also holds whenever d = 0.

We can compute:

π(B(x, r)) ≤ (28) #{f ∈ F k , f ∩ B(x, r) = ∅} • c 2 c 1 • 1 |B k | • max f ∈F k |f | ≤ (31),(27),( 22 
) (r d+o(1) n αγd+o(1) k ) • r o(1) • (n γ(β-1) (γ-1) +o(1) k ) • (n -αγd+αd-β+o(1) k ) ≤ r d+o(1) • n 1 (γ-1) (γαd-αd+β-γ+o(1)) k ≤ r d-1 αγ(γ-1) (γαd-αd+β-γ)+o(1) .
In the last line we used that r > Λ k+1 ≥ n -α+o(1) k+1

= n -γα+o( 1) k and so n k > r -1 αγ +o(1) and the fact that γαdαd + βγ < 0 because γ > β-αd 1-αd . Let us now maximise the quantity d -γαd-αd+β-γ αγ(γ-1) for γ ∈ ( β-αd 1-αd , +∞). It is an easy exercise to see that the maximum is attained at

γ = β-αd+ √ (β-1)(β-αd) 1-αd , with value 2β -1 -2 (β -1)(β -αd) α .
If we fix small enough then, the value of γ that maximises the last display satisfies γ > β-αd 1-αdand so, using this value to construct π, we get that on the event E, for all x ∈ k≥1 T (B k ), 1) , which allows us to conclude using Lemma 20.

π(B(x, r)) ≤ r 2β-1-2 √ (β-1)(β-αd) α +o ( 
Case β > 1 and α > 1/d Here we suppose that d > 0. We fix η < 1 d which we suppose to be very close to 1 d and a small > 0 and use the construction of Section 5.2.3 with these values, which satisfy (24) if we take γ > max β-αd 1-ηd-, α η . • For r ∈ [Λ k+1 , n -η k+1 ], we apply Lemma 19 to get

#{f ∈ F k , f ∩ B(x, r) = ∅} ≤ n o (1) 
k .

Now we can use the upper-bound (28), replacing term by term π(B(x, r)) ≤ Now the result is obtained by taking → 0 and η → 1 d and γ → ∞. To conclude the proof of Proposition 14, we have to prove that in the case α = 1/d, the dimension of L is bounded below by d. To that end, we use the monotonicity of the Hausdorff dimension of L, with respect to the scaling factors (λ n ), proved in Section 2.4. Suppose the sequences (λ n ) and (w n ) satisfy Hypothesis α,β for α = 1/d. If for some > 0, we set for all n ≥ 1, λ n = n -λ n , then the sequences (λ n ) and (w n ) satisfy Hypothesis α+ ,β . Now for n ≥ 1, we have λ n ≥ λ n , and T is compact with probability 1 from Proposition 6. Hence [START_REF] Curien | Scaling limits and influence of the seed graph in preferential attachment trees[END_REF] holds and so we have, a.s. dim(L) ≥ 1 α + .

In the end, dim(L) ≥ d.

Proof of Theorem 1. Use Proposition 6, Proposition 7 for the upper-bounds and Proposition 12 and Proposition 14 for the lower-bounds.

From any element p = {x 1 , x 2 , . . . , x n } ∈ P * r (b), we can then construct a partition of b, into subsets (f i ) 1≤i≤n that we call fragments, and such that ∀i ∈ 1 , n , B x i , r 4 ⊂ f i ⊂ B(x i , r).

We define the (f i ) recursively as follows, 

          
Let us state another lemma.

Lemma 22. Let r 0 < 1. Under the condition ( r0 ), there exists two functions ψ and φ defined on [0 , r 0 /3], which tend to 0 at 0 such that for all r ∈ (0 , r 0 /3), for all p = {x 1 , x 2 , . . . , x n } ∈ P * r (b) and fragments (f i ) constructed as above, we have ∀x ∈ b, ∀r ∈ (0 , r 1 ), # {1 ≤ i ≤ n | B(x, r ) ∩ f i = ∅} ≤ (r ∨ r ) d+ψ(r∨r ) • r -d+φ(r) .

Proof. Let x ∈ b. If for an i ∈ 1 , n , we have y ∈ B(x, r ) ∩ f i = ∅, then d(x, y) < r and d(x i , y) < r so d(x, x i ) < r + r , and so we get that B(x i , r) ⊂ B(x, r + 2r). Then, using that f i ⊂ B(x i , r), We can use the condition ( r0 ) to get, for all r, r ∈ [0 , r 0 /3],

# {1 ≤ i ≤ n | B(x, r ) ∩ f i = ∅} • r 4 
d+ϕ(r/4) ≤ (r + 2r) d-ϕ(r +2r) .

And so, # {1 ≤ i ≤ n | B(x, r ) ∩ f i = ∅} ≤ 4 d+ϕ(r/4) (r + 2r) d-ϕ(r +2r) r d+ϕ(r/4) ≤ 4 d+ϕ(r/4) (3(r ∨ r )) d-ϕ(r +2r) r d+ϕ(r/4) ≤ 4 d+ϕ(r/4) 3 d-ϕ(r +2r) (r ∨ r ) d-ϕ(r +2r) r -d-ϕ(r/4) , ≤ (r ∨ r ) d-ϕ(3(r∨r )) r -d-ϕ(r/4)+ log(12 3d/2 ) log r , which proves the lemma. This lemma gives us an abstract result for the existence and the properties of these decompositions in fragments. The next paragraph explains a procedure to construct one using a sequence of i.i.d. random points, on a possibly random block.

Finding an element of P * r (b) Suppose that the measure ν charges all open sets. Remark that this is almost surely true for our random block (B, D, ρ, ν) because they satisfy Hypothesis H d (i). Let (X n ) n≥1 be a sequence of i.i.d. random variables with law ν. Let us construct a random element of P * r (b) for some fixed r > 0. Define the set E n recursively as follows:

E 1 := {1} and      E n+1 := E n if X n+1 ∈ i∈En B X i , r 2 , E n+1 := E n ∪ {n + 1} otherwise.
We set E ∞ = n≥1 E n . Note that from the construction, {X i , i ∈ E ∞ } ∈ P r (b).

Lemma 23. Almost surely, we have {X i , i ∈ E ∞ } ∈ P * r (b).

Proof. The fact that the balls B(X i , r 4 ) i∈E∞ are disjoint follows directly from the construction. Now let x ∈ b. Since ν B x, r 4 > 0, by the the Borel-Cantelli lemma there exists at least one n such that X n ∈ B x, r 4 . If n ∈ E ∞ then x ∈ B X n , r 4 . Otherwise n / ∈ E ∞ , in which case there exists k ≤ n such that X n ∈ B X k , r 2 and so x ∈ B X k , 3 4 r . In both cases B x, r 4 ⊂ i∈E∞ B(X i , r).

Since we can apply the same reasoning to every point of a countable dense sequence (y k ) k≥1 , the lemma is proved.

Proof of Lemma 17. This is just a consequence of Lemma 21, Lemma 22 and Lemma 23 and equations ( 32) and (33), which almost surely apply to the random block (B, D, ρ, ν).

A.4 Computations

Lemma 24. Suppose that there exists γ ≥ 0 such that for all n ∈ N, W n ≤ n γ . Then there exists a constant C such that

n k=1 w k W k ≤ C log n.
Proof. If the series w k converges then the results is trivial so let us suppose that it diverges. For k ≥ 0, we define n k := inf i ≥ 1 W i ≥ 2 k and write Lemma 25. Let β < 1 and assume that w n ≤ n -β+o (1) and W n = n 1-β+o (1) and that for some > 0 we have:

lim inf n→∞ 1 W n n k=1 k∈G w k > 0.
Then there exists a constant C such that for N large enough we have

N 1+ k=N k∈G w k W k ≥ C log N.
Proof. Let c be such that, for n large enough 1

Wn n k=1 w k 1 {k∈G } > c. Let C := 3 c , note that C > 1 because c ≤ 1. For all i ≥ 1, we set n i = inf n W n ≥ C i . For all i ≥ 1, we have

W ni-1 ≤ C i ≤ W ni ≤ C i + w ni . We get, ni+1 k=ni+1 w k 1 {k∈G } ≥ cW ni+1 -W ni ≥ cC i+1 -C i -w ni ≥ C i (cC -1 - w ni C i ) ≥ C i (1 + o(1)
).

for i tending to infinity. Now for N a large integer, we set

I N := inf {i | n i ≥ N } = log W N log C and J N := sup i n i ≤ N 1+ = log W N 1+ log C .
Then we compute

N 1+ k=N w k W k 1 {k∈G } ≥ J N i=I N ni+1 k=ni+1 w k W k 1 {k∈G } ≥ J N i=I N 1 W ni+1 ni+1 k=ni+1 w k 1 {k∈G } ≥ J N i=I N 1 C i+1 (1 + o(1)) C i (1 + o(1)) ≥ J N -I N C (1 + o(1)).
We finish the proof by noting that, thanks to the hypothesis on the growth of W n , the last display grows logarithmically in N .

Proof of Lemma 16. From our assumptions, it is easy to see that we have a k = n 1-β+o(1) k

. For all k, we write log a k = (1β + r k ) log n k , with r k → 0 as k → ∞. We write

k i=1 log a i = k i=1 (1 -β + r i ) log n i = k-1 i=0 (1 -β + r k-i ) log n k-i . (34) 
For any k ≥ 0, from the recursive definition of the sequence (n k ), we have n k+1 -1 < n γ k ≤ n k+1 , which entails log n k = 1 γ log n k+1 + s k , with |s k | ≤ 1. Using this recursively yields

log n k-i - 1 γ i log n k ≤ γ 1 -γ .
Hence using (34) and the fact that log n k grows exponentially in k,

k i=1 log a i = log n k      (1 -β) k-1 i=0 1 γ i + k i=0 r k-i γ i →0      + k-1 i=0 (1 -β + r k-i ) log n k-i - 1 γ i log n k =O(k) = log n k (1 -β)γ γ -1 + o(1) ,
which proves the lemma.
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  such a ball typically intersects only one block of B k , with weight roughly n -β k , and since the block is d-dimensional, the ball covers a proportion r/n -α k d of this block. So |B(x, r) ∩ B k | ≈ n -β k

  and the function o(1) in the right-hand side does not depend on x.

# 1 ).≤ r 1 α -β- 1 α(γ- 1 )

 1111 {f ∈ F k , f ∩ B(x, r) = ∅} • -γηd+αd-β+o(1) k .Hence, using the fact that r > Λ k+1 = n -γα+o(1) k and that the exponent in the last display is negative, we getπ(B(x, r)) ≤ r -1 γα •( γ(β-1) (γ-1) -γηd+αd-β)+o(1) 1) +αd-β)+o(1) . • For r ∈ [n -η k+1 , Λ k ],we have once again using Lemma 19,#{f ∈ F k , f ∩ B(x, r) = ∅} ≤ r d+o(1) n Since r ≤ Λ k ≤ n -α+o(1) k , we have n k ≤ r -1 α +o(1). Since the quantity αd -1 + β-1 γ-1 is positive, we can writeπ(B(x, r)) ≤ r d+o(1) • r -1 α (αd-1+ β-1 γ-1 )+o(1)≤ r d-αd-1 α -β-1 α(γ-1) +o(1) +o(1) .

f 1 : 4 d+ϕ(r/ 4 )

 144 = x ∈ b d(x, x 1 ) = min 1≤i≤n d(x, x i ) f k+1 := x ∈ b \ k i=1 f i d(x, x k+1 ) = min 1≤i≤n d(x, x i ) .If we suppose that b satisfies the condition ( r0 ), and that r < r 0 then, for p = {x 1 , x 2 , . . . , x n } ∈ P * r (b), we get also, for all i ∈ 1 , n , diam f i ≤ 2r and r ≤ ν(f i ) ≤ r d-ϕ(r) .



  ⊂ B(x, r + 2r).

W n log 2 ,

 2 which grows at most logarithmically thanks to our assumption on the sequence (W n ).

  for n (or equivalenly k) large enough.Proof of Proposition 12. Let > 0. Let us fix a realisation of T and a leaf x ∈ L such that the conclusions of Lemma 13 and Lemma 5 hold. Note that thanks to Hypothesis α,β or Hypothesis α,1 , the condition of application of Lemma 5 are fulfilled. From the definition of n k+1 we have n 1+

k < n k+1 ≤ n 1+ k + 1 and so n k+1 = k→∞ n 1+ +o(1) k

  1 γ (αd-β) > -1+ . And so we get from (21) that min f ∈F k |f | ≥ n

	-1+ +o(1)
	k+1

It may appear more natural to define the mass measure as simply ∞ n=1 νn which gives T a finite mass. However, this definition would not have the property that for every set S ⊂ bn, we have |S| = νn(S). Indeed, when blocks can have an atom at their root, which is possible in the case d = 0, the contribution of the mass added by the roots of future blocks should be counted in |S|.
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A Appendix

A.1 Lifting to the Urysohn space

In this section, we prove that it is always possible to work with random measured metric spaces that are embedded in the Urysohn space. Let us first recall the definition of the Gromov-Hausdorff-Prokhorov distance. If (X, d) is a metric space, and A ⊂ X then we denote A ( ) := {x ∈ X | d(x, A) < } , the -fattening of A. Then d H the Hausdorff distance on the set of nonempty compact subsets of X, is defined as

Also we denote the so-called Lévy-Prokhorov distance on the Borel probability measures by

where B(X) is the set of Borel sets of X. Now let (X, d, ρ, ν) and (X , d , ρ , ν ) be two compact, rooted, metric spaces endowed with a probability measure. Their Gromov-Hausdorff-Prokhorov distance is defined as

where the infimum is taken over all Polish spaces (E, δ) and all isometric embeddings φ : X → E and φ : X → E, of respectively X and X into E. The notation φ * ν denotes the push-forward of the measure µ through the map φ. As it is, this is only a pseudo-distance and becomes a distance on the set K of GHP-isometry (root and measure preserving isometry) classes of compact, rooted, metric spaces endowed with a probability measure, which from [1, Theorem 2.5], is a Polish space. We consider all our blocks as (possibly random) elements of the set K.

We would like to see all the blocks as compact subsets of the same space. To that end, we consider (U, δ) the Urysohn space, and fix a point u 0 ∈ U . The space U is defined as the only Polish metric space (up to isometry) which has the following extension property (see [START_REF] Hušek | Urysohn universal space, its development and Hausdorff's approach[END_REF] for constructions and basic properties of U ): given any finite metric space X, and any point x ∈ X, any isometry from X \ {x} to U can be extended to an isometry from X to U . This property ensures in particular that any separable metric space can be isometrically embedded into U . In what follows we will use the fact that if (K, d, ρ) is a rooted compact metric space, there exists an isometric embedding of K to U such that ρ is mapped to u 0 . We set

where supp(ν) denotes the topological support of ν. We endow K(U ) with the "Hausdorff-Prokhorov" distance

It is easy to see that (K(U ), d HP ) is a Polish space. Now, we have a map f : K(U ) → K, which maps every (K, ν) to the isometry class of (K, δ | K , u 0 , ν) in K. This map is continuous and hence measurable. The properties of U ensure that f is surjective. Using a theorem of measure theory from [START_REF] Lubin | Extensions of measures and the von Neumann selection theorem[END_REF], every probability distribution τ on K can be lifted to a probability measure σ on K(U ), such that f * σ = τ . Hence, for all n ≥ 1, we can have a version of (b n ,

A.2 Hausdorff dimension

We recall some notations and definitions that are in relation with Hausdorff dimension and that we use throughout the paper. Let (X, d) be a metric space and δ > 0. We say that the family (O i ) i∈I of subsets of X is a δ-cover of X if it is a covering of X, and the set I is at most countable and for all i ∈ I, the set O i is such that its diameter satisfies diam(O i ) < δ. We set

As this quantity increases when δ decreases to 0, we define its limit

the s-dimensional Hausdorff measure of X. Now the Hausdorff dimension of X is defined as

We refer to [START_REF] Kenneth | Fractal geometry: mathematical foundations and applications[END_REF] for details. A useful tool for deriving lower-bounds on the Hausdorff dimension of a metric space is the so called Frostman's lemma. In this paper we use the following version.

Lemma 20 (Frostman's lemma). Let (X, d) be a metric space. If there exists a non-zero finite Borel measure µ on X and s > 0 such that for µ-almost every x ∈ X, we have

A.3 Decomposition into fragments

In this section, we prove Lemma 17. We first construct our fragments in a deterministic setting and then show how we can apply this to random blocks.

Decomposition of a deterministic block Let (b, d, ρ, ν) be a (deterministic) pointed compact metric space endowed with a Borel probability measure. We are interested in how we can decompose b into a partition of subsets that all have approximately the same diameter r. For r > 0, we set

It is easy to verify that we can find p = {x 1 , x 2 , . . . , x n } ∈ P r (b) such that b ⊂ n i=1 B(x i , r) and the balls B(x i , r 4 ) 1≤i≤n are disjoint. Indeed, any r 2 -net of b belongs to P r (b) (they are the maximal elements of P r (b) for the order relation of inclusion). We denote P * r (b) the set Proof. Let p = {x 1 , x 2 , . . . , x n } ∈ P * r (b). Remark that, for any set S such that the union of the balls B(s, r 4 ) s∈S covers b, each of the balls B(x i , r/4), for 1 ≤ i ≤ n, contains at least a point of S. Since those balls are disjoint, the cardinality of S is at least n.