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Abstract

We study two models of growing recursive trees. For both models, initially the tree only contains
one vertex u1 and at each time n ≥ 2 a new vertex un is added to the tree and its parent is chosen
randomly according to some rule. In the weighted recursive tree, we choose the parent uk of un
among {u1, u2, . . . , un−1} with probability proportional to wk, where (wn)n≥1 is some deterministic
sequence that we fix beforehand. In the affine preferential attachment tree with initial fitnesses,
the probability of choosing the same uk is proportional to ak + deg+(uk), where deg+(uk) denotes
its current number of children, and the sequence of initial fitnesses (an)n≥1 is deterministic and
chosen as a parameter of the model.

We show that for any sequence (an)n≥1, the corresponding preferential attachment tree has
the same distribution as some weighted recursive tree with a random sequence of weights (with
some explicit distribution). We then prove almost sure convergences for some statistics associated
to weighted recursive trees as time goes to infinity, such as degree sequence, height, profile and
measures. Thanks to the connection between the two models, these results also apply to affine
preferential attachment trees.

1 Introduction

The uniform recursive tree has been introduced in the 70’s as an example of random graphs con-
structed by addition of vertices: starting from a tree with a single vertex, the vertices arrive one by
one and the n-th vertex picks its parent uniformly at random from the n− 1 already present ver-
tices. Many properties of this tree were then investigated due to its particularly simple dynamics:
number of leaves, profile, height, degrees, distribution of vertices into subtrees... We refer to [13]
for an overview. A generalisation of the uniform recursive, the weighted recursive tree (WRT), was
introduced in [6] in 2006. In this model, each vertex is assigned a non-negative weight, constant
in time. When a newcomer randomly picks its parents, it does so with probability proportional
to those weights. Although more general than the uniform recursive tree, WRT have attracted far
fewer contributions, see e.g. [20, 16].

We will also consider another model of trees which we call the affine preferential attachment tree
(PA) with initial fitnesses. In this one every vertex has a fixed initial fitness, and the probability
of picking any vertex to be the parent of a newcomer is proportional to its initial fitness plus its
current number of children. This type of preferential attachment mechanism has been extensively
studied in the last two decades because it shares some quantitative properties with real networks,
see in particular the literature about Barabási-Albert model. One of our motivations for studying
such trees arises from the analysis of some growing random graphs, see the companion paper [25].

We shall see that using a de Finetti-type argument, preferential attachment trees can be seen
as WRT with random weights. This will enable us to translate results obtained for WRT to
corresponding results for PA.

1



1.1 Two related models of growing trees

Definitions. For any sequence of non-negative real numbers (wn)n≥1 with w1 > 0, we define
the distribution WRT((wn)n≥1) on sequences of growing rooted trees1, which is called the weighted
recursive tree with weights (wn)n≥1. We construct a sequence of rooted trees (Tn)n≥1 starting from
T1 containing only one root-vertex u1 and let it evolve in the following manner: the tree Tn+1 is
obtained from Tn by adding a vertex un+1 with label n+ 1. The father of this new vertex is chosen
to be the vertex with label Kn+1, where

∀k ∈ {1, . . . , n}, P (Kn+1 = k | Tn) ∝ wk.

In this definition, we also allow sequences of weights (wn)n≥1 that are random and in this case
the distribution WRT((wn)n≥1) denotes the law of the random tree obtained by the above process
conditionally on (wn)n≥1, so that the obtained distribution on growing trees is a mixture of WRT
with deterministic sequences.

Similarly, for any sequence (an)n≥1 of real numbers, with a1 > −1 and an ≥ 0 for n ≥ 2, we
define another model of growing tree. The construction goes on as before: P1 containing only one
root-vertex u1 and Pn+1 is obtained from Pn by adding a vertex un+1 with label n + 1 and the
father of the newcomer is chosen to be the vertex with label Jn+1, where now

∀k ∈ {1, . . . , n}, P (Jn+1 = k | Pn) ∝ deg+
Pn

(uk) + ak,

where deg+
Pn

(·) denotes the number of children in the tree Pn. In the particular case where n = 1,
the second vertex u2 is always defined as a child of u1, even in the case −1 < a1 ≤ 0 for which the
last display does not make sense. We call this sequence of tree an affine preferential attachment
tree with initial fitnesses (an)n≥1 and its law is denoted by PA((an)n≥1).

Here and in the rest of the paper, whenever we have any sequence of real numbers (xn)n≥1, we
write x = (xn)n≥1 in a bold font as a shorthand for the sequence itself, and (Xn)n≥1 with a capital
letter to denote the sequence of partial sums defined for all n ≥ 1 as Xn :=

∑n
i=1 xi. In particular,

we do so for sequences of initial fitnesses (an)n≥1, for deterministic sequences of weights (wn)n≥1

and for random sequence of weights (wn)n≥1.

Representation result. The following result gives a connection between these two models of
growing trees. It is an analogue of the so-called "Pólya urn-representation" result described in [2,
Theorem 2.1] or [5, Section 1.2] for related models.

Theorem 1 (WRT-representation of PA trees). For any sequence a of initial fitnesses, we
define the associated random sequence wa = (wa

n)n≥1 as

wa
1 = Wa

1 = 1 and ∀n ≥ 2, Wa
n =

n−1∏
k=1

β−1
k , (1)

where the (βk)k≥1 are independent with respective distribution Beta(Ak + k, ak+1). Then, the
distributions PA(a) and WRT(wa) coincide.

Let us quickly explain how this sequence wa can be read from the growth of the trees (Pn)n≥1 ∼
PA(a). For any sequence of weights w that satisfies

Wn ∼
n→∞

C · nγ , (2)

for some γ ∈ (0 , 1) and a positive C > 0, it is easy to prove that the degrees of vertices in a
sequence of random trees (Tn)n≥1 with distribution WRT(w) are such that almost surely for all
k ≥ 1

deg+
Tn

(uk) ∼
n→∞

wk
C(1− γ)

· n1−γ . (3)

1In fact, in the rest of the paper we will see them as plane trees, see Section 1.2.2.
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From this observation, if we suppose that the theorem holds and that the sequence wa has almost
surely the behaviour (2), then using the convergence (3) for the sequence (Pn)n≥1 ∼ WRT(wa)

conditionally on the sequence wa ensures that for all k ≥ 1,

wa
k =

wa
k

wa
1

= lim
n→∞

deg+
Pn

(uk)

deg+
Pn

(u1)
almost surely.

As suggested by the last display, the result of the theorem is obtained by studying the evolution
of the degrees in the preferential attachment model (Pn)n≥1. The key argument lies in the fact
that we can describe the whole process using a sequence of independent Pólya urns, related to the
degrees of the vertices. The theorem is then obtained by using de Finetti theorem for these urns.

In fact, and this is the content of Proposition 2 below, if An grows linearly as some c · n with
some c > 0 then the sequence (Wa

n) indeed almost surely satisfies (2) for γ = c
c+1 . This is done

using moment computations under the explicit definition of (Wa
n)n≥1 given by the theorem.

In the rest of the paper, we investigate several properties of the WRT under this type of
assumptions for the sequence of weights, such as convergence of height, profile and measures carried
on the tree. Thanks to this connection, our results will then also hold for PA tree under the
assumption that An grows linearly.

Assumptions on the sequences. For two sequences (xn) and (yn) we say that

xn ./
n→∞

yn if and only if ∃ε > 0, xn =
n→∞

yn · (1 +O
(
n−ε

)
). (4)

Our main assumption for sequences a = (an)n≥1 of initial fitnesses is the following (Hc), which is
parametrised by some positive c > 0 and ensures that the initial fitness of vertices is c on average

An ./
n→∞

c · n. (Hc)

For sequences of weights w = (wn)n≥1, we introduce the following hypothesis, which depends on a
parameter γ > 0

Wn ./
n→∞

cst ·nγ . (�γ)

The following proposition ensures in particular that our assumption on sequences of initial fitnesses
a translates to a power behaviour for the random sequence of cumulated weights (Wa

n)n≥1 defined
in Theorem 1.

Proposition 2. Suppose that there exists c > 0 such that a satisfies (Hc), then the random sequence
(wa

n)n≥1 defined in Theorem 1 almost surely satisfies (�γ) with

γ =
c

c+ 1
.

If furthermore a is such that an ≤ (n + 1)c
′+o(1) for some c′ ∈ [0 , 1), then almost surely

wa
n ≤ (n+ 1)c

′− 1
c+1 +oω(1), where oω(1) is a random function of n which tends to 0 when n→∞.

Convergence of degrees using the WRT representation. In the WRT with a deter-
ministic sequence of weights that satisfy (2), the degree of one fixed vertex evolves as a sum of
independent Bernoulli random variables and it is possible to handle it with elementary methods
and obtain (3). Further calculations allow us to improve this statement to a convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . )→ 1

C(1− γ)
(w1, w2, . . . ) (5)

in a `p sense, for sequences w that satisfy some additional control. A precise version of this
statement is given in Proposition 5.

Suppose that a satisfies (Hc). Applying this convergence to sequence of random trees (Pn)n≥1

which has distribution PA(a), using its WRT-representation provided by Theorem 1, together with
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Proposition 2, yields the following almost sure convergence to a random sequence, in the product
topology,

n−
1
c+1 · (deg+

Pn
(u1),deg+

Pn
(u2), . . . ) −→

n→∞
(ma

1 ,m
a
2 , . . . ),

which also takes place in the space `p for all p > c+1
1−(c+1)c′ as soon as an ≤ nc

′+o(1), for some
0 ≤ c′ < 1

c+1 . This improves some `p convergence proved in distribution in [21] for a related model,
which we treat in Proposition 31.

Of course, thanks to our discussion above concerning the convergence of degrees, it is immediate
that the sequence (ma

n)n≥1 is almost surely proportional to the sequence (wa
n)n≥1 i.e.

(ma
n)n≥1 =

c+ 1

Z
· (wa

n)n≥1 a.s.,

where Z is the random variable such that Wa
n ∼ Z · n

c
c+1 almost surely as n → ∞, which exists

thanks to Proposition 2. Of course, even if (Wa
n)n≥1 was defined as a product of independent

random variables, it is not the case for (Ma
n)n≥1 anymore since the random variable Z depends

on the whole sequence (βn)n≥1 used in the definition of (Wa
n)n≥1. Nevertheless, the sequence still

has the nice property of being an inhomogeneous Markov chain with a simple backward transition,
characterised by the equality

Ma
n = βn ·Ma

n+1,

where βn is independent of Ma
n+1 and has distribution Beta(An + n, an+1). This is the content of

Proposition 27.

Distribution of the limiting chain. For some specific choices of sequences a, the distribu-
tion of the chain (Ma

n)n≥1 is explicit. Whenever a is of the form

a = (a, b, b, b, . . . ) with a > −1 and b > 0,

we retrieve Goldschmidt and Haas’ Mittag-Leffler Markov chain family, introduced in [15] and also
studied by James [17]. The other case where the chain is explicit is when a is of the form

a = (a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ) with a > −1 and `,m ∈ N.

In this case, the process (Ma
n)n≥1 is constant on the interval of the form J1 + k` , (k + 1)`K and we

define Na
k := Ma

(k−1)`+1 for all k ≥ 1. Then the sequence `
`

m+`

m+` ·(N
a
k)k≥1 has the Product Generalised

Gamma distribution PGG (a, `,m), which we define in Section 5.1.2.

1.2 Other geometric properties of weighted random trees

Let us now state the convergence for other statistics of weighted random trees, namely profile,
height and probability measures. Here we let (Tn)n≥1 be a sequence of trees evolving according to
the distribution WRT(w) for some deterministic sequence w and state our results in this setting.
Our results will also apply to random sequences of weights w that satisfy the assumptions of the
theorems almost surely, they will hence apply to PA trees with appropriate sequences of initial
fitnesses, thanks to Theorem 1 and Proposition 2.

1.2.1 Height and profile of WRT

Let

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k}

be the number of vertices of Tn at height k. The function k 7→ Ln(k) is called the profile of the
tree Tn. The height of the tree is the maximal distance of a vertex to the root, which we can also
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express as ht(Tn) := max {k ≥ 0 | Ln(k) > 0}. We are interested in the asymptotic behaviour of
Ln and ht(Tn) as n→∞.

In order to express our results, we need to introduce some quantities. For γ > 0, we define the
function fγ : R→ R as

fγ : z 7→ fγ(z) := 1 + γ (ez − 1− zez) .

This function is increasing on (−∞ , 0] and decreasing on [0 ,∞) with fγ(−∞) = 1−γ and fγ(0) = 1

and fγ(∞) = −∞. We define z+ and z− as

z+ := sup {z ∈ R | fγ(z) > 0} and z− := inf {z ∈ R | 1 + γ(ez − 1) > 0} . (6)

We are going to assume that we work with a sequence w which satisfies the following assumption
(�pγ) for some γ > 0 and p ∈ (1 , 2],

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpi ≤ n
1+(γ−1)p+o(1). (�pγ)

Thanks to Proposition 2, this property is almost surely satisfied for γ = c
c+1 by the random sequence

wa for any sequence a of initial fitnesses satisfying An ./
n→∞

c · n and an ≤ (n+ 1)o(1).

Theorem 3. Suppose that there exists γ > 0 and p ∈ (1 , 2] such that the sequence w satisfies
(�pγ). Then, for a sequence of random trees (Tn)n≥1 ∼ WRT(w), we have the almost sure
asymptotics for the profile

Ln(k) =
n→∞

n√
2π log n

exp

{
−1

2
·
(
k − γ log n√

γ log n

)2
}

+O

(
n

log n

)
, (7)

where the error term is uniform in k ≥ 0. Also for any compact K ⊂ (z− , z+) we have almost
surely for all z ∈ K

Ln (bγez log nc) = nfγ(z)− 1
2

log logn
logn +O( 1

logn ), (8)

where the error term is uniform in z ∈ K. Moreover, we have the almost sure convergence

ht(Tn)

log n
−→
n→∞

γ · ez+ . (9)

The proof of this result follows the path used for many similar results for trees with logarithmic
growth (see [7, 8, 19]): we study the Laplace transform of the profile z 7→

∑n
k=0 e

zkLn(k) on an
open domain of the complex plane and prove its convergence to some random analytic function
when appropriately rescaled. Then, we apply [18, Theorem 2.1], which consists in a fine Fourier
inversion argument and hence allows to obtain precise asymptotics for Ln. The application of the
theorem in its full generality proves a so-called Edgeworth expansion for Ln, which we express
here in a weaker form by equations (7) and (8). The convergence (7) expresses that the profile is
asymptotically close to a Gaussian shape centred around γ log n and with variance γ log n, so that a
majority of vertices have a height of order γ log n. The second equation (8) provides the behaviour
of the number of vertices at a given height, for heights that are not necessarily close to γ log n (for
which the preceding result ensure that there are of order n√

logn
vertices per level). According to

this result, at height bγez log nc for any z ∈ (z− , z+) there are of order nfγ (z)
√

logn
vertices. Remark

that the exponent fγ(z) is continuous in z and tends to 0 when z → z+. Although this does not
directly prove the convergence (9), it already provides a lower-bound for ht(Tn) since it ensures
that asymptotically there always exist vertices at height bγe(z+−ε) log nc, for any small ε > 0. The
convergence of the height (9) can then be obtained by proving a corresponding upper-bound, which
can be done using quite rough estimates.
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This result includes the well-known asymptotics ht(Tn) ∼ e log n as n → ∞ for the uniform
random tree, proved for example in [12, 24]. Using the connection of preferential attachment trees
to weighted recursive trees given by Theorem 1, it also includes the case of preferential attachment
trees with constant initial fitnesses, for which similar results were proved, in [24] for the height and
in [19] for the asymptotic behaviour of the profile (7).

As a complement to this result, let us mention that there is another case where we can compute
the asymptotic height of the tree, which corresponds to sequences w that grow fast to infinity. For
any sequence of weights w, a quantity of interest is

∑n
i=2

wi
Wi

, which is the expected height of a
"typical" point. When this quantity grows faster than logarithmically, we have the almost sure
convergence (see Proposition 25 in Section 3.3)

lim
n→∞

ht(Tn)∑n
i=2

wi
Wi

= 1,

which in some sense indicates that all the action takes place at the very tip of the tree.

1.2.2 Convergence of the weight measure

We also study the convergence of some natural probability measures defined on the trees (Tn)n≥1.
This will prove useful for the applications developed in the companion paper [25].

For this result it will be easier to work with plane trees. We introduce the Ulam-Harris tree
U =

⋃∞
n=0Nn, where N := {1, 2, . . . }. Classically, a plane tree τ is defined as a non-empty subset

of U such that

(i) if v ∈ τ and v = ui for some i ∈ N, then u ∈ τ ,
(ii) for all u ∈ τ , there exists deg+

τ (u) ∈ N ∪ {0} such that for all i ∈ N, ui ∈ τ iff i ≤ deg+
τ (u).

We choose to construct our sequence (Tn)n≥1 of weighted recursive trees as plane trees by consider-
ing that each time a vertex is added, it becomes the right-most child of its parent. In this way the
vertices (u1, u2 . . . ) of the trees (Tn)n≥1, listed in order of arrival, form a sequence of elements of
U. In fact, from now on, we will always assume that we use this particular embedded construction,
both for WRT and PA trees.

We also denote ∂U = NN, which we can be interpreted as the set of infinite paths from the root
to infinity, and write U = U ∪ ∂U. We classically endow this set with the distance

d(u, v) = exp(−ht(u ∧ v))

where u ∧ v denotes the most recent common ancestor of u and v in U.
For every n ≥ 1, we define the measure µn on U, which only charges the set {u1, . . . , un} of

vertices of Tn, with for any 1 ≤ k ≤ n,

µn(uk) =
wk
Wn

. (10)

We refer to µn as the natural weight measure on Tn. The following theorem classifies the possible
behaviours of (µn) for any weight sequence.

Theorem 4. The sequence (µn)n≥1 converges almost surely weakly towards a limiting proba-
bility measure µ on U. There are three possible behaviours for µ:

(i) If
∑∞
i=1 wi <∞, then µ is carried on U.

(ii) If
∑∞
i=1 wi =∞ and

∑∞
i=1

(
wi
Wi

)2

<∞, then µ is diffuse and supported on ∂U.

(iii) If
∑∞
i=1

(
wi
Wi

)2

=∞ then µ is concentrated on one point of ∂U.

This convergence can be extended to other natural measures on the tree, such as the uniform
measure on Tn, or some "preferential attachment measure" which charges each vertex proportionally
to some affine function of its degree. This is the content of Proposition 8.
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1.3 Organisation of the paper

The paper is organised as follows.
We first investigate some properties of weighted random trees (Tn)n≥1 with deterministic weight

sequence w. In Section 2.1 we first prove Proposition 5 which states the convergence of the degree
sequence using elementary methods. Then in Section 2.2, we prove the weak convergence of the
weight measure µn to some limit µ and describe three regimes for its behaviour. We also study other
natural measures related to the sequence of trees (Tn) and prove that they also converge towards
µ. For all these measures, our main tool consists in introducing martingales related to the mass of
a subtree descending from a fixed vertex. This is the content of Theorem 4 and Proposition 8. In
Section 3, we prove Theorem 3 about the convergence of the height and the profile of WRT. This is
achieved by first proving the uniform convergence of a rescaled version of the Laplace transform of
the profile on a complex domain, which is the content of Proposition 9. This ensures that we can
use [18, Theorem 2.1] for the convergence of the profile. This convergence provides a lower-bound
for the height of the tree; we then prove a matching upper-bound to obtain asymptotics for the
height.

Then we switch to studying a sequence (Pn)n≥1 of preferential attachment trees with initial
fitnesses a. In Section 4, we present a proof of Theorem 1 using a coupling of the preferential
attachment process with a sequence of Pólya urn processes and this establishes that (Pn)n≥1 can
also be described as having distribution WRT(wa) for a random sequence wa; we then prove
Proposition 2 which relates the properties of wa to the ones of a. We finish the section by stating
and proving Proposition 27 in which we prove that the sequence (Ma

n) defined above as some random
multiple of (Wa

n) is a Markov chain. In Section 5, we identify in Proposition 28 the distribution
of the chain (Ma

n) for particular sequences a using moment identifications. We then present an
application of this result to an other model of preferential attachment graphs in Proposition 31.

Some technical results can be found in Appendix A.

2 Measures and degrees in weighted random trees

In this section, we work with a sequence of trees (Tn)n≥1 that has distribution WRT (w) for a
deterministic sequence w. We start with two statistics of the tree that are quite easy to analyse,
namely the sequence of degrees of the vertices of the tree and also some natural measures defined
on the tree.

2.1 Convergence of the degree sequence

We start the section by proving convergence for the sequence of degrees of the vertices in their
order of creation under the WRT model. We suppose here that the sequence of weights w is such
that there exists constants C > 0 and 0 < γ < 1 for which

Wk ∼
k→∞

C · kγ . (11)

We write deg+
Tn

(uk) for the out-degree of the vertex uk in Tn. For a fixed k ≥ 1 remark that, as a
sequence of random variables indexed by n ≥ 1, we have the equality in distribution

(
deg+

Tn
(uk)

)
n≥1

(d)
=

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)
n≥1

, (12)

with (Ui)i≥1 a sequence of independent uniform variables in (0 , 1). With this description of the
distribution of the degrees of fixed vertices, only using some law of large numbers for the convergence
and Chernoff bounds for the fluctuations we obtain the following result.

Proposition 5. For a sequence of weights w satisfying (11), the following holds.
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(i) We have the almost sure pointwise convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . ) −→
n→∞

1

(1− γ)C
· (w1, w2, . . . ). (13)

(ii) If the sequence furthermore satisfies wk ≤ (k+1)γ−1+c′+o(1) for some constant 0 ≤ c′ < 1−γ,
then there exists a function of k which goes to 0 as k → ∞, also denoted o(1), such that all
n large enough, we have for all k ≥ 1

deg+
Tn

(uk) ≤ n1−γ · (k + 1)γ−1+c′+o(1), (14)

and the convergence (13) holds almost surely in the space `p for all p > 1
1−γ−c′ .

Proof. To prove (i), just remark that for any k ≥ 1 such that wk 6= 0, thanks to (11), we have
n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

C(1− γ)
,

so thanks to the law of large numbers, we get that almost surely

deg+
Tn

(uk) =

n−1∑
i=k

1{
Ui≤

wk
Wi

} ∼
n→∞

n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

(1− γ)C
,

and hence n−(1−γ) · deg+
Tn

(uk) → wk
(1−γ)C . For the indices k for which wk = 0, we of course have

deg+
Tn

(uk) = 0 almost surely for all n ≥ 1, and so the convergence also holds. This finishes the
proof of (i).

For the second part of the statement, let us first compute

E
[
exp

(
deg+

Tn
(uk)

)]
= E

[
exp

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)]

=

n−1∏
i=k

(
1 + (e− 1)

wk
Wi

)

≤ exp

(
(e− 1)wk

n−1∑
i=k

1

Wi

)
.

Now let C ′ be a constant such that for all n ≥ 1, we have
∑n−1
i=1

1
Wi
≤ C ′ · n1−γ (such a constant

exists because of the assumption (11)). For all k ≥ 1, we introduce the following

ξk := max
(
2C ′(e− 1)wk, k

γ−1 log2(k + a)
)
,

where the real number a > 0 is chosen in such a way that the function x 7→ xγ−1 log(x+ a) is
decreasing on R∗+. Using Markov’s inequality, we get for any integers k and n such that n ≥ k

P
(
deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ exp

(
−ξk · n1−γ + (e− 1)wk

n−1∑
i=k

1

Wi

)

≤ exp

(
−1

2
· ξk · n1−γ

)
.

Using an union bound, the fact that deg+
Tn

(uk) = 0 for any k > n, and the definition of ξk, we get
that for all n ≥ 1

P
(
∃k ≥ 1, deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ n∑

k=1

exp

(
−1

2
· ξk · n1−γ

)
≤ n · exp

(
−1

2
· log2(n+ a)

)
.

The last display is summable over all n ≥ 1 and hence using the Borel-Cantelli lemma, we almost
surely have for n large enough

∀k ≥ 1, deg+
Tn

(uk) ≤ n1−γ · ξk.

We can conclude by noting that under our assumptions we have ξk ≤ (k + 1)γ−1+c′+o(1). The
convergence in `p for p > 1

1−γ−c′ is just obtained by dominated convergence using the pointwise
convergence (13) and the `p domination (14).
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2.2 Convergence of measures

The goal of this section is to prove Theorem 4, which concerns the convergence of the sequence of
weight measures (µn) seen as measures on U. One of the key arguments is the fact that the weight
of the subtree descending from a fixed vertex can be described using a generalised Pólya urn scheme,
as studied by Pemantle [23]. We also prove Proposition 8, which states the weak convergence of
other measures.

Convergence of the weight measure in U. Recall from the introduction the definition
of the Ulam-Harris tree U =

⋃∞
n=0Nn and its completed version U = U ∪ ∂U, which is endowed

with the distance d(u, v) = exp (−ht(u ∧ v)). For any u ∈ U, we write T (u) :=
{
uv
∣∣ v ∈ U} the

sub-tree descending from u. In U there is an easy characterisation of the weak convergence of Borel
measures, which a direct consequence of the Portmanteau theorem (see e.g. [4, Theorem 2.1]):

Lemma 6. Let (πn)n≥1 be a sequence of Borel probability measures on U. Then (πn)n≥1 converges
weakly to a probability measure π if and only if for any u ∈ U,

πn({u})→ π({u}) and πn(T (u))→ π(T (u)) as n→∞.

We are going to apply this criterion to our sequence (µn)n≥1, which, we recall, is defined in
such a way that for all n ≥ 1, the measure µn charges only the vertices {u1, u2, . . . , un} of the tree
Tn, and such that for any 1 ≤ k ≤ n,

µn({uk}) =
wk
Wn

. (15)

We can already see that if (Wn)n≥1 converges to some W∞ we have µn({uk}) → wk
W∞

as n → ∞,
and in this case it is easy to verify that µn weakly converges to some limit µ which is such that
µ({uk}) = wk

W∞
. In this case µ(U) = 1 and so µ is carried on U.

From now on, let us assume that Wn → ∞ as n → ∞. In this case we have µn({uk}) → 0 as
n→∞. Now denote for every integers n, k ≥ 1,

M (k)
n := µn(T (uk)),

the proportion of the total mass above vertex uk at time n. Remark that this quantity evolves as
the proportion of red balls in a time-dependent Pólya urn scheme with weights (wi)i≥k+1, see [23],
starting at time k with Wk−1 black balls and wk red balls2. In particular, for all n ≥ k,

E
[
M

(k)
n+1

∣∣∣ Tn] =
Wn

Wn+1
·M (k)

n +
wn+1

Wn+1
·M (k)

n

= M (k)
n .

Hence for all k ≥ 1, the sequence (M
(k)
n )n≥k is a martingale with value in [0 , 1] so it converges

almost surely to a limit M (k)
∞ . Also, for any u ∈ U that does not receive a label in the process,

the sequence (µn(T (u)))n≥1 (and also (µn({u}))n≥1) is identically equal to zero. Hence we have
convergence of (µn({u}))n≥1 and (µn(T (u)))n≥1 for all u ∈ U.

The last step in order to prove the weak convergence of (µn)n≥1 is to prove that the quantities
that we obtain in the limit indeed define a probability measure on U. If for all u ∈ U we have

lim
n→∞

µn(T (u)) =

∞∑
i=1

lim
n→∞

µn(T (ui)), (16)

then it entails that µn →
n→∞

µ, where µ is the unique probability measure on U such that for all
u ∈ U,

µ({u}) = 0 and µ(T (u)) = lim
n→∞

µn(T (u)).

2Those numbers of balls are not required to be integers.
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For any u /∈ {u1, u2, . . . }, the equality (16) is immediate, so let us prove it for all uk for k ≥ 1. For
any n, k, i ≥ 1, let

M (k,i)
n :=

∞∑
j=i+1

µn(T (ukj)) = µn (T (uk))−
i∑

j=1

µn (T (ukj)) .

Using what we just proved, we know that for any k, i, the quantityM (k,i)
n almost surely converges as

n→∞ to some limit M (k,i)
∞ . Proving (16) reduces to proving that for any k ≥ 1, we almost surely

have M (k,i)
∞ →

i→∞
0. By construction, the sequence (M

(k,i)
∞ )i≥1 is non-negative and non-increasing,

hence it converges, so it suffices to prove that its limit is 0 almost surely.
We define τ (k,i) := inf {n ≥ 1 | un = uki}, the time when the vertex uk receives its i-th child

in the growth procedure. Remark that after this random time, the process (M
(k,i)
n )n≥τ(k,i) is

a martingale because again, it evolves as the proportion of red balls in a time-dependent Pólya
urn scheme, starting with wk red balls and Wτ(k,i) blacks balls. (If τ (k,i) is infinite, then the
sequence (M

(k,i)
n )n≥1 is identically 0.) Hence, using the crude bound τ (k,i) ≥ i, which entails that

Wτ(k,i) ≥Wi almost surely, we get

E
[
M (k,i)
∞

]
= E

[
M

(k,i)

τ(k,i)1{τ(k,i)<∞}
]
≤ wk
Wi

→
i→∞

0,

hence M (k,i)
∞ →

i→∞
0 in L1, so its almost sure limit is also 0. In the end, by Lemma 6, the sequence

of measures (µn) almost surely converges weakly to a limit µ, and this measure only charges the
set ∂U.

Lemma 7. Suppose that
∑∞
n=1 wn =∞ so that µ is carried on ∂U. Then either

∑∞
n=1

(
wn
Wn

)2

<∞

and then µ is almost surely diffuse or
∑∞
n=1

(
wn
Wn

)2

=∞ and then µ is carried on one point of ∂U.

Proof. For any k ≥ 1 the process (µn(T (uk))n≥k follows a so-called time-dependent Pólya urn

scheme with weights (wn)n≥k+1. By the work of Pemantle in [22], if we assume
∑∞
n=1

(
wn
Wn

)2

=∞
then the limiting proportion µ(T (uk)) almost surely belongs to the set {0, 1}. This translates into
the fact that µ(T (u)) ∈ {0, 1} almost surely for any u ∈ U, which entails that µ is almost surely
carried on one leaf of ∂U.

On the contrary, let us suppose that
∑∞
n=1

(
wn
Wn

)2

< ∞ and prove that this entails that the

limiting measure µ is diffuse almost surely. Consider the function (· ∧ ·) : U × U → U which
associates to each couple (u, v) their most recent common ancestor u ∧ v in the completed tree U.
This function is continuous with respect to the distance d. Then, since µn → µ almost surely, we
also have the almost sure weak convergence

(· ∧ ·)∗(µn ⊗ µn)→ (· ∧ ·)∗(µ⊗ µ). (17)

Let us fix n ≥ 1 and let Dn and D′n be two independent vertices taken under µn, conditionally on
the tree Tn. Then, the proof of [10, Lemma 3.8] ensures that

P (Dn ∧D′n = uk) =

(
wk
Wk

)2

·
n∏

i=k+1

(
1−

(
wi
Wi

)2
)
−→
k→∞

pk :=

(
wk
Wk

)2

·
∞∏

i=k+1

(
1−

(
wi
Wi

)2
)
.

Note that the obtained sequence (pk)k≥1 is a probability distribution, which thanks to the weak
convergence (17) corresponds to the (annealed) distribution pk = P (D∞ ∧D′∞ = uk), where D∞
and D′∞ are two independent points taken under the measure µ, conditionally on µ. Now we can
write

P
(
d(D∞, D

′
∞) ≤ e−k

)
= P (ht(D∞ ∧D′∞) ≥ k) ≤

∞∑
i=k+1

pi,

where the inequality is due to the fact that the vertices u1, u2, . . . , uk have a height smaller than
k. Hence P (d(D∞, D

′
∞) = 0) ≤ limk→∞ P

(
d(D∞, D

′
∞) ≤ e−k

)
= 0. So, almost surely, two points

taken independently under µ are different, and this ensures that µ is diffuse.

In the end, we just finished the proof of Theorem 4.
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Other sequences of measures We also study two other sequences of measures (ηn) and (νn)

carried on the Ulam tree U. For every n ≥ 2, these measures only charge the vertices {u1, u2, . . . , un}
in such a way that for any 1 ≤ k ≤ n,

ηn(uk) =
bk + deg+

Tn
(uk)

Bn + n− 1
and νn(uk) =

1

n
,

where (bn)n≥1 is a sequence of real numbers such that b1 > −1 and bn ≥ 0 for all n ≥ 2. We write
Bn :=

∑n
k=1 bk. We suppose that Bn = O(n) and that there exists ε > 0 such that bn = O

(
n1−ε).

The assumptions on the sequence (bn)n≥1 are chosen such that they are satisfied by a sequence
(an)n≥1 of initial fitnesses that satisfies (Hc) for some c > 0.

Proposition 8. Under the assumptions
∑∞
n=1 wn = ∞ and

∑∞
n=1

(
wn
Wn

)2

< ∞, the sequences
(ηn)n≥1 and (νn)n≥1 converge almost surely weakly towards the limiting measure µ on ∂U defined
in Theorem 4.

For the proof of this proposition, we are going to use Lemma 6 again, using appropriate martin-
gales in order to handle the evolution of the measure of the subtree descending from every vertex
u ∈ U. We treat the two sequences of measures separately.

The degree measure. Consider the sequence (ηn)n≥1 on U. Since the sequence (Wn)n≥1

tends to infinity, we have ηn({u}) → 0 for every u ∈ U. Indeed, using the equality in distribution
(12) and Lemma 32 in the appendix, it is easy to see that either

∑∞
i=1W

−1
i <∞ and in this case

the degrees deg+
Tn

(uk) are eventually constant as n→∞; or
∑∞
i=1W

−1
i =∞, in which case we have

the almost sure asymptotic behaviour deg+
Tn

(uk) ∼ wk ·
∑n
i=kW

−1
i . In both cases, for all k ≥ 1, we

have n−1 deg+
Tn

(uk)→ 0 almost surely as n→∞.
As in the preceding case, for all k ≥ n we let

N (k)
n := ηn(T (uk)).

Conditionally on Tn, with probability M (k)
n , the vertex un+1 is grafted onto T (uk) and with com-

plementary probability, it is not. So

N
(k)
n+1 =

1

Bn+1 + n
·
(

(Bn + n− 1) ·N (k)
n + bn+1 + 1

)
with probability M (k)

n ,

=
Bn + n− 1

Bn+1 + n
·N (k)

n with probability (1−M (k)
n ).

Now compute

E
[
N

(k)
n+1 −M

(k)
n+1

∣∣∣ Fn] =
Bn + n− 1

Bn+1 + n
·N (k)

n +
bn+1 + 1

Bn+1 + n
·M (k)

n −M (k)
n

=
Bn + n− 1

Bn+1 + n
·
(
N (k)
n −M (k)

n

)
.

Hence, if we denote X(k)
n := (Bn + n − 1) ·

(
N

(k)
n −M (k)

n

)
, then the last computation shows that(

X
(k)
n

)
n≥k

is a martingale for the filtration generated by (Tn)n≥1. More precisely we can write

X
(k)
n+1 −X(k)

n =

(
Wn

Wn+1
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)
︸ ︷︷ ︸

cn

·
(
1{un+1∈T (uk)} −M (k)

n

)
,

hence we have

E
[
X

(k)
n+1 −X(k)

n

∣∣∣ Tn] = 0 and E
[(
X

(k)
n+1 −X(k)

n

)2
]
≤ c2n.
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Then, using [9, Theorem 1], we get that if

∞∑
n=k

n−2c2n <∞ (18)

then X(k)
n

n → 0 a.s. as n → ∞, which would prove that N (k)
n −→ M

(k)
∞ as n → ∞. In our case,

we can verify that (18) holds. Indeed, using the fact that we assumed that Bn = O(n) and
bn+1 = O

(
n1−ε), we have

n−2c2n = n−2

(
Wn

Wn+1
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)2

≤ n−2 · 3

(
1 + b2n+1 +

(
wn+1

Wn+1
(Bn+1 + n)

)2
)

≤ 3n−2 + 3b2n+1n
−2 + cst ·

(
wn+1

Wn+1

)2

,

which is summable under our assumptions. In the end, using Lemma 6, we have the almost sure
convergence

ηn −→ µ weakly.

The uniform measure on the vertices of Tn. Consider the sequence (νn) on U. Fix
k ≥ 1. For any n ≥ k we can write νn(T (uk)) = 1

n

∑n
i=k 1{ui∈T (uk)}. For any i ≥ k + 1, we have

pi := P (ui ∈ T (uk) | Fi−1) = µi−1(T (uk)), which tends a.s. to some limit µ(T (uk)) as i → ∞.
Using Lemma 32 in the appendix, we have∑n

i=k+1 1{ui∈T (uk)}∑n
i=k+1 pi

−→
n→∞

1 a.s. on the event

{ ∞∑
i=k+1

pi =∞

}

and also
n∑

i=k+1

1{ui∈T (uk)} converges a.s. on the event

{ ∞∑
i=k+1

pi <∞

}
.

In both cases we get νn(T (uk)) →
n→∞

limi→∞ pi = µ(T (uk)) almost surely. We also have for any
k ≥ 1,

νn({uk}) =
1

n
→

n→∞
0 and of course ∀u /∈ {u1, u2, . . . },∀n ≥ 1, νn({u}) = νn(T (u)) = 0,

so we can conclude using Lemma 6 that almost surely νn →
n→∞

µ weakly.

3 Height and profile of WRT

The main goal of this section is to prove Theorem 3 which gives asymptotics for the profile and
height of the tree. Recall that we denote

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k} ,

the number of vertices at height k in the tree Tn. In order to get information on the sequence of
functions (k 7→ Ln(k))n≥1 we study their Laplace transform

z 7→
∞∑
k=0

Ln(k)ekz =

n∑
i=1

ez ht(ui) = n ·
∫
U
ez ht(u)dνn(u), (19)

where the last expression is given using an integral against the probability measure νn defined in
Section 2.2 as the uniform measure on the vertices of Tn. The key result in our approach is to prove
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the convergence of this sequence of analytic functions when appropriately rescaled, uniformly in z
on an open neighbourhood of 0 in the complex plane. It then allows us to use [18, Theorem 2.1]
and hence derive a convergence result for the profile. We actually start in Section 3.1 by studying
the convergence of the similarly defined sequence of functions

z 7→
∫
U
ez ht(u)dµn(u) =

n∑
i=1

wi
Wn

ez ht(ui), (20)

where we integrate with respect to the weight measure µn instead of the uniform measure νn as
before. This one is easier to study because for every fixed z ∈ C, it defines a martingale as n
grows, up to some deterministic scaling. Then in Section 3.2, we make use of this first convergence
and show that up to some deterministic multiplicative constant, the two sequences of integrals
appearing in (19) and (20) are almost surely equivalent when n tends to infinity.

We work under some technical assumption for the sequence w. Let us fix γ > 0 and suppose
from now on that the w satisfies the assumption (�pγ) for some p ∈ (1 , 2], i.e.

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpn ≤ n1+(γ−1)p+o(1).

We let φ : z 7→ γ(ez−1) be a function of a complex parameter z and let z 7→ Nn(z) be the following
rescaled version of the Laplace transform of the profile

Nn(z) := n−(1+φ(z))
∞∑
k=0

Ln(k)ezk.

The proposition below ensures that the sequence (z 7→ Nn(z))n≥1 converges uniformly on all
compact subset of some open domain D ⊂ C to some limiting function z 7→ N∞(z) which does not
vanish anywhere on the set D ∩ R, along with some more technical statements.

Proposition 9. Suppose that the weight sequence w satisfies (�pγ) for some γ > 0 and some
p ∈ (1 , 2]. Then there exists an open connected domain D ⊂ C such that D ∩ R = (z− , z+) with
z− < 0 and z+ is the largest real solution of the equation γ(zez − ez + 1)− 1 = 0 and such that the
following properties are satisfied.

(i) With probability 1, the sequence of random analytic functions (z 7→ Nn(z))n≥1 converges
uniformly on all compact subsets of D , as n → ∞, to some random analytic function z 7→
N∞(z) which satisfies P (N∞(z) 6= 0 for all z ∈ (z−, z+)) = 1.

(ii) For every compact set K ⊂ D and r ∈ N, we can find an a.s. finite random variable CK,r
such that for all n ∈ N,

sup
z∈K
|Nn(z)−N∞(z)| < CK,r(log n)−r.

(iii) For every compact set K ⊂ (z− , z+), every 0 < a < π and r ∈ N,

sup
z∈K

[
e−(1+φ(z)) logn

∫ π

a

∣∣∣∣∣
∞∑
k=0

Ln(k)ez+iu

∣∣∣∣∣du
]

= o
(
(log n)−r

)
a.s. as n→∞.

Under the results of Proposition 9 we can apply [18, Theorem 2.1] whose conclusions for the
sequence (k 7→ L(k))n≥1 are the following. For any k ≥ 0, n ≥ 1 and z ∈ (z− , z+), we denote

xn(k; z) =
k − γez log n√

γez log n
.

Then, for every integer r ≥ 0 and every compact set K ⊂ (z− , z+), we have the convergence

(log n)
r+1
2 · sup

k∈N
sup
z∈K

∣∣∣∣∣∣ezk−(1+φ(z)) lognLn(k)− N∞(z)e−
1
2xn(k;z)2

√
2π log n

r∑
j=0

Gj(xn(k); z)

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0, (21)
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where for all j ≥ 0, the (random) functions Gj(x, z) are polynomials of degree at most 3 in x and
are entirely determined from φ and N∞, with G1 = 1, see [18] for their complete definition. The
asymptotics (7) and (8) stated in Theorem 3 follow from the last display. Indeed, (7) is obtained
by letting r = 0 and z = 0 and using the fact that N∞(0) = 1 almost surely. For (8), we let r = 0,
and use k = bγez log nc.

In Section 3.3, we complete the proof of Theorem 3 by computing the asymptotic behaviour of
the height of the tree. Since the convergence of the profile already ensures that there almost surely
are vertices at height γe(z+−ε) log n for ε > 0 small enough and all n large enough, it suffices to
prove a corresponding upper-bound in order to finish proving the convergence (9) in Theorem 3.

3.1 Study of the Laplace transform of the weighted profile

We study the sequence
(
z 7→

∑n
i=1

wi
Wn

ez ht(ui)
)
n≥1

. The following lemma is the starting point of

our analysis.

Lemma 10. For all z ∈ C and all n ≥ 1, we have

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Tn
]

=

(
1 + (ez − 1)

wn+1

Wn+1

) n∑
i=1

wi
Wn

ez ht(ui).

Proof. Recall that conditionally on Tn, the n + 1-st vertex un+1 of Tn+1 is a child of the vertex
uKn+1

, where P (Kn+1 = k | Tn) = wk
Wn

. We compute

n+1∑
i=1

wi
Wn+1

ez ht(ui) =
Wn

Wn+1

n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez · ez ht(uKn+1

).

Taking conditional expectation with respect to Tn yields:

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Tn
]

=
Wn

Wn+1
·
n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez ·

n∑
i=1

wi
Wn

ez ht(ui)

=

(
1 + (ez − 1)

wn+1

Wn+1

) n∑
i=1

wi
Wn

ez ht(ui).

This concludes the proof.

Let J be an integer that we are going to fix later on. The last result ensures that if z ∈ C is
such that ∀i ≥ J, 1 + (ez − 1) wiWi

6= 0, then we can define for all n ≥ J

Cn(z) :=

n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
and Mn(z) :=

1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui),

and the sequence (Mn(z))n≥J is a martingale. We want to prove results about the asymptotic
behaviour of (z 7→ Mn(z))n≥J , uniformly in z on an appropriate domain. If J is fixed, then there
exists parameters z with Im(z) = π mod 2π for which the sequence (Cn(z))n≥J takes the value 0.
Due to our assumption (�γ) on the sequence w, we know that wn

Wn
→ 0 as n → ∞. If we restrict

ourselves to a domain of the form {z ∈ C | Re(z) < x} for some x > 0, then∣∣∣∣1 + (ez − 1)
wn
Wn

∣∣∣∣ ≥ 1− |ez − 1| · wn
Wn
≥ 1− (ex + 1) · wn

Wn
→

n→∞
1 > 0,

hence it suffices to take J large enough in order for the sequence (Cn(z))n≥J to only take non-zero
values for all z ∈ {ξ ∈ C | Re(ξ) < x} and all n ≥ J . In what follows we work on the domain

E = {z ∈ C | Re z < z+} ,
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where z+ is as defined in Proposition 9. Using the preceding discussion, we fix J ≥ 1 such that the
sequence z 7→ (Cn(z))n≥J does not have any zero on E , so that z 7→ (Mn(z))n≥J is well-defined for
all z ∈ E .

We introduce the following notation. Let F (z, n) and G(z, n) be two functions of a complex
parameter z and an integer n ∈ N. For D ⊂ C a domain of the complex plane we write

F (n, z) = OD(G(n, z)) (resp. F (n, z) = oD(G(n, z))) (22)

to express the fact that F (n, z) is a big (resp. small) o of G(n, z) as n → ∞, uniformly on all
compact K ⊂ D.

Now, let us derive some information on the asymptotic behaviour of Cn(z).

Lemma 11. Suppose that w satisfies (�γ). Then there exists ε > 0 and an analytic function
z 7→ c(z) on E such that

Cn(z) = exp
(
φ(z) log n+ c(z) +OE

(
n−ε

))
.

Remark that the lemma implies that for any z ∈ E , we have

|Cn(z)| ∼ eRe(c(z)) · nReφ(z)

as n → ∞. It is also immediate that E
[∑n

k=1
wk
Wn

ez ht(uk)
]

= E [MJ(z)] · Cn(z) satisfies the same
asymptotics up to a constant, as soon as z is such that E [MJ(z)] 6= 0.

Before proving the lemma, we state the following result which follows from elementary calculus.
Its proof can be found in the appendix.

Lemma 12. Suppose that (wn) satisfies (�γ). Then there exists ε such that

+∞∑
i=n

(
wi
Wi

)2

= O
(
n−ε

)
and also

n∑
i=1

wi
Wi

= γ log n+ cst +O
(
n−ε

)
.

Proof of Lemma 11. For any z ∈ C \ (−∞ ,−1] we write Log(1 + z) for a complex determination
of the logarithm which coincides with

∑∞
i=1(−1)n−1zn near 0. If we let

h(i, z) = Log

(
1 + (ez − 1)

wi
Wi

)
− (ez − 1)

wi
Wi

then |h(i, z)| = OE

((
wi
Wi

)2
)

is summable in i and the rest of the series is

∣∣∣∣∣
∞∑
i=n

h(i, z)

∣∣∣∣∣ ≤
∞∑
i=n

|h(i, z)| = OE

( ∞∑
i=n

(
wi
Wi

)2
)

= OE

(
n−ε

)
, (23)

for some ε > 0, thanks to Lemma 12. Then we write

Cn(z) =

n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
= exp

(
(ez − 1)

n∑
i=J

wi
Wi

+

n∑
i=J

h(i, z)

)

which yields using (23) and Lemma 12

Cn(z) = exp

(
(ez − 1)(γ log n+ cst +OE

(
n−ε

)
) +

∞∑
i=J

h(i, z)−
∞∑

i=n+1

h(i, z)

)

= exp

φ(z) log n+ (ez − 1) · cst +

∞∑
i=J

h(i, z)︸ ︷︷ ︸
c(z)

+OE

(
n−ε

)
,

and c(z) is an analytic function of z, which finishes the proof.
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Convergence of the martingales (Mn(z))n≥1. When the parameter z is a positive real
number, the sequence (Mn(z))n≥1 is a positive martingale and so it converges almost surely to some
limit. We want to prove that these martingales converge almost surely and in L1 for the largest
possible range of parameters z. We recall that the weight sequence w satisfies (�pγ) for some fixed
parameters γ > 0 and p ∈ (1 , 2]. We align our notation with the one used in [8, Theorem 2.2]
which states something similar to our forthcoming Proposition 14 for another model, the binary
search tree.

For any z ∈ E and q ∈ (1 , p], we let

g(z, q) := φ(qRe z)− qRe(φ(z))− q + 1 = γ(eqRe z − 1− qRe(ez) + q)− q + 1. (24)

For any q ∈ (1 , p], let Vq = {z ∈ E | g(z, q) < 0}, and denote

V =
⋃

1<q≤p

Vq.

Lemma 13. The domain V is an open domain of the complex plane and contains the open interval
Iγ := {x ∈ R | γ(xex − ex + 1)− 1 < 0} which contains 0.

Proof. Of course V is open as a union of open sets. For any real x we have g(x, 1) = 0. So, if
∂g
∂q (x, 1) < 0 then there exists q > 1 for which g(x, q) < 0. Since ∂g

∂q (x, 1) = γ(xex− ex + 1)− 1, the
set V contains the interval Iγ defined above. Since ∂g

∂q (0, 1) = −1 < 0, we have 0 ∈ Iγ .

Proposition 14. The sequence of functions (z 7→ Mn(z))n≥J converges uniformly almost surely
and in L1 towards an analytic function z 7→M∞(z) on every compact of V . Furthermore, for any
compact K ⊂ V , there exists a real ε(K) > 0 such that almost surely

|Mn(z)−M∞(z)| = OK

(
n−ε(K)

)
.

The proof of the proposition will follow from the next lemma, together with Lemma 34, stated
in the appendix.

Lemma 15. For any q ∈ (1 , p] we have

E [|Mn(z)|q] = OE

(
n0∨g(z,q)+oE (1)

)
. (25)

and also

E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
. (26)

Proof. For any q ∈ (1 , p] and n ≥ J , we write

Mn+1(z)−Mn(z) = Mn(z)

(
Cn(z)

Cn+1(z)
− 1

)
+

1

Cn+1(z)
· wn+1

Wn+1
· ez ht(un+1).

Taking the q-th power of the modulus on both sides and using the inequality |a+ b|q ≤ 2q|a|+2q|b|,
we get

E [|Mn+1(z)−Mn(z)|q]

≤ E [|Mn(z)|q] · 2q
∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q + 2q
1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
. (27)

Using Lemma 33 in the appendix, we have for any n ≥ J ,

E [|Mn+1(z)|q] ≤ E [|Mn(z)|q] + 2q · E [|Mn+1(z)−Mn(z)|q] .

Using the last display and equation (27), we get a recurrence inequality of the form

E [|Mn+1(z)|q] ≤ (1 + an(z)) · E [|Mn(z)|q] + bn(z), (28)
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where

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q and bn(z) = 22q 1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
.

Applying (28) in cascade we get

E [|Mn|q] ≤ E [|MJ(z)|q] ·
n−1∏
i=J

(1 + ai(z)) ·

(
n−1∑
i=J

bi(z)

)
. (29)

Now notice that from our assumption on the sequence (wn)n≥1 we have

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q = 22q

∣∣∣∣∣ 1

1 + (ez − 1) wn+1

Wn+1

− 1

∣∣∣∣∣
q

= OE

((
wn+1

Wn+1

)q)
. (30)

On the other hand, thanks to Lemma 11 we have

bn(z) = cst ·
(
wn+1

Wn+1

)q
· |Cn+1(z)|−q · eqRe z · E

[
n∑
k=1

wk
Wn

e(qRe z) ht(uk)

]

=

(
wn+1

Wn+1

)q
·OE

(
n−qRe(φ(z))

)
·OE

(
nφ(qRe z)

)
=

(
wn+1

Wn+1

)q
·OE

(
ng(z,q)−1+q

)
. (31)

We conclude using the following lemma which is an application of Hölder inequality using the
assumption (�pγ)

Lemma 16. For any q ∈ (1 , p] we have
2n∑
i=n

(
wi
Wi

)q
≤ n1−q+o(1).

Together with (30), this proves that (an(z))n≥1 is summable and so
∏∞
i=J(1 + ai(z)) = OE (1).

Also

2n∑
i=n

bi(z) = OE

(
ng(z,q)+oE (1)

)
,

and so
∑n
i=J bi(z) = OE

(
n0∨g(z,q)+oE (1)

)
. Replacing this in (29) finishes to prove (25). In order to

prove (26), we use Lemma 33 again and write

E [|M2n(z)−Mn(z)|q] ≤ 2q ·
2n−1∑
i=n

E [|Mi+1(z)−Mi(z)|q]

≤
(25),(27)

2n−1∑
i=n

(
ai(z) ·OE

(
n0∨g(z,q)+oE (1)

)
+ bi(z)

)
≤

(30),(31)

2n−1∑
i=n

(
wn+1

Wn+1

)q (
OE

(
n0∨g(z,q)+oE (1)

)
+OE

(
ng(z,q)−1+q

))
.

Using Lemma 16 we get E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
which finishes the proof

of the lemma.

Proof of Proposition 14. Any compact K ⊂ Vq can be covered by a finite number of Vq. The
convergence result is then an application of Lemma 34, on the domain Vq with α(z) = 0 and, say
δ(z) = − 1

2g(z, q) > 0. The limiting function is analytic as a uniform limit of analytic functions.

17



Zeros of the limit. Now that we have proved that their exists a limiting function z 7→M∞(z)

defined on the domain V , we are interested in the possible location of the zeros of this random
function. In fact, the function z 7→M∞(z) is related to the function z 7→ N∞(z) of Proposition 9,
for which we aim to prove that it has almost surely no zero on some real interval (z− , z+) which
contains 0. We will prove a similar result for z 7→ M∞(z) in Lemma 18, and we start by proving
the following weaker statement.

Lemma 17. For all z ∈ V ∩R, we have almost surely M∞(z) > 0. As a consequence, the number
of zeros on every compact of V is almost surely finite.

Proof. This follows from an application of Kolmogorov’s 0−1 law. Indeed, fix N ≥ J and z ∈ V ∩R
and for all n ≥ N , let

M (N)
n (z) =

1

Cn(z)

n∑
i=1

wi
Wn

ez d(ui,TN ).

Now remark the following:

(i) (M
(N)
n (z))n≥N is a positive martingale which satisfies the same assumptions as Mn(z) so it

converges a.s. and in L1 towards a non-negative limit, M (N)
∞ (z).

(ii) We have (1 ∧ ez)NM (N)
n (z) ≤Mn(z) ≤ (1 ∨ ez)NM (N)

n (z).

(iii) The sequence (M
(N)
n (z))n≥N , hence its limit M (N)

∞ (z), is independent of the N first steps of
the construction, coded by the vector (K2, . . . ,KN ).

Using all these observations we deduce that for any N ≥ J we have the equality of events {M∞(z) >

0} = {M (N)
∞ (z) > 0}. This proves that {M∞(z) > 0} is mesurable with respect to the tail σ-algebra

generated by the sequence (K2,K3, . . . ), which are independent, and has hence probability 0 or
1. By L1 convergence we have E [M∞(z)] = E [MJ(z)] > 0 and this proves our claim. It follows
immediately that the number of zeros of the limit z 7→ M∞(z) on any compact K ⊂ V is almost
surely finite, because otherwise the function would be identically 0 with positive probability.

Lemma 18. The function M∞(z) has almost surely no zero on V ∩ R.

In order to prove this lemma, we use an argument of self-similarity: essentially, if we take two
vertices ui and uj in the tree, then conditionally on the sequences of vertices that are grafted above
ui or above uj , the subtrees above ui and uj evolve as two independent weighted recursive trees.
Using Proposition 14 and Lemma 17, the normalized Laplace transform of the weighted profile of
each of those two subtrees should converge to some random analytic function which is non-negative
on V ∩R and has at most countably many zeros. Since the two are independent, their zeros should
not overlap and hence the sum of their contribution should result in a function that is positive on
V ∩ R.

Proof. Let us formalise this line of reasoning. Using Theorem 4, we know that the measure µ on
∂U is almost surely diffuse, hence we can define

I(1) := inf {i ≥ 1 | µ(T (ui)) ∈ (0 , 1)} and I(2) := inf {i ≥ I1 | uI1 � ui and µ(T (ui)) ∈ (0 , 1)} ,

and they are almost surely finite. Thanks to Theorem 4 again, we know that for any k ≥ 1 we
have the convergence νn(T (uk))→ µ(T (uk)). In fact, the slightly stronger statement holds and we
prove it at the end of the section.

Lemma 19. For all k ≥ 1, there exists ε > 0 such that almost surely as n→∞ we have

|µn(T (uk))− νn(T (uk))| = O
(
n−ε

)
and |µn(T (uk))− µ(T (uk))| = O

(
n−ε

)
.

Let us consider the sequences
(
1{uI(j)�un}

)
n≥1

for j = 1, 2, which record the times when a

vertex is added to T (uI(1)) or T (uI(2)), and work conditionally on them. Thanks to our definition
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of I(1) and I(2), we know that the number of vertices in each of those subtrees will grow linearly in
time (in particular, they go to infinity). We let

∀n ≥ 1, N (j)
n := nνn(T (uI(j))) =

n∑
i=1

1{uI(j)�ui} and ∀k ≥ 1, τ
(j)
k := inf

{
n ≥ 1

∣∣∣ N (j)
n ≥ k

}
,

which record respectively the number of vertices in T (uI(j)) at time n and conversely, the time
when the k-th vertex is added. To ease notation we let w(j)

k := wτ(j)(k) and W
(j)
k :=

∑k
i=1 w

(j)
k ,

and also u
τ
(j)
k

= u
(j)
k . Let us state the following intermediate result, which we will prove at the end

of the section.

Lemma 20. For j = 1, 2 the sequences (w
(j)
k )k≥1 almost surely satisfy (�pγ).

Recall the discussion before Lemma 10 and fix J ′ ≥ 1 such that for j = 1, 2, for all k ≥ J ′ and
for all z ∈ E we have 1 + (ez − 1)

w
(j)
k

W
(j)
k

6= 0. Then we can define for j = 1, 2 and k ≥ J ′,

M
(j)
k (z) :=

1

C
(j)
k (z)

k∑
i=1

w
(j)
i

W
(j)
k

ezd(u
I(j)

,u
(j)
i ) with C

(j)
k (z) :=

k∏
i=J′

(
1 + (ez − 1)

w
(j)
i

W
(j)
i

)
.

Conditionally on the sequences
(
1{uI(j)�un}

)
n≥1

for j = 1, 2, these processes are the martingales

associated to the weighted profile of the tree T
(j)
k :=

{
u ∈ U

∣∣∣ uI(j)u ∈ T
τ
(j)
k

}
, and the sequences

(T
(j)
k )k≥1 for j = 1, 2 are independent weighted recursive trees with respective weight sequence

(w
(j)
k )k≥1. We know thanks to Proposition 14 that these two sequences of functions converge

to analytic limits on the domain V . In addition, thanks to Lemma 17, their almost sure limit
z 7→M

(j)
∞ (z) can only have at most countably many zeros on V ∩R and for all z ∈ V ∩R, we have

M
(j)
∞ (z) > 0 almost surely.
Now we can write, for n sufficiently large

Mn(z) =
1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui)

≥
C

(1)

N
(1)
n

(z) ·W (1)

N
(1)
n

Cn(z) ·Wn
· ez ht(u

I(1)
) ·M (1)

N
(1)
n

(z) +
C

(2)

N
(2)
n

(z) ·W (2)

N
(2)
n

Cn(z) ·Wn
· ez ht(u

I(2)
) ·M (2)

N
(2)
n

(z).

Using Lemma 11, we have almost surely for j = 1, 2,

C
(j)
k (z) = exp

(
φ(z) log k + c(j)(z) +OE

(
k−ε
))
.

Using the asymptotics N (j)
n =

n→∞
nµ(T (uI(j)))(1 +O(n−ε)) we get

C
(j)

N
(j)
n

(z) = exp
(
φ(z)

(
log n+ log(µ(T (uI(j)))) +O

(
n−ε

))
+ c(j)(z) +OV

(
n−ε

))
From Lemma 19, we also get

W
(j)

N
(j)
n

Wn
= µn(T (uI(j))) = µ(T (uI(j)))(1 +O(n−ε)), this entails that for

j = 1, 2, uniformly on all compact included in V the function z 7→
W

(j)

N
(j)
n

Wn
·
C

(j)

N
(j)
n

(z)

Cn(z) converges to
some analytic function z 7→ Aj(z), which only takes positive values on V ∩ R. Then we write

M∞(z) ≥ ez ht(u
I(1)

) ·A1(z) ·M (1)
∞ (z) + ez ht(u

I(2)
) ·A2(z) ·M (2)

∞ (z).

If we condition on the location of the (at most) countable number of zeros z1, z2 . . . of M (1)
∞ on

V ∩ R, since M (2)
∞ is independent of z1, z2 . . . , we have M (2)

∞ (zi) > 0 almost surely by Lemma 17.
Hence M∞ has almost surely no zeros on V ∩ R.

Now let us prove Lemma 19 and Lemma 20, which we used in the preceding proof.
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Proof of Lemma 19 and Lemma 20. Recall the proof of Theorem 4. For all k ≥ 1 the process
(µn(T (uk)))n≥k is a martingale and almost surely we have |µn+1(T (uk))− µn(T (uk))| ≤ wn+1

Wn+1
,

hence using Lemma 33 we get

E [|µ2n(T (uk))− µn(T (uk))|p] ≤ 2p ·
2n∑

i=n+1

(
wi
Wi

)p
= O

(
n1−p+o(1)

)
.

Using then Lemma 34 with q = p and α = 0 and δ = (p − 1)/2 yields
|µn(T (uk))− µ(T (uk))| = O(n−ε) for some ε > 0. For the second one, we consider the process(
nνn(T (uk))−

∑n
i=k+1 µi(T (uk))

)
n≥k. It is easy to verify that this process is a martingale for

its own filtration and that its increments are bounded by 1. Using again Lemma 34 with q = 2

and α = 1 and δ = 1, we get n−1
∣∣nνn(T (uk))−

∑n
i=k+1 µi(T (uk))

∣∣ = O(n−ε), which is enough to
conclude for Lemma 19.

By definition of I(1) and I(2), the limits µ(T (uI(j))) are positive, so, using the preceding di-
cussion, we can write N (j)

n = nνn(T (uI(j))) ./ cst ·n and also µn(T (uI(j))) ./ cst, with positive
constants. Using the definition of τ (j)

n we can check that this entails that τ (j)
n ./ cst ·n almost

surely. Using (�γ), by composition we get

W (j)
n = W

τ
(j)
n
· µ

τ
(j)
n

(T (uI(j))) ./ cst ·nγ ,

with a positive constant. Then we write, for j = 1, 2

2n∑
k=n

(w
(j)
k )p =

2n∑
k=n

(w
τ
(j)
k

)p ≤
τ
(j)
2n∑

i=τ
(j)
n

wpi ≤ n
1+(γ−1)p+o(1),

where the last inequality is due to the linear growth of τ (j)
n and the fact that w satisfies (�pγ).

3.2 From the weighted to the unweighted sum.

Now we want to transfer these results of convergence to the Laplace transform of the real profile.
In this aim, we introduce the following quantity, for n ≥ J ,

Xn(z) := n1+φ(z) ·Nn(z)− ez
n−1∑
k=J

Ck(z)Mk(z)

=

n∑
i=1

ez ht(ui) − ez
n−1∑
k=J

(
k∑
i=1

wi
Wk

ez ht(ui)

)
The goal of this subsection is to show that the quantity Xn(z) is negligible as n→∞ compared to
any of the two terms in the difference, for z is contained in some domain. This way we will transfer
the asymptotics that we have proved for Mn(z) and Cn(z) in the last section to asymptotics for
Nn(z), which is the quantity that we want to study in the end.

Recall the definition of z+ and z− in (6). Let us define the domain D to which we refer in the
statement of Proposition 9

D = V ∩ {z ∈ C | 1 + Re(φ(z)) > 0} .

In this way D is a connected domain of C and D ∩ R = (z− , z+). Indeed, recall from Lemma 13
that V ∩R = Iγ = {x ∈ R | 1 + γ(ex − 1− xex) > 0} is an open interval which contains 0 and has
z+ as its right bound. Now just check that {z ∈ R | 1 + Re(φ(z)) > 0} = (z− ,∞) and that z− ∈ Iγ .

For technical reasons, we also introduce

D ′ = (z− , z+)× (0 , 2π),

on which the process (z 7→ Mn(z))n≥J , and hence also (z 7→ Xn(z)n≥J , is well-defined. Let us
further decompose D ′ into a union of open sets

D ′ =
⋃

1<q≤p

D ′q where D ′q = {z ∈ D ′ | g(Re z, q) < 0} .
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Lemma 21. The process (Xn(z))n≥J is a martingale with respect to the filtration generated by
(Tn)n≥1. Furthermore, for all q ∈ (1 , p],

E [|X2n(z)−Xn(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
.

Proof. This process is of course (σ(Tn))-adapted and integrable. For the martingale property we
compute

E [Xn+1(z) | Tn] = E
[
Xn(z)− ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣ Tn]
= Xn(z)− ezCn(z)Mn(z) + ez

n∑
i=1

wi
Wn

ez ht(ui) = Xn(z).

For z ∈ E and q ∈ (1 , p], we make the following computation, using Lemma 11 and Lemma 15,

E [|Xn+1(z)−Xn(z)|q] = E
[∣∣∣−ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣q]
≤ 2q ·

(
eqz|Cn(z)|qE [|Mn(z)|q] + eqRe zE

[
n∑
i=1

wi
Wn

eht(ui)qRe z

])
,

= OE

(
nqReφ(z)+0∨g(z,q)+oE (1)

)
+OE

(
nφ(qRe z)

)
= OE

(
nqReφ(z)∨(qReφ(z)+g(z,q))∨φ(qRe z)+oE (1)

)
and the last exponent reduces to qReφ(z) ∨ φ(qRe z) because (qReφ(z) + g(z, q)) = φ(qRe z) +

1− q < φ(qRe z). Hence, using Lemma 33

E [|X2n(z)−Xn(z)|q] ≤ 2q
2n∑
i=n

E [|Xi+1(z)−Xi(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
,

which finishes the proof of the lemma.

Lemma 22. The following holds.

(i) For all compact K ⊂ D there exists ε(K) > 0 such that almost surely

n−(1+Reφ(z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

(ii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that

n−(1+φ(Re z)) ·

∣∣∣∣∣
n−1∑
i=J

Ci(z)Mi(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)
(iii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that almost surely

n−(1+φ(Re z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

Proof. For the first one, for any q ∈ (1 , p] we can apply Lemma 34 on the domain Vq ∩
{z ∈ C | 1 + Re(φ(z)) > 0} with α(z) = 1 + Re(φ(z)) > 0 and δ(z) = min(q − 1,−g(z, q)) > 0,
thanks to Lemma 21. Then using the compactness property, (i) is true for every compact K ⊂ D .

Let us prove point (ii). For any q ∈ (1 , p], on the domain D ′q we have E [|M2n(z)−Mn(z)|q] =

OD′

(
n

(1−q)∨g(z,q)+oD′q
(1)
)
and

g(z, q) = q(φ(Re z)− Reφ(z))︸ ︷︷ ︸
>0

+ g(Re z, q)︸ ︷︷ ︸
<0

.

Applying Lemma 34 for the martingale (z 7→ Mn(z))n≥J on any compact K ⊂ D ′q with α(z) =

φ(Re z)− Reφ(z) > 0 and δ(z) = min(−1 + q + q(φ(Re z)− Re(φ(z))),−g(Re z, q)) > 0 yields:

n−φ(Re z)+Reφ(z) ·Mn(z) = OK

(
n−ε(K)

)
.
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Using the estimates of Lemma 11, we have |Cn(z)| = OK
(
nReφ(z)

)
, and so |Ci(z)Mi(z)| =

OK
(
iφ(Re z)−ε(K)

)
. Hence

∑n−1
i=J |Ci(z)Mi(z)| = OK

(
n0∨(1+φ(Re z)−ε(K))

)
.

For the last point, we use Lemma 34 on D ′q for the martingale (z 7→ Xn(z))n≥J with α(z) =

1 + φ(Re z) > 0 and δ(z) = min(−1 + q + q(φ(Re z)− Re(φ(z))),−g(Re z, q)).

In order to conclude, we will also need the following lemma, which is a direct consequence of
Lemma 11.

Lemma 23. For any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, there exists ε(K) such that∣∣∣∣∣n−(1+φ(z)) ·
n−1∑
i=J

Ci(z)−
ec(z)

1 + φ(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)
Proof. On any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, using Lemma 11 we write

Cn(z) = ec(z) · nφ(z) · (1 +OK
(
n−ε

)
),

so that

n−1∑
i=1

Ci(z) = ec(z) ·
n−1∑
i=1

iφ(z) + ec(z) ·
n−1∑
i=1

iφ(z) ·OK
(
i−ε
)

=
ec(z)n1+φ(z)

1 + φ(z)
· (1 +OK

(
n−1

)
) +OK

(
n1+φ(z)−ε(K)

)
,

where in the second line, we use the fact that infz∈K(1 + Reφ(z)) > 0, and we define ε(K) :=

ε ∧ infz∈K(1 + Reφ(z)). This proves the lemma.

We can now prove Proposition 9.

Proof of Proposition 9. Let us start by proving simultaneously that N∞(z) = ez+c(z)

1+φ(z)M∞(z) and
both point (i) and (ii) of the proposition. For K ⊂ D compact and z ∈ K, we write∣∣∣∣Nn(z)− ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣ ≤ ∣∣∣n−(1+φ(z))Xn(z)
∣∣∣+

∣∣∣∣∣n−(1+φ(z))ez
n∑
i=J

Ci(z)Mi(z)−
ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣∣
The first term is OK

(
n−ε(K)

)
thanks to Lemma 22(i). We bound the second one by the following

quantity

|M∞(z)| · |ez| ·

∣∣∣∣∣n−(1+φ(z)) ·
n∑
i=J

Ci(z)−
ec(z)

(1 + φ(z))

∣∣∣∣∣︸ ︷︷ ︸
OK(n−ε(K))

+ n−(1+Reφ(z)) · |ez| ·
n−1∑
i=J

|Ci(z)| · |Mi(z)−M∞(z)|︸ ︷︷ ︸
OK(iReφ(z)−ε(K))

.

We then use respectively Lemma 23 and then Lemma 11 together with Proposition 14 to prove that
the first and the second term of the last display are OK

(
n−ε(K)

)
. The limiting function N∞(z) is

analytic as a uniform limit of analytic functions and has almost surely no zero on (z− , z+) because
of Lemma 18. For (iii), let us prove the stronger statement: for any compact set K ⊂ (z− , z+) and
0 < a < π, there exists ε(K, a) > 0 such that almost surely,

sup
x∈K

sup
a≤η≤π

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ = O
(
n−ε(K,a)

)
.

For this, we write

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ ≤ n−(1+φ(x))|Xn(x+ iη)|+ n−(1+φ(x))

∣∣∣∣∣
n−1∑
i=J

Ci(x+ iη)Mi(x+ iη)

∣∣∣∣∣.
We apply points (ii) and (iii) of Lemma 22 to the compact K× [a , π] and get the desired bound.
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3.3 Height of the tree

In this section, we study the behaviour of the height ht(Tn) of the tree Tn, which is defined as the
maximal height of the vertices of Tn, i.e.

ht(Tn) = max
1≤k≤n

ht(uk).

We start by showing that under the assumption (�pγ) we have the convergence (9). Then, for the

sake of completeness, we also study the simpler case where log n = o
(∑n

i=1
wi
Wi

)
.

One key argument in our proofs is the following equality for the annealed moment generating
function of the height of uk, for any fixed k ≥ 1, which can be seen as a corollary of Lemma 10

E
[
ez ht(uk)

]
= ez ·

k−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
. (32)

Some elementary computations using the Chernoff bound and the last display yield the following
lemma.

Lemma 24. Suppose that the sequence of weights w satisfies

lim sup
n→∞

1

log n

n∑
i=2

wi
Wi
≤ u ∈ R∗+.

Then almost surely we have

lim sup
n→∞

ht(Tn)

log n
≤ uez+(u),

where z+(u) is the unique positive root of u(zez − ez + 1)− 1 = 0.

Proof. Using the expression (32) for the moment generating function of ht(un) we get, for any
z > 0

E
[
ez ht(un)

]
= ez ·

n−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
≤ exp

1 + (ez − 1)

n−1∑
j=2

wj
Wj


≤ exp ((log n)(u(ez − 1) + o(1))) ,

where we use the inequality (1+x) ≤ ex and the assumption on w. Then, for any z > 0 and n ≥ 1,

P (ht(un) ≥ uez log n) ≤ e−uze
z lognE

[
ez ht(un)

]
≤ exp (−u log n(zez − ez + 1 + o(1)))

If we take z > 0 such that u(zez−ez+1) > 1 then the right-hand-side is summable and hence using
the Borel-Cantelli lemma shows that for all n large enough, we have ht(un) ≤ uez log n. Letting
z ↘ z+(u), we get the result.

Let us prove the last claim of Theorem 3. Here we suppose that the weight sequence w satisfies
(�pγ) for some γ > 0 and some p ∈ (1 , 2].

Proof of Theorem 3. Recall the asymptotics (8) in Theorem 3. It ensures that there almost surely
exists vertices at height γez log n, for any z ∈ (z− , z+). Hence the height of the tree Tn satisfies

lim inf
n→∞

ht(Tn)

log n
≥ γez+ .

For the limsup, we use Lemma 25 with u = γ (this is justified by Lemma 12), which yields
lim supn→∞

ht(Tn)
logn ≥ γe

z+ .

To finish the section, we state a proposition.
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Proposition 25. Let f(n) :=
∑n
i=2

wi
Wi

. If log n = o(f(n)) then we have the almost sure conver-
gence

lim
n→∞

ht(Tn)

f(n)
= 1.

Proof. For the upper-bound, we proceed as above. For any ε > 0 and z > 0:

P (ht(un) ≥ (1 + ε)f(n)) ≤ exp(−z(1 + ε)f(n))E
[
ez ht(un)

]
≤ exp ((ez − 1)f(n− 1)− (1 + ε)zf(n))

≤ exp (f(n) [ez − 1− (1 + ε)z + o(1)])

If we choose z > 0 close enough to 0 then the last display is summable, due to our assumption on
f . This implies using the Borel-Cantelli lemma that lim supn→∞

ht(Tn)
f(n) ≤ 1 + ε almost surely, for

any fixed ε > 0. Then we let ε↘ 0.
For the lower-bound, we use the fact that we can construct jointly with (Tn)n≥1 a sequence

(Dn)n≥1 such that ∀n ≥ 1, Dn ∈ Tn, increasing for the genealogical order and such that, as a
sequence, we have

(ht(Dn))n≥1
(d)
=

(
n∑
i=2

1{
Ui≤

wi
Wi

}
)
n≥1

with (Ui)i≥2 i.i.d. uniform random variables. See for example [10, Section 2.2] or in our setting [20,
Corollary 8]. Using the law of large numbers, we get that almost surely ht(Dn) ∼

∑n
i=2

wi
Wi

= f(n)

as n→∞. Since ht(Tn) ≥ ht(Dn), this proves the lower-bound and finishes the proof.

4 Preferential attachment trees are weighted recursive trees

In this section, we study preferential attachment trees with initial fitnesses a as defined in the
introduction. First, in Section 4.1, we prove Theorem 1 which allows us to see them as weighted
random trees WRT(wa) for some random weight sequence wa. Then in Section 4.2 we prove
Proposition 2 which relates the asymptotic behaviour of wa to the behaviour of a. Finally, in
Section 4.3 we prove Proposition 27, which ensures that the sequence ma obtained as the scaling
limit of the degrees can be expressed as the increments of a Markov chain.

4.1 Coupling with a sequence of Pólya urns

Here we fix an arbitrary sequence a such that a1 > −1 and ∀n ≥ 2, an ≥ 0. Let us recall the
notation, for n ≥ 0,

An :=

n∑
i=1

ai,

with the convention that A0 = 0. We consider a sequence of trees (Pn)n≥1 evolving according to the
distribution PA(a) and we want to prove Theorem 1, namely that there exists a random sequence
of weights wa for which the sequence evolves as a WRT(wa). The proof uses a decomposition of
this process into an infinite number of Pólya urns. This is very close to what is used in the proofs
of [2, Theorem 2.1] or [5, Section 1.2] in similar settings. The novelty of our approach is to express
this result using weighted random trees, since it allows us to apply all the results developed in the
preceding section.

Pólya urns. For us, a Pólya urn process (Urn(n))n≥0 = (X(n),Total(n))n≥0 is a Markov chain
on E :=

{
(x, z) ∈ R+ × R∗+

∣∣ x ≤ z} with transition probabilities given by the matrix P where for
all (x, z) ∈ E,

P ((x, z), (x+ 1, z + 1)) =
x

z
and P ((x, z), (x, z + 1)) =

z − x
z

. (33)
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The quantities X(n) and Total(n) represent respectively the number of red balls and the total
number of balls at time n in a urn containing red and blacks balls, in which we add a ball at each
time, the colour of which is chosen at random proportionally to the current proportion in the urn.
Starting at time 0 from the state (a, a+ b), i.e. with a red balls and b black balls, it is well-known
that the sequence (∆X(n))n≥1 = (X(n)−X(n− 1))n≥1 of random variables is exchangeable, and
an application of de Finetti’s representation theorem ensures that it has the same distribution as
i.i.d. samples of Bernoulli random variables with a random parameter β, which has distribution
Beta(a, b), where we use the convention that Beta(a, b) = δ1 if b = 0.

Nested structure of urns in the tree. For all k ≥ 1 we define the following process in
n ≥ k

Wk(n) := Ak +

k∑
i=1

deg+
Pn

(ui),

the "total fitness" of the vertices {u1, u2, . . . , uk}, for which we remark that for any k ≥ 1 we have

Wk(k) = Ak + k − 1 and Wk(k + 1) = Ak + k. (34)

Imagine that Pn is constructed and we add a new vertex un+1 to the tree. We choose its parent in
a downward sequential way:

• we first determine whether the parent is un, this happens with probability

an + deg+
Pn

(un)

Wn(n)
= 1− Wn−1(n)

Wn(n)
,

• then with the complementary probability Wn−1(n)
Wn(n) it is not, so conditionally on this we deter-

mine whether it is un−1, this happens with (conditional) probability

an−1 + deg+
Pn

(un−1)

Wn−1(n)
= 1− Wn−2(n)

Wn−1(n)
.

• then with the complementary probability Wn−2(n)
Wn−1(n) it is not, etc... We continue this process

until we stop at some ui.

Now let us fix k ≥ 1 and introduce the following time-change: for all N ≥ 0, we let

θk(N) := inf {n ≥ k + 1 |Wk+1(n) = Ak+1 + k +N} , (35)

be the N -th time that a vertex in attached on one of the vertices {u1, . . . , uk+1}. Remark that it
can be the case that θk(N) is not defined for large N , if there is only a finite number of vertices
attaching to {u1, . . . , uk+1}. Let us ignore this possible problem for the moment, and only consider
bounded sequences a, for which this will almost surely not happen. In this case for all N ≥ 0 we
set

Urnk(N) := (Wk(θk(N)),Wk+1(θk(N))) = (Wk(θk(N)), Ak+1 + k +N). (36)

Now, the two following facts are the key observations in order to prove Theorem 1:

(i) for all k ≥ 1, the process Urnk = (Urnk(N))N≥0 has the distribution of a Pólya urn starting
from the state (Ak + k,Ak+1 + k),

(ii) those process are jointly independent for k ≥ 1.

Point (i) already follows from the discussion above. A moment of thought shows that (ii) holds as
well: of course the processes (Wk(n),Wk+1(n))n≥k+1 for different k are not independent at all but
the point is that they only interact through the time-changes (θk(·), k ≥ 1).
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Reversing the construction and using the exchangeability. Using de Finetti’s the-
orem and points (i) and (ii), each of the processes Urnk can be produced by sampling βk ∼
Beta(Ak + k, ak+1) and adding a red ball at each step independently with probability βk and
a black ball with probability 1− βk. This is of course done independently for different k ≥ 1.

In terms of our downward sequential procedure defined above for finding the parent of each
newcomer, it amounts to saying that each time that we have to choose between attaching to uk+1

or attach to a vertex among {u1, . . . , uk}, the former is chosen with probability 1−βk and the latter
with probability βk. Let us verify that the law of (Pn)n≥1 conditionally on the sequence (βk)k≥1

can indeed be expressed as WRT with the random sequence of weights wa defined in Theorem 1,
which is defined from the sequence (βk)k≥1 as,

∀n ≥ 1, Wa
n =

n−1∏
i=1

β−1
i and wa

n = Wa
n −Wa

n−1,

with the convention that Wa
1 = 1 and Wa

0 = 0. Let us reason conditionally on the sequence (βk)k≥1

(or equivalently the sequence (wa
n)n≥1). When determining the parent of un+1, we successively try

to attach to un, un−1, . . . until we stop at some uk. Using the independence, we get

P (Jn+1 = k | Pn, β1, β2, . . . ) = βn−1βn−2 . . . βk(1− βk−1) =
Wa
k −Wa

k−1

Wa
n

=
wa
k

Wa
n

.

Remark that the above construction is still valid without the assumption that the sequence a is
bounded, and hence Theorem 1 is proved.

4.2 Proof of Proposition 2

Let (Wa
n)n≥1 be the random sequence of cumulated weights defined Theorem 1, whose distribution

depends on a sequence a of initial fitnesses, and is expressed using a sequence of independent
Beta-distributed random variables (βk)k≥1. We are going to prove Proposition 2, which relates the
growth of (Wa

n)n≥1 to the one of (An)n≥1. In this proof, we omit the subscript a for readability.

Proof of Proposition 2. As in [15], we introduce

Xn :=

n−1∏
i=1

βi
E [βi]

.

It is easy to see that Xn is a positive martingale, hence it almost surely converges to a limit X∞
as n → ∞. Now, using the fact that the (βn)n≥1 are independent and that the expectation of a
random variable with Beta(a, b) distribution distribution has q-th moment, for q ≥ 0,

Γ(a+ q)Γ(a+ b)

Γ(a)Γ(a+ b+ q)
=

q−1∏
k=0

a+ k

a+ b+ k
, (37)

we can compute

n−1∏
i=1

E [βpi ] =

n−1∏
i=1

(
p−1∏
k=0

i+Ai + k

i+Ai+1 + k

)
=

p−1∏
k=0

(
1 +A1 + k

n+An + k − 1

n−1∏
i=2

i+Ai + k

i+Ai + k − 1

)

=

(
p−1∏
k=0

1 +A1 + k

n+An + k − 1

)
·
p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
Now from our hypotheses on the sequence (An), we have for all k ∈ J0 , p− 1K

n+An + k − 1 =
n→∞

(c+ 1)n+O
(
n1−ε) and so

1

n+An + k − 1
=

n→∞

1

(c+ 1)n
+O

(
n−1−ε) .
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Hence
p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
=

p−1∏
k=0

n−1∏
i=2

(
1 +

1

(c+ 1)n
+O

(
n−1−ε))

= exp

(
p−1∑
k=0

n∑
i=2

(
1

(c+ 1)n
+O

(
n−1−ε)))

= exp

(
p

c+ 1
log n+ cst +O

(
n−ε

))
= cst ·n

p
c+1
(
1 +O

(
n−ε

))
.

In the end, since
(∏p−1

k=0
1+A1+k

n+An+k−1

)
= cst ·

∏p−1
k=0

1
(c+1)n+O(n1−ε) = cst ·n−p · (1 +O(n−ε)), we get

n−1∏
i=1

E [βpi ] = Cp · n−p+p/(c+1) · (1 +O
(
n−ε

)
) (38)

where Cp is a positive constant which depends on the sequence a and p. This entails that, under our
assumptions, for any p ≥ 1, we have E [Xp

n]→ Cp/C
p
1 as n→∞, which shows that this martingale

is bounded in Lp for all p ≥ 1 and hence it is uniformly integrable. Consequently, it converges a.s.
and in Lp to a limit random variable X∞, with moments determined by

∀p ≥ 1, E [Xp
∞] =

Cp
Cp1

. (39)

Furthermore, we have

E
[
(Xn+1 −Xn)2

]
= E

[
X2
n

(
βn
E [βn]

− 1

)2
]
≤ C2 ·

Var (βn)

E [βn]
2 . (40)

Since βn ∼ Beta(n+An, an+1), we get:

E [βn] =
n+An
n+An+1

→ 1 and Var (βn) =
an+1(n+An)

(n+An+1)2(n+An+1 + 1)
= O

(
n−1−ε) . (41)

Using equation (40), equation (41), Lemma 33 and summing over n ≤ k ≤ 2n − 1 we get that
E
[
(X2n −Xn)2

]
= O(n−ε). Using Lemma 34, we get, for some ε > 0,

|Xn −X∞| = O
(
n−ε

)
.

Since βi > 0 almost surely for every i ≥ 1, the event {X∞ = 0} is a tail event for the filtration
generated by the βi and has probability 0 or 1. In the end, it has probability 0 because E [X∞] = 1.
We deduce that

W−1
n =

n−1∏
i=1

βi = Xn ·
n−1∏
i=1

E [βi]

= X∞ · (1 +O
(
n−ε

)
) · C1 · n−1+ 1

c+1 · (1 +O
(
n−ε

)
)

= C1 ·X∞ · n−1+ 1
c+1 · (1 +O

(
n−ε

)
).

Hence, we have,

Wn = Z · n
c

(c+1) · (1 +O
(
n−ε

)
) with Z :=

1

X∞ · C1
. (42)

Whenever an ≤ nc
′+o(1) as n → ∞, we can show the following (we postpone the proof to the end

of the section)

Lemma 26. For any δ > 0, we have

P
(

1− βk > k−1+c′+δ
)
≤ exp

(
−kδ+o(1)

)
.
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Since the last quantity is summable in k we can use the Borel-Cantelli lemma (and a sequence
of δ going to 0) to show that almost surely 1− βk ≤ k−1+c′+o(1) as k →∞. This finishes to prove
the proposition, because we can write

wk = Wk −Wk−1 = Wk · (1− βk−1) ≤ kc
′−1/(c+1)+o(1).

We finish by giving a proof of Lemma 26.

Proof of Lemma 26. Let x > 0 and y > 1 and let β be a random variable with Beta(x, y) distribu-
tion. Then for any z ∈ [0 , 1] we have, using the explicit expression of the density of β:

P (β > z) =
Γ (x+ y)

Γ (x) Γ (y)

∫ 1

z

ux−1(1− u)y−1 du

≤ Γ (x+ y)

Γ (x) Γ (y)
exp (−(y − 1)z)

∫ 1

z

ux−1 du

≤ Γ (x+ y)

Γ (x+ 1) Γ (y)
· exp (−(y − 1)z) .

For any two sequences (xn) and (yn) simultaneously going to infinity with xn = o(yn), we have the
following bound using Stirling’s approximation:

log

(
Γ (xn + yn)

Γ (xn + 1) Γ (yn)

)
∼

n→∞
xn log(yn).

Applying the above computations for (1 − βn) ∼ Beta (an+1, An + n), and using the assumptions
on the sequence a, we get

logP
(

1− βn > n−1+c′+δ
)
≤ −nδ+o(1),

which is what we wanted.

4.3 The distribution of the limiting sequence

Recall the convergence of the degree sequence stated in Proposition 5. Thanks to what precedes, we
know that if some sequence a satisfies (Hc) then the associated random sequence (wa

n)n≥1 satisfies
Wa
n ∼
n→∞

Z · nc/(c+1) and so in this setting the convergence of degrees can be stated as

n−
1
c+1 · (deg+

Pn
(u1),deg+

Pn
(u2), . . . ) −→

n→∞

(c+ 1)

Z
· (wa

1 ,w
a
2 , . . . ).

where (ma
n)n≥1 = c+1

Z ·(w
a
n)n≥1. Remark that the random variable Z depends on the whole sequence

(βn)n≥1 used in the definition of (Wa
n)n≥1, so the sequence (Ma

n)n≥1 can not be seen as an iterated
product of independent random variables, which was the case for (Wa

n)n≥1. We will prove that this
new process still has some nice properties.

Proposition 27. For any sequence a that satisfies the condition (Hc), the sequence (Ma
k)k≥1 is

a (possibly time-inhomogeneous) Markov chain such that for all k ≥ 1, Ma
k+1 is independent of

β1, β2, . . . , βk. The fact that for all k ≥ 1 we have Ma
k = βk ·Ma

k+1 with βk ∼ Beta(Ak + k, ak+1)

independent of Ma
k+1 characterises the backward transitions of the chain.

Proof. We follow the same steps as [15, Lemma 1.1]. Let us fix a sequence a that satisfies the
hypotheses of the proposition and make the dependence on it implicit to ease notation. Recall from
(38) the definition of C1 and from (42) the definition of Z from X∞. We have

M1 = (C1 · (c+ 1) ·X∞) and for k ≥ 2, Mk = M1 ·

(
k−1∏
i=1

βi

)−1

. (43)
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It then follows that we can write, for k ≥ 1,

Mk+1 = C1 · (c+ 1) ·X∞ ·

(
k∏
i=1

βi

)−1

= C1 · (c+ 1) · lim
n→∞

∏n−1
i=k+1 βi∏n−1
i=1 E [βi]

,

which ensures that Mk+1 is independent of β1, β2, ..., βk. The limit in the last equality exists almost
surely thanks to the results of the preceding section.

Now we prove the Markov property of the chain. Let k ≥ 1. Because of the definition of the
chain as a product, the distribution of Mk+1 conditional on the past trajectory M1,M2, . . . ,Mk is
the same as the distribution of Mk+1 conditional on Mk, β1, . . . , βk−1. Since Mk+1 = β−1

k ·Mk and
that βk and Mk are both independent of β1, . . . , βk−1, this conditional distribution corresponds to
the one of Mk+1 conditional on the present state of the chain Mk.

Computing the moments. In some cases where the sequence a is sufficiently regular, we can
compute explicitly every moment of the random variable Ma

k for every k ≥ 1. Indeed, using (39)
and (43) and the independence, we get

E [Mp
k] = E

[(
C1 · (c+ 1) · lim

n→∞

∏n−1
i=k βi∏n−1

i=1 E [βi]

)p]
= Cp1 · (c+ 1)p · lim

n→∞

∏n−1
i=k E [βpi ](∏n−1
i=1 E [βi]

)p
=

(c+ 1)p · Cp∏k−1
i=1 E [βpi ]

. (44)

In general, if the collection (µp)p≥1 of p-th moments of some positive random variable satisfies the
so-called Carleman’s condition:

∑∞
p=1 µ

−1/(2p)
p = ∞, then its distribution is uniquely determined

from those moments.

5 Examples and applications

In this section, we compute the explicit distribution of (Ma
n) for some particular sequences a. We

apply this result to another model of preferential attachment.

5.1 The limit chain for particular sequences a

As stated in the preceding section, we can compute the distribution of Ma
k for some fixed k by the

expression of its moments (44), provided that they satisfy Carleman’s condition. Knowing these
distributions and the backward transitions given in Proposition 27 then characterises the law of
the whole process. For two particular examples, this law has a nice expression.

Proposition 28. In the two following cases, the distribution of the chain (Ma
n) is explicit.

(i) If a is of the form a = (a, b, b, b, . . . ) with a > −1 and b > 0, then the limiting sequence
(Ma

n)n≥1 is a Mittag-Leffler Markov chain MLMC
(

1
b+1 ,

a
b+1

)
.

(ii) If a is of the form a = (a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ) with a > −1 and `,m ∈ N, then

(Ma
n)n≥1 is constant on the interval of the form J1 + k` , (k + 1)`K and the sequence

`
`

m+`

m+ `
· (Na

k)k≥1 =
`

`
m+`

m+ `
· (Ma

(k−1)`+1)k≥1

has the Product Generalised Gamma distribution PGG (a, `,m).

We will prove the two points of this proposition in separate subsections. The proper definitions
of the distributions to which we refer are given along the proof. For the rest of the section, we drop
the superscript a and write (Mn)n≥1.
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5.1.1 Mittag-Leffler Markov chains

Let us study the case where the underlying preferential attachment tree has a sequence of initial
fitnesses a that are of the form (a, b, b, b, . . . ). We start by recalling the definitions of Mittag-Leffler
distributions and Mittag-Leffler Markov chains and introduced in [15], and also studied in [17].

Mittag-Leffler distributions. Let 0 < α < 1 and θ > −α. The generalized Mittag-Leffler
ML(α, θ) distribution has pth moment

Γ(θ)Γ(θ/α+ p)

Γ(θ/α)Γ(θ + pα)
=

Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
(45)

and the collection of p-th moments for p ∈ N uniquely characterizes this distribution.

Mittag-Leffler Markov Chains. For any 0 < α < 1 and θ > −α, we introduce the (a priori)
inhomogenous Markov chain (Mα,θ

n )n≥1, the distribution of which we call the Mittag-Leffler Markov
chain of parameters (α, θ), or MLMC(α, θ). This type of Markov chain was already defined in [15],
for some choice of parameters α and θ. It is a Markov chain such that for any n ≥ 1,

Mα,θ
n ∼ ML (α, θ + n− 1) ,

and the transition probabilities are characterised by the following equality in law:(
Mα,θ
n ,Mα,θ

n+1

)
=
(
Bn ·Mα,θ

n+1,M
α,θ
n+1

)
,

with Bn ∼ Beta
(
θ+k−1
α + 1, 1

α − 1
)
, independent of Mα,θ

n+1. These chains are constructed (for a
some values of θ depending on α) in [15]. In fact, our proof of Proposition 28(i) ensures that these
chains exists for any choice of parameters 0 < α < 1 and θ > −α. Let us mention that the proof
of [15, Lemma 1.1] is still valid for the whole range of parameters 0 < α < 1 and θ > −α, which
proves that these Markov chains are in fact time-homogeneous.

The limiting Markov chain is a Mittag-Leffler. Recall the definition of the sequence
(βk)k≥1 and their respective distributions βk ∼ Beta(Ak + k, ak+1). From our assumptions on the
sequence a we have for all k ≥ 1,

(Ak + k, ak+1) = (1 + a+ (k − 1)b, b).

Proof of Proposition 28 (i). For p ≥ 1, we can make the following computation, using (37), one
change of indices and several times the property of the Gamma function that for any z > 0 we have
Γ (z + 1) = zΓ (z):

n−1∏
i=1

E [βpi ] =

n−1∏
i=1

Γ (1 + a+ p+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i)

Γ (1 + a+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i+ p)

=

n−2∏
i=0

Γ (1 + a+ p+ (b+ 1)i)

Γ (1 + a+ (b+ 1)i)
·
n−1∏
i=1

Γ (a+ (b+ 1)i)

Γ (a+ (b+ 1)i+ p)

=
Γ (1 + a+ p)

Γ (1 + a)
· Γ (a+ (b+ 1)(n− 1))

Γ (a+ (b+ 1)(n− 1) + p)
·
n−2∏
i=1

i(b+ 1) + a+ p

i(b+ 1) + a

=
Γ (1 + a+ p)

Γ (1 + a)
· Γ (a+ (b+ 1)(n− 1))

Γ (a+ (b+ 1)(n− 1) + p)
·

Γ
(
a+p
b+1 + n− 1

)
Γ
(

a
b+1 + n− 1

) · Γ
(

1 + a
b+1

)
Γ
(

1 + a+p
b+1

) . (46)

Using Stirling formula, we can then compute the numbers Cp introduced in (38),

Cp = (b+ 1)−p ·
Γ (1 + a+ p) Γ

(
1 + a

b+1

)
Γ (1 + a) Γ

(
1 + a+p

b+1

) . (47)
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Using (44), the moments of Mk are given, for any p ∈ N by the formula:

E [Mp
k] =

(b+ 1)p · Cp∏k−1
i=1 E [βpi ]

=
(47),(46)

Γ
(

a
b+1 + k − 1

)
Γ (a+ (b+ 1)(k − 1) + p)

Γ (a+ (b+ 1)(k − 1)) Γ
(
a+p
b+1 + k − 1

)
These moments identify using (45) the distribution of Mk for all k ≥ 1,

Mk ∼ ML

(
1

b+ 1
,

a

b+ 1
+ k − 1

)
.

From this, and the form of the backward transitions, we can identify (Mk)k≥1 as having a distri-
bution MLMC

(
1
b+1 ,

a
b+1

)
.

5.1.2 Products of generalised Gamma.

The following paragraphs aim at proving Proposition 28(ii). In the first paragraph we define the
family of distributions of PGG-process. In the second one we prove that the distribution of (Mk)k≥1

belongs to this family whenever the sequence a is of the form assumed in Proposition 28(ii).

Construction of a PGG(a, `,m)-process. For a > −1 a real number and `,m ≥ 1 integers,
we define the following. Let

{
Z

(q)
i

∣∣∣ 0 ≤ q ≤ m− 1, i ≥ 1
}

be a family of independent variables
with the following distribution: for all 0 ≤ q ≤ m− 1,

Z
(q)
1 ∼ Gamma

(
`+ a+ q

`+m
, 1

)
and for i ≥ 2, Z

(q)
i ∼ Gamma(1, 1),

where, for any k, θ > 0, the distribution Gamma(k, θ) has density x 7→ xk−1e−
x
θ

θΓ(k) 1{x>0}. Then for
all k ≥ 1 we define Gk as,

Gk :=

m−1∏
q=0

(
k∑
i=1

Z
(q)
i

) 1
m+`

. (48)

We say that the process (Gk)k≥1 has the distribution Product of Generalised Gamma with param-
eters (a, `,m) which we denote PGG(a, `,m).

The limiting chain is a PGG. Fix ` ≥ 1 and m ≥ 1 some integers and suppose that the
sequence a has the following form,

a = a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ,

meaning that for all j ≥ 0 we have a`·j+1 = m, and an = 0 whenever n− 1 is not a multiple of `,
and a1 = a > −1.

Proof of Proposition 28 (ii). For all j ≥ 1 we let β′j := β`·j in our preceding notation. Of course
βi = 1 whenever i is not a multiple of `, hence the sequence (Mn)n≥1 is constant on intervals of
the type Jk`+ 1 , (k+ 1)`K. Recall that for all k ≥ 1 we denote Nk = M`·(k−1)+1. For any j ≥ 1, we
have

β′j ∼ Beta (a+ `+ (j − 1) · (m+ `),m) .

For any j ≥ 1, p ≥ 1, we use the moments (37) of a Beta random variable and a telescoping
argument to write

E
[
(β′j)

p
]

=

p−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) +m+ q
=

m−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) + p+ q
.
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Then we compute the following, using the properties of the Gamma function.

n−1∏
i=1

E [(βi)
p
] =

bn−1
` c∏

j=1

E
[(
β′j
)p]

=

bn−1
` c∏

j=1

m−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) + p+ q

=

m−1∏
q=0

Γ
(
bn−1

` c+ q+a+`
m+`

)
Γ
(
q+a+`+p
m+`

)
Γ
(
bn−1

` c+ q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .
Using Stirling’s approximation we get:

n−1∏
i=1

E [(βi)
p
] ∼
n→∞

n−
pm
m+` · `

pm
m+` ·

m−1∏
q=0

Γ
(
q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .

Hence, recalling the definition of Cp in (38), we get

Cp = `
pm
m+` ·

m−1∏
q=0

Γ
(
q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .

Then using (44) with c = m/`,

E [Npk] = E
[
Mp

1+(k−1)`

]
=

(c+ 1)p · Cp∏(k−1)`
i=1 E [βpi ]

=

(
m+ `

`

)p
· `

pm
m+` ·

m−1∏
q=0

Γ
(
k − 1 + q+a+`+p

m+`

)
Γ
(
k − 1 + q+a+`

m+`

)
=
(

(m+ `) · (`
−`
m+` )

)p
·
m−1∏
q=0

Γ
(
k − 1 + q+a+`

m+` + p
m+`

)
Γ
(
k − 1 + q+a+`

m+`

) .

Using the last display and the fact that random variable with distribution Gamma(x, 1) has p-th

moment equal to Γ(x+p)
Γ(p) , we can identify the distribution of the marginals `

`
m+`

m+` ·Nk for any k ≥ 1

with the ones of the process described in (48). The identification of the distribution of whole process
`

`
m+`

m+` · (Nk)k≥1 with a PGG(a, `,m) is then obtained by checking that their backward transitions
are the same.

Remark 29. For m = a = 1, the process (Gk)k≥1 has exactly the distribution of the points of a
Poisson process on R+ with intensity (`+ 1)t`dt, listed in increasing order.

Remark 30. The distribution of G1 coincides with the one proved in [1] for the limiting proportion
of some periodic Pólya urn, which is not a surprise because the degree of the first vertex in the tree
follows exactly the urn dynamic that they study (with completely different tools).

5.2 Applications to some other models of preferential attachment

Let us present here another model of preferential attachment which appears in the literature, for
example in [21]. This model does not produce a tree as ours does, but we can couple them in such
a way that some of their features coincide. We only focus on one particular model of graph here
but the method presented here can adapt to other similar models.

A model of (m,α)-preferential attachment Let S be a non-empty graph, with vertex-set
{v(1)

1 , . . . , v
(k)
1 } which have degrees (d1, . . . dk), and m ≥ 2 an integer and α > −m a real number

such that α + di > 0 for all 1 ≤ i ≤ k. The model is then the following: we let G1 = S. Then, at
any time n ≥ 1, the graph Gn+1 is constructed from the graph Gn by:

• adding a new vertex labelled vn+1 with m outgoing edges,
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• choosing sequentially to which other vertex each of these edges are pointed, each vertex
being chosen with probability proportional to α plus its degree (the degree of the vertices are
updated after each edge-creation).

The degree of a vertex in a graph refers in this section to the number of edges incident to it. Here
the growth procedure in fact produces multigraphs, in which it is possible for two vertices to be
connected to each other by more than one edge. In this case, all those edges contribute in the count
of their degree.

We can couple this model to a preferential attachment tree with sequence of initial fitnesses a
defined as:

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0 . . . ),

where w(S) := d1 + d2 + · · ·+ dk + kα.
Indeed, we can construct (Tn) with distribution PA(a). Then, for any n ≥ 1, consider the tree

T1+m(n−1) and for all 2 ≤ i ≤ n, merge together each vertex with initial fitness m + α together
with the m− 1 vertices with fitness 0 that arrived just before it. If G1 only contains one vertex, it
is immediate that the obtained sequence of graphs has exactly the same distribution as (Gn)n≥1.
For general seed graphs S, we can still use the same construction and the obtained sequence of
graphs has the same evolution as some sequence (G̃n)n≥1 which would be obtained from (Gn)n≥1

by merging all the vertices {v(1)
1 , . . . , v

(k)
1 } into a unique vertex v1.

Note that a similar construction would also be possible if the initial degrees of the vertices
v2, v3, . . . were given by a sequence of integers (m2,m3, . . . ) instead of all being equal to some
constant value m. This is for example the case in the model studied in [11], where the initial
degrees are random.

We have the following convergence for degrees of vertices in the graph, as n→∞.

Proposition 31. The following convergence holds almost surely in any `p with p > 2 + α
m :

n−
1

2+α/m (degGn(v
(1)
1 ),degGn(v

(k)
1 ), . . . ,degGn(v

(k)
1 ),degGn(v2),degGn(v3), . . . )

−→
n→∞

(N1 ·B(1),N1 ·B(2), . . .N1 ·B(k),N2 − N1,N3 − N2, . . . ),

where

(B(1), B(2), . . . B(k)) ∼ Dir(d1 + α, d2 + α, . . . , dk + α),

and the process (Nn)n≥1 is independent of (B(1), B(2), . . . B(k)).
Furthermore, whenever α ∈ Z or m = 1 then the distribution of (Nn)n≥1 is explicit and given

by:

• m
−2m
2m+α

2m+α · (Nn)n≥1 ∼ PGG(w(S),m,m+ α) if α ∈ Z,

• (Nn)n≥1 ∼ MLMC
(

1
2+α ,

w(S)
2+α

)
if m = 1.

This result strengthens the one of [21, Theorem 1, Theorem 2 and Proposition 1] which cor-
responds (up to some definition convention) to the case α = 1 − m. We emphasize that the
convergence here is almost sure in an `p space.

Proof of Proposition 31. Using the coupling argument, we know that the sequence

((degGn(v
(1)
1 )− d1) + (degGn(v

(2)
1 )− d2) + · · ·+ (degGn(v

(k)
1 )− dk), (degGn(v2)−m), (degGn(v3)−m), . . . )

evolves as the out-degrees of the vertices in order of apparition in a preferential attachment tree
PA(a) with sequence

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, . . . ).
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Using Theorem 1, Proposition 2 and Proposition 5 we get

n−
1

2+α/m (degGn(v1) + degGn(v2) · · ·+ degGn(vk),degGn(u2),degGn(u3), . . . )

−→
n→∞

(N1,N2 − N1,N3 − N2, . . . ),

almost surely in `p for all p > 2 + α
m , for some random sequence (Nk)k≥1. In the case α ∈ Z or

m = 1, Proposition 28 identifies the distribution of the limiting sequence. Last, the convergence
of 1

degGn
(v

(1)
1 )+degGn

(v
(2)
1 )+···+degGn

(v
(k)
1 )

(degGn(v
(1)
1 ),degGn(v

(2)
1 ), . . . ,degGn(v

(k)
1 )) just follows from the

classical result of convergence for the proportion of balls in a Pólya urn.

A Technical proofs and results

This appendix contains the proofs of technical results that are used throughout this paper. Let
start by stating a useful conditional version of the Borel-Cantelli lemma.

Lemma 32. Let (Fn) be a filtration and let (Bn)n≥1 be a sequence of events adapted to this
filtration. For all n ≥ 1, let pn := P (Bn | Fn−1). We have∑n

i=1 1Bi∑n
i=1 pi

→
n→∞

1 a.s. on the event

{ ∞∑
i=1

pi =∞

}

and also

n∑
i=1

1Bi converges a.s. on the event

{ ∞∑
i=1

pi <∞

}
.

Proof. The first convergence is the content of Theorem 5.4.11 and the second one is an application
of Theorem 5.4.9, both taken from [14].

The following lemma is a rewriting of [3, Lemma 1]. We provide the proof for completeness.

Lemma 33 ("Biggins’ lemma"). Let (Mn)n≥1 be a complex-valued martingale with finite q-th
moment for some q ∈ [1 , 2]. Then for every n ≥ 1 we have

E [|Mn+1|q] ≤ E [|Mn|q] + 2q · E [|Mn+1 −Mn|q] .

Proof. Let Xn+1 := Mn+1 −Mn and let X ′n+1 be a random variable such that conditionally on
(M1, . . . ,Mn) the random variable X ′n+1 is independent of, and has the same distribution as Xn+1.
Then

E [|Mn+1|q] = E
[∣∣∣∣E [Mn+1 −X ′n+1

∣∣M1, . . .Mn+1

]∣∣∣∣q]
≤ E

[∣∣Mn+1 −X ′n+1

∣∣q]
= E

[∣∣Mn +Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + E

[∣∣Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + 2q · E [|Xn+1|q] ,

where the first equality comes from the fact that E
[
X ′n+1

∣∣M1, . . .Mn+1

]
= 0. The first inequality

is the one of Jensen for conditional expectation, applied to the convex function z 7→ |z|q. The second
inequality is due to Clarkson, see [26, Lemma 1], and can be applied because the distribution of
Xn+1 −X ′n+1 conditional on Mn is symmetric and 1 ≤ q ≤ 2. The last inequality comes from the
triangle inequality for the Lq-norm.

Let us state another result about martingales, which we use numerous times throughout the
paper. Recall our uniform big-O and small-o notation, introduced in (22).
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Lemma 34. Suppose that (z 7→ Zn(z))n≥1 is a sequence of analytic functions on some open domain
O ⊂ C, adapted to some filtration (Gn). Suppose that for every z ∈ O, the sequence (Zn(z))n≥1 is
a martingale with respect to the filtration (Gn). If there exists a parameters q > 1 and continuous
functions α : O → R and δ : O → R∗+ such that for all n ≥ 1 we have

E [|Z2n(z)− Zn(z)|q] = OO

(
nα(z)q−δ(z)

)
,

then for any compact K ⊂ O, there exists ε(K) > 0 such that

(i) if α > 0 on O we have n−α(z) · |Zn(z)| = OK
(
n−ε(K)

)
almost surely and also in expectation,

(ii) if α ≤ 0 on O, the almost sure limit Z∞(z) exists for z ∈ O and we have n−α(z) ·
|Zn(z)− Z∞(z)| = OK

(
n−ε(K)

)
almost surely and also in expectation.

Proof of Lemma 34. By compactness, it is sufficient to prove the result for a small disk around
each x ∈ K. Since O is an open set, let ρ > 0 be such that D(x, 2ρ) ⊂ O, where D(x, 2ρ) is the
closed disk in the complex plane with centre x and radius 2ρ. We denote

α = inf
D(x,2ρ)

α, α = sup
D(x,2ρ)

α, δ = inf
D(x,2ρ)

δ,

and choose ρ small enough so that α − α + 1
q δ > 0. Then if we let ξ : [0 , 2π] → C such that

ξ(t) = x+ 2ρeit, we have for any n and m, using Cauchy formula

sup
z∈D(x,ρ)

|Zn(z)− Zm(z)| ≤ π−1

∫ 2π

0

|Zn(ξ(t))− Zm(ξ(t))|dt.

Now,

sup
2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)| ≤ π−1 sup
2s≤n≤2s+1

∫ 2π

0

|Zn(ξ(t))− Z2s(ξ(t))|dt

≤ π−1

∫ 2π

0

sup
2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|dt. (49)

Using sequentially Jensen’s inequality and Doob’s maximal inequality in Lq, gives us for every
z ∈ D(x, ρ):

E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|

]
≤ E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|q
] 1
q

≤ q

q − 1
· E [|Z2s+1(z)− Z2s(z)|q]

1
q

=
s→∞

OD(x,2ρ)

(
2(α− 1

q ·δ)s
)
. (50)

So using (49), Fubini’s theorem and (50), we get

E

[
sup

2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|

]
≤ π−1

∫ 2π

0

E

[
sup

2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|

]
dt

=
s→∞

O
(

2(α− 1
q ·δ)s

)
.

Now let us treat the two cases α > 0 and α ≤ 0 separately. Remark that the quantity
(
α− 1

q · δ
)

is negative when α ≤ 0, but can be of any sign in the case α > 0.
• For α > 0 and n ≥ 1, let r ∈ N be such that 2r ≤ n ≤ 2r+1 and write

E

[
n−α(z) sup

1≤k≤n
sup

z∈D(x,ρ)

|Zn(z)− Z1(z)|

]
≤ 2−αr ·

r∑
s=0

E

[
sup

2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|

]

≤ cst ·2−αr ·
r∑
s=0

2(α− 1
q ·δ)s

≤ cst ·2−(α−0∨(α− 1
q ·δ))r.
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The expectation of the right-hand side tends to 0 exponentially fast in r hence also almost surely,
which proves point (i).
• For α ≤ 0, we write for any n let r be such that 2r ≤ n ≤ 2r+1,

E

[
n−α(z) sup

k≥n
sup

z∈D(x,ρ)

|Zk(z)− Zn(z)|

]
≤ cst ·2−αr ·

∞∑
s=r

E

[
sup

2s≤k≤2s+1

sup
z∈D(x,ρ)

|Zk(z)− Z2s(z)|

]

≤ cst ·2−αr ·
∞∑
s=r

2(α− 1
q ·δ)s

≤ cst ·2−(α−α+ 1
q ·δ)r.

and the last display converges exponentially fast to 0. So the function z 7→ Zn(z) converges almost
surely to some z 7→ Z∞(z) uniformly on the disc, and point (ii) is satisfied.

Finally, let us give a proof of Lemma 12.

Proof of Lemma 12. Let ε > 0 and suppose that Wn = cst ·nγ + O(nγ−ε) as n → ∞. Then it is

immediate that wn = Wn+1 −Wn = O(nγ−ε). Then

2n∑
i=n

(
wi
Wi

)2

≤ 1

W 2
n

· max
n≤i≤2n

wi ·
2n∑
i=n

wi ≤
W2n

W 2
n

· max
n≤i≤2n

wi = O
(
n−ε

)
,

and the first point follows by summing over intervals of the type Jn2k , n2k+1K.
Now write

W1

Wn
=

n∏
i=2

Wi−1

Wi
=

n∏
i=2

(
1− wi

Wi

)
= exp

(
n∑
i=2

log

(
1− wi

Wi

))
.

Since wi
Wi
→ 0 as n→∞, we get

log

(
1− wi

Wi

)
= − wi

Wi
+O

((
wi
Wi

)2
)

Putting everything together, we get

n∑
i=2

wi
Wi

= −
n∑
i=2

log

(
1− wi

Wi

)
+

n∑
i=2

O

((
wi
Wi

)2
)

= logWn − logW1 +

∞∑
i=2

O

((
wi
Wi

)2
)
−O

( ∞∑
i=n+1

(
wi
Wi

)2
)

= logWn + cst +O
(
n−ε

)
.

Last, just remark that logWn = log(cst ·nγ · (1 +O(n−ε))) = γ log n+ cst +O(n−ε) , which finishes
the proof.
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