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Introduction 

 

The founding fathers of modern logic, illustrious scholars such as Frege, Hilbert or Russel, 

used this discipline to answer mathematically foundational issues; however, starting from the 

1960’s logic has also been fruitfully used to deal with key philosophical notions, such as 

necessity, knowledge, time, probability, vagueness, and many others. But what exactly does it 

mean to study a philosophical notion from a logical point of view? It standardly means to use 

a predicate or a sentential operator to denote the philosophical concept under investigation 

and then to formulate and discuss axioms
1
 that adequately characterize the predicate or the 

operator. For the sake of clarity let us consider the example of knowledge, which is 

commonly formalized via the operator K (e.g. see Hendricks and Symons (2015)). Amongst 

the axioms that describe the operator K, one of the most famous is the axiom T, which is 

written as K(A)  A, where A is a formula, and can be read as “if something is known (K(A)), 

then it is true (A)”. The axiom T does not tell us what someone knows, but individuates a 

distinctive feature of knowledge, namely that it is factive: if someone knows something, then 

that something is true.  

Axioms characterizing a certain philosophical notion are put together to constitute formal 

systems and each formal system can be looked at from the two following perspectives: 

 

o from a syntactic point of view, one analyzes which theorems are provable in a formal 

system S. We write S |– A to denote that the formula A is provable or derivable in, or 

is a theorem of, the formal system S. 

o from a semantic point of view, one analyzes which sentences are valid (i.e. true in 

every situation, or more technically in every model) in the semantics corresponding to 

the system S. We write S |= A to denote that A is valid in the semantics corresponding 

to the system S. 

 

The famous theorems of validity and completeness establish an equivalence between the 

semantic level and the syntactic level: formulas that are valid (true in every model) in the 

semantics corresponding to the system S are all and only the theorems provable in S. 

Amongst the several philosophical notions that have been logically taken into account in the 

last fifty years, two play a prominent role: the notions of provability and truth. The peculiar 

logical role of these notions is clearly indicated by the fact that both have been formalized 

into two quite different ways. On the one hand, they have been treated just as the other 

philosophical notions, namely they have been formalized via predicates or sentential 

operators. This kind of treatment has produced impressive results: to mention a few, the 

formalization of truth via the predicate T has given rise to the wide literature concerning 

paradoxes of truth (e.g. see Gupta (1982) and Kripke (1975)); the formalization of provability 

via the predicate Bew (from the German Beweisbar for provable) has given rise to Gödel’s 

incompleteness theorems (1986, 1990), while the formalization of provability via a sentential 

operator has given rise to the modal logic of provability (Boolos (2010)). 

                                                 
1
 Although it is more common to firstly describe a novel operator or predicate via axioms, it is 

also possible to do that via rules. 
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But truth and provability have also been treated as meta-linguistic symbols: as we have said 

above, the metalinguistic symbol |– denotes provability in a formal system S and as such it 

has been widely studied by the cornerstone works of Frege, Russel, Hilbert (see van 

Heijenoort (1967)) and Gentzen (1969); the symbol |=, meaning truth in a certain semantic 

model, represents the basis of the notion of validity
2
 and has been central since the work of 

Tarski (1936). The importance of the treatment of truth and provability as meta-linguistic 

symbols can hardly be overestimated: in this respect truth and provability are the two 

milestone concepts on which logic itself lies and the two main tests to which any logical 

formal system is confronted. 

 

Let us finally come to the notion of grounding, which is the central notion of this chapter and 

is standardly described as a relation amongst truths (or facts) that is non-causal and 

explanatory in nature. The concept of grounding has been long neglected or forgotten in the 

history of logic (exceptions can be found in this book, as chapter XXXX by Roski). This fact 

is all to the more astonishing once we realize that grounding seems to cover the same special 

logical role as the kindred notions of truth and provability: like its cousin concepts, grounding 

can be fruitfully formalized into two different ways, namely as (i) a predicate or sentential 

operator, or as (ii) a meta-linguistic relation. This double formalization, which testifies the 

importance of grounding as a logical notion, will structure this chapter. The next section will 

be dedicated to studies of grounding under the perspective of (i), which is the most developed 

in the contemporary literature; while Section 3 will focus on approaches adopting perspective 

(ii).  

 

In order to slightly constraint the scope of this survey, let us emphasize that here we will 

mean by ‘grounding’ a relation from many to one, which cannot be iterated,
3
 and embraces a 

representational conception of grounding (see also chapter XXX of this book by Correia).
4
 

Most of the work developed in the formalization of grounding concerns such a notion. 

Moreover, we will mainly focus on the propositional logic of grounding, leaving aside the 

links between grounding and quantifiers: this choice is motivated by the fact that the links 

between quantifiers and grounding is already extensively treated by Mc Sweeney in Chapter 

XXX.  

 

Finally, let us emphasize that in the last decade the literature on the logic of grounding has 

blossomed: there is a wide range of studies that vary in their objects, conceptions and 

features. In order to clarify the presentation and classification of all these studies, we first 

introduce some distinctions relative to the notion of grounding.  

As underlined by Fine (2012b) and Correia (2014), grounding is thought to come in various 

types; amongst those, there are metaphysical grounding, logical grounding, conceptual 

grounding, natural grounding. For any type of grounding, three further distinctions apply: the 

                                                 
2
 Here we mean formal validity. The informal notion of validity (as necessary truth  

preservation) can be thought of as predated by the formal model-theoretic notion of validity. 
3
 Litland (2018) gives a comprehensive study of the logic of iterated grounding. 

4
 For the difference between factualist and representational conception of grounding, see 

Correia and Schnieder (2012). The only logic of grounding embracing a factualist conception 

is Correia (2010). In his work, Correia has developed his logic both at the syntactic as well as 

the semantic level, enriching it by a treatment of ground-theoretic equivalence. However, 

Krämer and Roski (2015) have shown that Correia’s logic involves theorems concerning 

grounding, which turn out to be opposite to our intuitions. 
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one between full, complete and partial grounding, the one between immediate and mediate 

grounding, and the one between strict and weak grounding. 

According to Fine (2012b) A is a partial ground of C if A on its own or together with some 

other truths is a ground of C. Thus, given that A and B are the full ground of AB, each of A 

and B will be a partial ground of AB. The notion of full ground is never explicitly defined 

but it is suggested that A is a full ground of C if the truth of A is sufficient to guarantee the 

truth of C. Bolzano's distinction (cf. Chapter XXX by Roski) between complete and partial 

ground is slightly different. Following the analysis of Sebestik (1992) and Tatzel (2002), for 

Bolzano the multiset
5
 of all, and only, those truths each of which contributes to ground the 

truth C is a complete ground of C. On the other hand, each of the truths that compose the 

complete ground of C, as well as each strict sub-multiset of them, is said to be a partial 

ground of C.  It seems that Bolzano and Fine are aiming at similar, if not the same, 

distinction, although the way they draw the line between the two concepts is different. For 

Fine a partial ground of a truth C can also be a full ground of C, while for Bolzano this can 

never be the case, since partial and complete grounds are two disjoint concepts. 

Let us now move to the distinction immediate and mediate. If we could describe this 

distinction with proof-theoretic terminology, we would say that immediate grounding 

corresponds to a single (irreflexive) proof-step, while mediate grounding corresponds to a 

sequence of several steps of immediate grounding. In other terms, while immediate grounding 

is a relation that does not seem to be further reducible, mediate grounding is definable as the 

transitive closure of immediate grounding. As for the last distinction, strict grounding does 

not allow a truth to ground itself (it is irreflexive), while grounding in the weak sense allows, 

in fact requires, a truth to ground itself (it is reflexive). 

 

2. Grounding as a predicate or as a sentential operator 

 

In this section we introduce those logics of grounding that formalize grounding either as a 

predicate or as a sentential operator. The pro and cons of each approach are quite 

straightforward: the predicate approach provides a richer and stronger framework, but it is 

ontologically and formally more demanding; the operator approach is notable for its 

simplicity but might be more limited in its expressive power.  

 

2.1. Grounding as a sentential operator 

 

The first and most comprehensive contemporary logical study of the notion of grounding has 

been developed by Fine (2012a, 2012b) in two cornerstone papers where he formalizes the 

notion of metaphysical grounding in most of its variations, namely full and partial, and weak 

and strict. In what follows, we will take Fine’s logic as the reference logic for grounding as a 

sentential operator and as the benchmark against which we present other approaches.   

 

2.1.1 Fine’s Logic 

 

Language. Fine adds to the first-order classical language four symbols denoting the four 

notions of weak full, weak partial, strict full and strict partial grounding. Accordingly, four 

novel types of logical formulas can be constructed in this language. Assuming that M, N, … 

denote sets of formulas and A, B, C, … formulas, we have: 

 

M  B, M is a weak full ground for B, 

                                                 
5
 A multiset is a set where the number of occurrences of the same formula counts.  
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A ≼ B, A is a weak partial ground for B, 

M  B, M is a strict full ground for B, 

A ≺ B, A is a strict partial ground for B
6
.  

 

Syntax. In this given language, Fine formulates axioms and rules that describe the four notions 

just introduced. These axioms and rules are divided between pure and impure:
7
 pure rules 

describe the structural features of the several notions of grounding, while the impure rules 

describe the relationships between grounding and the other logical connectives and 

quantifiers. Let us start describing the former rules. 

 

Pure (or structural) rules. The pure rules for grounding can be divided into two sets: those 

describing the relations between the four symbols introduced (they are called Subsumption 

rules), and those describing the properties that each symbol enjoys. As for the former, these 

outline the following relations: 

 

- from strict grounding claims one can infer corresponding (full or partial) weak 

grounding claims; 

- from full grounding claims one can infer corresponding (strict or weak) partial 

grounding claims; 

- from weak full grounding claims one can infer  strict full grounding claims as long as 

each of the grounds is a strict partial ground of the conclusion. 

 

As for the structural rules introducing properties, we have that: 

  

- weak full grounding enjoys identity and cut, namely (respectively) : 

 

                                                                    M1 A1, M2 A2 …  A1, A2 …  C 

                         -----------------                   -------------------------------------  

                               A  A                                          M1, M2, …. C 

 

   

- strict partial grounding enjoys non-circularity, namely: 

 

                                          A ≺ A 

                                     ----------------- 

                                              
          

- weak partial grounding enjoys transitivity, which is also enjoyed by the following two 

combinations: 

  

 

 

 

                          A ≼ B, B ≺ C                      A ≺ B, B ≼ C                 

                                                 
6
 In the literature these formulas are usually called sequents. We use the term ‘formula’ to 

prevent confusion with the notion of sequent in logic, which denotes a meta-linguistic object 

(e.g. see Poggiolesi (2010a)).  
7
 The distinction between pure and impure rules corresponds to the standard distinction in 

logic between structural and logical rules (e.g. see Poggiolesi (2010b)). 
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                         -----------------                     ----------------  

                               A ≺ C                               A ≺ C 

 

Given the presence of the transitivity and cut rules, we assume Fine is dealing with mediate 

notions of grounding, although this is not specified.  

 

 Impure (logical) axioms and rules. The impure rules for grounding can be divided into 

introduction and elimination rules. The introduction rules are:
8
 

 

- Conjunction: A, B  AB.  

- Disjunction: A  AB; B  AB; A, B  AB.  

- Double negation: A A. 

- Negative conjunction: A  (AB); B  (AB); A, B  (AB). 

- Negative disjunction: A, B  (AB). 

- Universal quantifier: P(a1), P(a2), ….   xPx  

- Existential quantifier: P(a), E(a)  xPx, where E(a) expresses the fact that a exists. 

- Negative universal quantifier: P(a1), E(a)  xPx  

- Negative existential quantifiers: P(a1), P(a2), …., T(a1, a2, …)   xPx, where 

T(a1, a2, …) stands for the totality claim, i.e. a1, a2, … are all of the individuals that 

there are. 

 

The elimination rules are:  

 

- Conjunction: from M  AB, one can infer M  {A, B}  

- Disjunction: from M  AB, one can infer M  A; M  B; M  {A,B}, where the semi-

colon stands for a disjunctive form.  

- Double negation: from M A, one can infer M  A. 

- Negative conjunction: from M  (AB), one can infer M  A; M  B; M  {A, 

B}.  

- Negative disjunction: from M (AB), one can infer M  {A, B}. 

- Universal quantifier: from M  xPx, one can infer M  {T(a1, a2, …), P(a1), P(a2), 

….}  

- Existential quantifier: from M  xPx, one can infer M  {T(a1, a2, …), P(a11), P(a12), 

….}; M  { T(a1, a2, …), P(a21), P(a22), ….}; … where the ak1, ak2, … run through all of 

the non-empty subsets of the a for which P(a) is true.   

- Negative universal quantifier:  from M  xPx, one can infer M  {T(a1, a2, …),  

P(a11),  P(a12), ….}; M  {T(a1, a2, …), P(a21), P(a22), ….}; … 

- Negative existential quantifiers: from M  xPx, one can infer M  {T(a1, a2, …), 

P(a1), P(a2), ….}.  

 

Let us briefly comment on the rules just introduced. As for the Subsumption rules, these seem 

natural and straightforward. As for the structural rules expressing properties enjoyed by the 

grounding relation, let us underline that according to the orthodox view (see Raven (2013)) 

                                                 
8
 The main difference between an axiom and a rule is that while an axiom does not depend on 

anything, in a rule the conclusion depends on its premises. Although Fine uses the word 

‘rule,’ the formulas listed above are axioms rather than rules since they do not depend on 

anything. Note that Correia (2017) has reformulated them as rules; for example, he substitutes 

A, B  AB with from A, B, infer A, B  AB. We prefer to be faithful to Fine’s presentation. 
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(mediate) grounding is an irreflexive, asymmetric and transitive relation. Whilst transitivity 

and asymmetry have been widely discussed (see Chapter XXX by Thompson for further 

details on these discussions), irreflexitvity does not seem to have been questioned; on the 

contrary it has led to some interesting puzzles of grounding (Fine, 2010; Krämer, 2013) which 

are reminiscent of puzzles of truth (cf. Chapter XXX by Krämer). Thus it is quite bizarre to 

find a weak notion of grounding in Fine’s logic. On reflection, one realizes that Fine needs 

such a notion in order to formulate its elimination rules. Let us note that Fine’s system does 

not contain the weakening rule:
9
 we take this to be a nice feature of the system since all 

grounds must be relevant to the conclusion and weakening typically breaks down relevance. 

Finally, we remark that from the structural rules enumerated above, one can easily derive the 

rule of Amalgamation that, according to Fine (2012b), corresponds to a plausible feature of 

strict full grounding:  

 

                                              M1 < C, M2 < C, …  Mn< C 

                                             ----------------------------------- 

                                                 M1, M2, … Mn < C 

 

Chapter XXX by Mc Sweeney contains an extensive discussion of the introduction rules, 

where the problem of the overdetermination of disjunction, as well as the several features of 

quantifiers, are taken into account. Let us then dwell on a point, which, although important, is 

often neglected in the current literature. Any discipline, from mathematics to biology, from 

metaphysics to moral philosophy, seem to have its own internal, explicit or implicit, criteria to 

test whether a result has been properly carried out. Logic is no exception in this sense and it 

enjoys several criteria like the subformula property, the harmony property or separability 

property
10

 (e.g. see Poggiolesi (2010a) for an extensive list and discussion). These criteria are 

meant to ensure a formal as well as a conceptual adequacy (of the rules) of a formal system. 

Logics of grounding - insofar as they are logics - should be tested on the background of these 

criteria but unfortunately this analysis is lacking in the current literature (the only exception is 

Poggiolesi (2016b)). This is a regrettable gap. For example, despite its great virtues, Fine’s 

introduction and elimination rules do not seem to enjoy many of the proof-theoretic  

properties of rules. 

 

Finally, let us comment on the representational approach to grounding, which is present in 

many logics of grounding discussed in this chapter. According to this perspective, grounding 

should be sensitive to how facts are represented. However, not every linguistic difference 

should be relevant to ground-theoretic status. As an example, even for a representationalist, it 

should be plausible to hold that AB is ground-theoretically equivalent to BA. As we will 

                                                 
9
 The weakening rule is the structural rule that allows one to add to the premises of a 

derivation a new formula; it represents the formal counterpart of the monotonicity property. 

Hence in a calculus where there is no weakening rule (nor explicit nor derivable nor 

admissible) the derivability relation is monotone or relevant. 
10

 A calculus is said to satisfy the subformula property if, and only if, any theorem of the 

calculus can be proved by means of a derivation that does not contain any redundancy, i.e. no 

formula is introduced in the derivation if it is not essential to prove the theorem itself. 

Corresponding introduction and an elimination rules are said to be harmonious if, and only if, 

they satisfy a certain balance amongst them, where the idea of ‘balance’ has been formally 

captured in several different ways, see for example Francez and Dyckhoff (2012). Finally, 

introduction rules are said to be separated if, and only if, they introduce only one new symbol 

at a time. 
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see later, while both Correia (2017) and Poggiolesi (2018) propose a general criterion to 

account for that intuition, in Fine’s system there is nothing of this sort: the logic does not 

include or rely on any proper theory of ground-theoretic equivalence.
11

 As a result, it cannot 

be proved in Fine’s logic that AB and BA have the same grounds, for example. 

 

Semantics. Fine’s semantics for its logical system of grounding is a truth-making semantics, 

based on the idea that a fact f makes true a certain sentence A (a wide discussion of truth-

making semantics is developed in Chapter XXX by Fine). According to it, a true sentence A 

can be considered as the set of facts that make it true. In this sense, there is a strong 

resemblance between facts and possible worlds of Kripke semantics for modal logic (e.g. see 

Poggiolesi (2010b)): in Kripke’s semantics a true sentence A can also be considered as the set 

of possible worlds where A is true. Nevertheless, there are three main differences between 

worlds and facts. The first is that while an accessibility relation hold among worlds of Kripke 

semantics, there is no accessibility relation among facts. Secondly, worlds are complete, i.e. 

they settle the truth-value of every proposition, while facts are partial, i.e. they can be 

considered as parts of possible worlds.  Finally facts, differently from worlds
12

, can be fused: 

given the fact f that Mary is tall and the fact g that Mary is thin, we can have the fused fact f .g 

that Mary is tall and thin. The set of facts that verifies the sentence A is closed under fusion 

and is denoted by A.  

We now have all the necessary notions to describe the four symbols for grounding introduced 

above from a semantics point of view. 

 

- M is a weak full ground for B, M  B is true, if, and only if, f1.f2….fn verifies B (i.e. 

f1.f2….fn is a member of the verification set B), whenever f1 verifies A1, …, and  fn 

verifies An, for M = {A1, …, An} (i.e. whenever each of f1.f2….fn is a member of the 

respective verification-sets of A1, …, An). 

- A is a weak partial ground for B, A ≼ B is true, if, and only if, the set M, composed by 

A plus other sentences, is a weak full ground of B. 

- M is a strict full ground for B, M  B is true, if, and only if, M  B is true, and B is not 

a weak partial ground for any of A1, …An composing M 

- A is a strict partial ground for B, A ≺ B is true, if, and only if, A ≼ B is true and B ≼ A 

is not true. 

 

Fine (2012a) shows validity and completeness between the structural rules of his system and 

the semantics just introduced. As Fine (2012b) says “this provides some kind of vindication 

both for the system and for the semantics.” However, although Fine attempts to extend this 

semantics to connectives and quantifiers and provides attractive definitions, semantics cannot 

be shown to be sound with respect to the logical part of his system (this is partly due to the 

fact that the semantics cannot discriminate among the semantic values of, for example, A and 

AA). This gap leaves open the question of the adequacy of Fine’s rules. 

 

2.1.2 Other logics treating grounding as a sentential operator 

 

Schnieder (2011).  The main goal of Schnieder’s approach is to give a rigorous formalization 

of the sentential expression ‘because;’ as a result he formulates a logic which, following our 

                                                 
11

 A recent study of this issue is Kramer (2019). 
12

 More precisely, even worlds can be fused (Lewis was for example willing to consider fusion of worlds); but 

their fusion plays no role in the possible words semantics. 
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distinctions, could be read as a logic capturing the notion of strict partial mediate 

metaphysical grounding. 

Let us briefly illustrate Schnieder’s approach. In order to construct a logical system, 

Schnieder firstly extends the first-order language with the connective ‘because’ and secondly 

he adds to the classical natural deduction calculus rules describing the new connective. These 

rules can be divided into structural and logical rules.  

 

Structural rules. Since Schnieder introduces only one new connective, he does not need to 

formulate subsumption rules. On the other hand, he formulates rules that describe the 

properties of the connective ‘because’: these are factivity, asymmetry, transitivity. As an 

example of these rules, here are the factivity rules: 

 

                                            A because B                                  A because B    

                       ----------------                              ---------------- 

                                                    A                                                      B 

 

 

Logical rules. As for the logical rules, Schnieder only has introduction rules; Schnieder’s 

introduction rules express the same relations conveyed by Fine’s introduction rules, although 

in a quite different form
13

.  For the sake of illustration, here are the rules concerning the 

grounds of a conjunction (with i = {1,2}): 

 

                                                            A1, A2                                     

                                                    ----------------- 

                                                   A1A2 because Ai 

 

Or these are the rules concerning the grounds of a disjunction (with i = {1,2}): 

 

                                                              Ai 

                                                    ----------------- 

                                                   A1A2 because Ai 

                   

Schnieder’s system is proved to conservatively extend classical natural deduction. Moreover, 

Schnieder extends his approach to the quantifiers and underlies that other variations of his 

system could be obtained by substituting classical logic as the basic framework with other 

logics.                                                                 

 

deRosset (2015). In his 2015 paper, deRosset proposes a new semantics for a subsystem of 

Fine’s pure logic of grounding. His motivation for constructing such a semantics, which is an 

alternative to Fine’s one, is philosophical. deRosset seems to be dissatisfied with Fine’s 

semantics for the following three reasons: (i) the semantic characterization of grounding in 

terms of truth-making do not seem to capture the metaphysical idea that animates grounding-

enthusiasts. (ii) The rule of amalgamation, which is validated by Fine’s semantics, might be 

questioned.  (iii) Fine’s semantics rules out a view according to which facts are “sparse,” 

namely there are truths that does not relate to any fact. By working with hypergraphs, 

assuming as primitive the relation of immediate grounding, and taking into account all subsets 

of the powerset of the domain of facts, deRosset avoids problems (i)-(iii).  

                                                 
13

 As pointed out before, Correia (2017) correctly notes that Fine’s rules could be rewritten as 

Schnieder’s ones. 
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Correia (2017). In his 2017 paper Correia proposes an impure logic of metaphysical 

grounding, where grounding is treated in its several variations (full, strict and weak, 

immediate and mediate). Since he deals with the same objects as Fine’s logic, let us 

summarize the main differences between the two. Like Fine, Correia considers both strict and 

weak grounding: but whilst Fine assumes weak grounding to be more fundamental, Correia 

does the opposite. Secondly, while Fine also covers partial grounding, Correia only analyses 

full grounding. In Fine’s logic there is no treatment of ground-theoretic equivalence; in 

Correia’s logic the issue is fully treated within the introduction of the symbol , which is 

described by structural rules as well as by introduction and elimination rules that define its 

interaction with the other connectives. Syntactically, Correia’s logic share the same impure 

grounding rules as Fine. As for the pure rules, Correia needs to add to Fine’s rules those that 

regulate links between the notion of grounding and the notion of factual equivalence. Also 

there is a rule taking into account the complexity ingredient
14

 and rules describing excluded 

middle and non-contradiction with grounding formulas. Semantically, Correia’s approach 

relies on three main notions: the notion of structure, the notion of proposition and the notion 

of complexity. Each sentence of the language is interpreted into a proposition of a structure 

via a function. Propositions are ordered from atomic to more complex ones.  

 

2.2. Grounding as a predicate 

 

The literature on the formalization of grounding as a predicate, although important, is not as 

widespread and rich as the one on grounding as a sentential operator. Indeed, with the 

exception of Rosen (2010) where some axioms on grounding as a predicate are suggested, the 

only papers where the issue is fully developed are Korbmacher (2018a, b). We dedicate the 

rest of the section to a brief description of his approach. 

 

Korbmacher (2018a, b). The main goal of Korbmcher’s approach is to reproduce 

Schnieder’s logic with a predicate for grounding rather than an operator. 

 

Languages. Let L be the language of Peano Arithmetic;
15

 let LT be the language L extended 

with the truth predicate Tr; finally, let LTR
<=

 be the language that extends LTR by the addition 

of the binary grounding predicate <=, which allows to construct formulas of the form x <= y 

to be read as x is a strict, partial, mediate grounding of y.  

 

Syntax. Let PA be the axiomatic system of Peano arithmetic based on the language L; PAT 

is the system that extends PA with the missing instances of the induction scheme over LTR; 

finally PAG is the axiomatic system that extends PAT with all the missing instances of the 

induction scheme over LTR
<=

. The predicational theory of ground PG consists of the axioms 

of PAG plus other axioms describing the logical as well as structural features of grounding 

(and truth). As for what we might call ‘pure axioms of grounding,’ they describe the 

following features: irreflexivity, transitivity and factivity. Just to give an idea of the form of 

such axioms, irreflexivity is conveyed in the following way: x (x<=x). As for the impure 

                                                 
14

 According to Correia, the grounds should always be less complex than their conclusion. 

The formal counterpart of this view takes the form of a rule where a contradiction can be 

inferred if the conclusion is less complex than its grounds. An analogous rule can be found in 

Poggiolesi (2018). 
15

 The choice of working with the language of Peano Arithmetic, rather than that of first-order 

logic, naturally enriches the applicability of the notion of partial grounding. 
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axioms of grounding, these are divided into upward directed axioms and downward directed 

axioms.  Each impure rule of Schnieder’s sytem corresponds to two axioms: one that says that 

if the grounds are true, then the grounds ground the conclusion, while the other saying that if 

the conclusion is true, then the grounds ground the true conclusion. As an example, consider 

again conjunction rules in Schnieder’s system: 

 

                                                            A1, A2                                     

                                                    ----------------- 

                                                   A1A2 because Ai 

              

(with i = {1,2}). These rules correspond to the following two axioms: 

 

xy (Tr(x)Tr(y)  (x <= xy)(y <= xy))     upward directed axiom 

xy (Tr(xy)  (x <= xy)(y <= xy))           downward directed axiom 

 

 

 The system PG is consistent but it is not a conservative extension of PA; it is valid, though 

not complete, with respect to the Schneider’s logic of grounding via a certain translation. 

 

Semantics. Starting from a standard model of the positive theory of truth (see Halbach 

(2011)), Korbmacher constructs a standard model for the predicational theory of grounding. 

The model is obtained by the construction of grounding trees, which were firstly introduced 

by Correia (2014). As Korbmacher underlies, the semantics he constructs strongly relies on 

the fact that the starting model is standard and would break down if applied to a non-standard 

model. 

 

 The predicational theory of grounding put forward by Korbmacher is proof-theoretically 

stronger than the operator approach (at least that of Schnieder (2011)). Moreover it provides 

an unique framework where grounding and truth co-exist, making easy to analyse their 

relations: in this framework, it is possible to formulate an answer to the famous puzzles of 

grounding put forward by Fine (2010) and Krämer (2013), as well as to study and analyse the 

ground-theoretic paradoxes of self-reference. Korbmacher suggests several ways to extend his 

logical system of grounding, namely via the notion of fundamentality or via a theory of 

definitions.  

 

3. Grounding as a meta-linguistic relation 

 

Grounding as a meta-linguistic relation can be naturally introduced via the notion of proof. At 

least since Aristotle (1984), two kinds of proof have been distinguished in accordance with 

the goals of proof (see also Chapter XXX by Malink). On the one hand, there are proofs-that, 

namely proofs by means of which we prove that something is true, and on the other hand, we 

have proofs-why, namely proofs by means of which we prove why something is true. The 

distinction is easy to grasp from some real-world examples. From the fact that temperatures 

are higher in summer than in winter we can prove that (well-functioning) thermometers are 

higher in summer than in winter; and conversely from the fact that thermometers are higher in 

summer than in winter we can prove that temperatures are higher in summer than in winter. 

However, we only have a proof-why in the first case: the fact about temperatures explains 

why – or is part of a proof why – thermometers are higher in the summer. By contrast, the fact 

about thermometers does not contribute to a proof why the temperatures are higher in the 
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summer: it is not the case that thermometers being higher in summer than in winter explain 

why temperatures are higher in summer than in winter. 

Note that the dichotomy between proofs-that and proofs-why naturally maps onto another 

central  dichotomy for this chapter, namely that between the relation of inference and the 

relation of grounding. Indeed as a proof-that is about drawing inferences - in proving that 

something is true, a proof-that also shows from what that something can be inferred – in an 

analogous way, proofs-why bare open the links relating a conclusion with its grounds: in 

showing why something is true, a proof-why also reveals the grounds.
 16

 

The dichotomy proofs-that and proof-why has been regarded with a certain scepticism in 

contemporary logic. Whilst we have seen that the distinction seems very natural informally, 

certain doubts might arise about its applicability in formal contexts. In particular, while 

proofs-why have mainly been ignored in 20
th

 century logic, proofs-that have been rigorously 

formalized thanks to the work of Frege, Russell, Hilbert (see van Heijenoort (1967)) and, 

perhaps most of all, Gentzen (1969). In this literature, the meta-linguistic relation of 

derivability, that has been mentioned in the Introduction and is denoted by the symbol |–, 

seems to fruitfully capture the logical aspects of proofs-that. This relation is standardly 

defined by rules, which are divided into introduction and elimination rules. It also finds its 

linguistic counterpart (at least in certain logics) via a result known as the deduction theorem, 

in the (standard) material implication. This formalization, which is at the same time simple 

and elegant, has given rise to impressive results, such as cut-elimination, decidability, 

complexity, interpolation theorems, and to the whole field known today as proof theory. 

Given the close links between proofs-that and proofs-why and the great developments of the 

study on proofs-that relying on this (meta-linguistic) formalization, some grounding theorists 

have developed an analogous formalism to capture proofs-why. Therefore, as the logical 

aspects of proofs-that have been formally captured by the metalinguistic symbol |–, new meta-

linguistic symbols have been created for formally capturing the logical aspects of the notion 

of proof-why. Note that as the formalization of proofs-that naturally leads to a formalization 

of the notion of inference given their close relation, in the same way the formalization of a 

proof-why is also naturally a formalization of the notion of grounding. 

As we have mentioned at the beginning of this chapter, logic mainly relies on the two key 

notions of truth (validity) and provability, formalized as meta-linguistic symbols. Formalizing 

(proofs-why and thus) grounding as a meta-linguistic symbol puts it on the same level as truth 

and provability, with consequences for the very basis of logic. As far as we understand, such 

was the revolutionary role attributed to grounding by the great philosopher and mathematician 

Bernard Bolzano, who attempted to logically capture the grounding relation (and more 

generally the notion of proofs-why) through the notion of exact derivability. We refer to the 

Chapter XXX  of Roski for a detailed description of Bolzano’s work. 

 

 

3.1. Logics treating grounding as a metalinguistic relation 

 

In the contemporary literature, there are three works where grounding is associated to a meta-

linguistic relation: (i) Batchelor (2010), (ii) Correia (2014) and (iii) Poggiolesi (2016a, 2018). 

In (i) Batchelor introduces the idea of proofs of a special kind that provide the grounds of 

what is proved, but does not systematically develop a logic around this intuition. In (ii) and 

(iii) logics of grounding as meta-linguistic relation are analysed; however while in Poggiolesi 

                                                 
16

 An analogous idea, although expressed in different terms, can be found in deRosset (2013).  
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this type of formalization is explicitly defended, Correia does not seem to explicitly defend 

this position
17

. For this reason, we start by presenting (iii) before moving on to (ii). 

 

Poggiolesi (2016a, 2018). Poggiolesi’s work is strongly inspired and influenced by Bolzano’s 

insights; according to this perspective, it focuses on the notion of complete and immediate 

strict logical grounding, since, according to Bolzano, this is the most fundamental type of 

grounding and thus the appropriate starting point for analysing the notion. Just as the notion 

of proof-that is formalized by the metalinguistic relation of derivation and denoted by the 

symbol |–, the notion of proof-why (and thus of grounding) is formalized by the 

metalinguistic relation of formal explanation that is denoted by the symbol |. In accordance, 

(standard) inferences rules are supplemented with grounding rules, which express an authentic 

dependence between premises and conclusion and have the following form: 

 

                                                                     M 

                                                                     

                                                                     C 

 

to be read as: the multiset M is the full and immediate strict formal explanation (or ground) of 

C. 

 

Ground-theoretic equivalence. In Poggiolesi’s account formulas that are equivalent by 

associativity and commutativity of conjunction and disjunction have the same grounds. This 

is rendered in a simple way. Bold letters, such as A, B, C, … denote sets of formulas 

containing all formulas which are ground-theoretic equivalent. Grounding rules contain bold 

letters. So for example the grounding rule for conjunction has the following form 

  

                                                                     A, B 

                                                                       

                                                                     AB 

 

which means that not only the formulas A and B formally explain (or ground) the formula 

AB, but they also formally explain (or ground) all formulas that are equivalent to AB by 

associativity and commutativity of conjunction and disjunction. 

 

Grounding rules for disjunction and negation. In Poggiolesi’s logic, the grounding rules for 

conjunction, whilst having a specific form due to the use of the meta-linguistic symbol (and 

the account of ground-theoretic equivalence), convey a principle analogous to all the other 

logics of grounding. Grounding rules for disjunction and negation in Poggiolesi’s logic are 

more peculiar and worth a brief explanation. The rules for disjunction contain a new element 

called robust condition. Consider the example of the disjunction AB, in the situation where 

the formula A is true. In this case, A is certainly a ground for AB; but in order for A to be the 

complete ground of AB
18

, it is necessary to specify that B is false, i.e. it is necessary to say 

that B does not play any role in grounding AB and thus that A does the job on its own. In 

other words, it is the falsity of B that ensures that, or is a (robust) condition for A to be the 

complete ground of AB. Thus, A is the complete and immediate formal ground of AB under 

                                                 
17

 In other words, whilst one interpretation of Correia (2014) is in meta-linguistic terms, the 

author does not seem to rule out an alternative interpretation where grounding remains in the 

language. 
18

 As opposed to a full ground; see Introduction. 
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the robust condition that the negation of B is true. The use of robust conditions solves the 

problem (as Mc Sweeney puts it, see Chapter XXX) of overdetermination of disjunction and 

is rendered by means of square brackets, as in the following examples of grounding rules for 

disjunction: 

 

                                                p, q              [q] p            [p]q 

                                                                                  

                                               pq                pq                pq 

 

As concerns the negation connective, first note that Poggiolesi’s logic is the only one to have 

an unique rule for negation. This rule validates the grounding principles for negation 

analogous
19

 to the negation axioms in Fine’s logic, but it also shows what unites them. The 

formulation of this rule is made possible by the use of the two meta-linguistic relations of 

derivability and formal explanation. The rule formalizes the following grounding analysis of 

the negation connective. Consider the question: what is the (complete and immediate) ground 

of a negative truth, such as “the ball is not cubic”? A natural answer is that the ground is “the 

ball is spherical”: after all, the “the ball is spherical” is true, and “the ball is spherical" and 

“the ball is cubic" are contradictory – one can derive a contradiction from them – so it seems 

to be the reason why, or the grounds of or to provide a formal explanation why “the ball is not 

cubic." In formal terms, the idea here is that the ground for the truth of a formula of the form 

A is a formula B (satisfying a certain complexity constraint) such that from A and B a 

contradiction is derivable. 

 

Justification of grounding rules. Let us underline that almost all work on the logic of 

grounding does not treat the issue of motivating or arguing for certain grounding rules (or 

axioms) rather than others (this is also emphasized by McSweeney in Chapter XXX). 

Poggiolesi is an exception to this trend: all the rules of her logic of grounding are motivated 

by a rigorous conception of grounding developed in Poggiolesi (2016a), according to which 

grounding is definable in terms of (positive and negative) derivability and complexity.
20

 

 

Introduction and elimination rules for the connective ‘because.’  Just as the metalinguistic 

symbol of derivation is reflected in the (formal) language via material implication (the 

deduction theorem says that A |– C if, and only if,  |– A C), in an analogous way, formal 

explanations are reflected in the language via the ‘because’ connective, denoted by the 

symbol . The new connective  is treated like the other classical connectives: by means of 

introduction and elimination rules that only deal with it (and do not specify the relation 

between  and the other logical connectives) and enjoy several other proof-theoretic 

properties. To give the reader an idea of the introduction and elimination rules for the 

                                                 
19

 Note that according to Poggiolesi’s logic and in contrast with Fine’s, the grounds of 

formulas of the form (A B), where  is either a conjunction or disjunction, vary depending 

on the form of A and B. If A and B are formulas that begin with a negation, e. g. they are of 

the form  p,  q, respectively, then the grounds have the form p, q. Otherwise, the grounds 

will have the form A, B. This difference is required to respect a complexity measure. It is 

also proof-theoretically adequate, as shown in Poggiolesi (2016b).  
20

 Poggiolesi’s original definition of complete and immediate grounding is formulated for the 

standard connectives of classical logic. It has been extended in many ways: to the framework 

of relevant logic (Poggiolesi (2019)), to other less standard connectives of classical logic 

(Poggiolesi and Francez (2019)) and to the notion of partial (immediate and mediate) and 

complete and mediate grounding (Poggiolesi (2020)). 
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connective , let us describe the introduction rule. This rule mimics the rule that introduces 

material implication, but at the grounding level. Indeed as this latter says that if there exists a 

derivation from a formula A to a formula B, one can infer the formula A  B (and ‘discharge’ 

or remove the A); analogously the rule which introduces the connective  roughly says that if 

there exists a formal explanation from A to B, then one can infer AB (and then discharge the 

A, as well as the whole formal explanation). 

 

Correia 2014. In his 2014 paper, Correia treats the notion of logical grounding, strict and 

weak, from a syntactic as well as from a semantic perspective. Both in the syntactic as well as 

in the semantic approaches the central notion is that of tree: a mediate grounding relation 

between a set of formulas M and a formula A is a tree, where complexity is either stable or it 

increases. In the syntactic approach each step of the tree is determined by an introduction 

grounding rule, while in the semantic approach each step of the tree is determined by a 

transition from truth to truth. A set of formulas M strictly grounds a formula A, in symbols M 

 A, if, and only if, there is a tree for A from M. A set of formulas M weakly grounds a 

formula A, in symbols M _ A, if, and only if, either A belongs to M or there is a subset N of 

M, such that N A.  

Syntax. As for the structural rules, strict grounding enjoys irreflexivity and cut, whilst weak 

grounding enjoys reflexivity, cut and weakening. Since, as we have said in Section 2.1, 

grounds must be relevant to the conclusion and weakening typically leads to violations of 

relevance, the notion of grounding in Correia’s logic may exhibit such violation. As for the 

introduction rules that define a grounding tree, these convey the same principles of Fine’s 

logic and are expressed by means of the standard inferential line, namely they have the form: 

 

                                                                        M 

                                                                      ------ 

                                                                         B 

 

to be read as M grounds B. Finally, let us also note that, unlike Correia (2010, 2017), in 

Correia (2014) there is no treatment of grounding-theoretic equivalence. 

Semantics. The two metalinguistic relations of strict , as well as _ weak grounding, are 

semantically defined by trees (as in the approach proposed by Korbmacher). The links 

between these consequence relations and other more famous notions of consequence relations 

are investigated: it is shown that strict grounding is included in weak grounding, which is in 

its turn included in first degree entailment consequence relation, which is a sub-consequence 

of the classical logical consequence. 
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Table summing up all the logics of grounding introduced in the Chapter 

 
 Strict/ 

Weak 

Full (or 

Complete)/ 

Partial 

Immediate/ 

Mediate 

Metaphysical/ 

Logical 

Syntactic/ 

Semantic 

Operator/ 

Predicate/ 

Metalinguistic 

relation 

Correia 2014 S & W F M L  Sy & Se MR 

Correia 2017 S &W P M M Sy & Se O 

Fine (2012a, b) S & W F & P  M M Sy & Se O 

Korbmacher 

(2018a, b) 

S P  M M Sy & Se P 

Poggiolesi 

(2016, 2018) 

S C I L Sy MR 

Schnieder 

(2011) 

S P  M M Sy O 

deRosset(2015) S & W F & P  M M Se O 

 

Where in the table above the letters of every column corresponds to the initial of the words occupying the first 

case of the column itself. 
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