Feasibility of wood peeling process assisted by radiant energy.

Anna DUPLEIX PhD student – First year

Professor Rémy MARCHAL¹

Professor Mark HUGHES²

1 / 15

Joint supervisors: Dr Louis-Etienne DENAUD¹ Dr Andrezj KUSIAK³ Dr Fréderic Rossi¹

¹Arts&Métiers ParisTech Cluny, France; ²Aalto University, Helsinki, Finland ; ³Université de Bordeaux, France.

Peeling process: veneer production

Why soaking?

What is wood heating prior to peeling aimed at?

Alternative methods to heating wood prior to peeling avoiding soaking

For same veneer quality, a high heating rate method.

Volume heating

But heterogeneous and requiring high voltages.

6 / 15 Alternative to soaking Electric ohmic Microwave Infrared Anna Dupleix **COST Forum** March 2013 Aalto University School of Science ET MÉTIERS ParisTech

а

la

LABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS Learning from volume electric ohmic heating.

Wood does not need to be "cooked" to "soften" as required by peeling.

Using water as vector of heat produces heterogeneous heating.

How to heat wood without using water as a vector of heat?

7 / 15 Alternative to soaking Microwave Infrared Anna Dupleix **COST Forum** March 2013 Aalto University School of Science **ET MÉTIERS**

а

ABORATOIRE BOURGUIGNON

а

la

ABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS

To heat wood prior to peeling.

✓ Radiation penetrates into green wood

Anna Dupleix COST Forum

MW Volume heating

Homogeneous and rapid heating but dangerous.

11/15 Log under MW heating (12 kW) 150 Temperature (°C) Probe 60 mm 100 MW Alternative to 50 soaking Probe 60 mm 0 20 Log 40 60 0 **Electric ohmic** Time (s) Microwave Comparison of heating rates to heartwood of MW and electric ohmic methods 3 Infrared 2.5 2.5 Heating rate (°C/s) 2 1.5 Anna Dupleix 1 **COST Forum** March 2013 0.5 Coaxial cables and waveguides from electric 0,07 generator to MW applicator. 0 **Electric Ohmic** Microwave Aalto University School of Science

Looking for radiant energy heating easier to implement.

ET MÉTIERS

ABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS

а

Rapid surface heating.

a

vla LABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS

	Advantages	Drawbacks	Alternative to soaking
Electric ohmic heating	- rapidity	- requiring high voltages	Electric ohmic
Microwave heating	 rapidity energy efficiency 	- complexity of technology	Microwave Infrared
Infrared heating	 rapidity easiness of implementation 	- penetration depth	Anna Dupleix COST Forum
			Aalto University School of Science

13/15

ARTS ET MÉTIERS ParisTech

ล

LABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS

а

IR most suitable alternative method to heat wood prior to peeling.

Aim of research: to develop **on-line** IR heating system

- ✓ directly embedded on the peeling lathe
- ✓ to heat wood surface while peeling
- ✓ activated when peeling comes to heartwood

Feasibility of wood peeling process assisted by radiant energy.

Anna DUPLEIX PhD student – October 2010

Thank you for your attention.

Professor Rémy MARCHAL Arts&Métiers ParisTech Cluny, France Professor Mark HUGHES Aalto University, Helsinki, Finland