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Abstract

Mobile Mapping Systems are now commonly used in large urban acquisition campaigns. They are often equiped with LiDAR sensors
and optical cameras, providing very large multimodal datasets. The fusion of both modalities serves different purposes such as point
cloud colorization, geometry enhancement or object detection. However, this fusion task cannot be done directly as both modalities
are only coarsely registered. This paper presents a fully automatic approach for LiDAR projection and optical image registration
refinement based on LiDAR point cloud 3D renderings. First, a coarse 3D mesh is generated from the LiDAR point cloud using the
sensor topology. Then, the mesh is rendered in the image domain. After that, a variational approach is used to align the rendering
with the optical image. This method achieves high quality results while performing in very low computational time.

Results on real data demonstrate the efficiency of the model for aligning LiDAR projections and optical images.

1. Introduction

Over the past decades, the interest in urban acquisition systems
has been growing continuously, especially Mobile Mapping Sys-
tems (MMS). These systems are vehicles equipped with many
sensors that produce different modalities in order to acquire all
the details of a scene. These systems are used on wide acquisition
campaigns in cities, roads, highways, resulting in the production
of very large - multimodal - datasets. Among all available sensors
often met on such systems, 3D LiDAR sensors joint with optical
cameras enable a geometrical acquisition of the scene as well as
the acquisition of textures and colors. However, due to the com-
plexity of such acquisition systems, the calibration from one sen-
sor to the other does not generally meet pixel accuracy. This can
be caused by the instability of the sensors throughout a mobile
acquisition, where the calibration slowly deteriorates while the
systems are being operated. Therefore, the different modalities
are slightly misaligned which can compromise further process-
ing requiring data fusion, e.g. point cloud colorization or mul-
timodal object detection which may be required for autonomous
driving applications or to filter out non-permanent objects for car-
tographic purposes. It is possible to interactively reduce this mis-
alignment, but most of the time this solution is not suitable as the
datasets are typically composed of thousands of examples. The
automatic alignement of LiDAR data to optical image is therefore
a crucial issue.

The problem of LiDAR to image alignment rises several issues.
First of all, the comparison between the two modalities can only
be done if they share common attributes (colors or reflectances).
However, in many systems, each sensor solely acquires a specific
aspect of the scene. Moreover, optical sensors and LiDAR sen-
sors are located at different positions on the MMS. This implies
that the different sensors do not acquire the scene from the same
point of view, resulting in visual ambiguities. The correlation
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between both modalities is therefore irrelevant for some parts of
each data.

The paper contribution is two-fold, as illustrated Figure 1: first,
we propose a very fast approach for mesh generation from 3D
LiDAR data using sensor topology. The second contribution of
the paper is an extension of a variational multimodal registration
method (Sutour et al.) to the problem of LiDAR to image align-
ment with higher degree of freedom.

The paper is organized as follows: first, an overview of the re-
lated works is presented. Then, the mesh generation from the
sensor topology is explained. After that, the extension of the
variational method is detailed. Finally, evaluation and results are
shown and a conclusion is drawn.

2. Previous works

Multi-modal registration has been a subject of interest over the
past decades. In this section, previous works on multi-modal reg-
istration as well as previous works on LiDAR to optical image are
introduced.

2.1. Multi-modal image registration

In computer vision, registration methods often consist in the
detection and the matching of corresponding features from two
different modalities to recover the 2D transformation that pro-
vides the best alignment between the two input images. It often
assumes that the displacement between both image is small, oth-
erwise there would not be any good alignment between the two
images because of the differences in perspective. Feature points
are extracted using common methods (SIFT (Lowe) or SURF
(Bay et al., 2006)), or more specified adaptations (Mikolajczyk
and Schmid; Rublee et al.). These features are then matched
using the RANSAC algorithm (Fischler and Bolles) to estimate
the optimal transformation, as it can be seen in many biomedical
imaging works (Allaire et al., 2008; Paganelli et al., 2012; Toews
et al., 2013). However, these methods rely on strong similarities
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Figure 1: Scheme of the proposed framework.

between each modalities which can be limited in a multimodal
context. This problem can also be solved using variational ap-
proaches. In this case, the optimal alignment can be defined as the
maximum of a given metric, typically Mutual Information (Viola
and Wells III) or Cross-correlation (Roshni and Revathy, 2008),
which aim at finding correlations between two distributions of
intensities. These methods perform well as long as there exists a
bijection between both modalities (e.g. between CT and MR im-
ages) which is not the case between LiDAR range measurements
and optical images. Another approach presented in (Sutour et al.)
aligns the gradients of both modalities, thus being agnostic to any
correlation between the modalities. However, this method only
estimates translation and scaling without rotation. Moreover, it
implies that both modalities are defined in the same domain and
that gradients can be computed on both modalities, which is typ-
ically not possible when dealing with 3D points.

2.2. LiDAR to optical registration

The problem of LiDAR to optical registration can be divided
into three main kinds of approaches: 2D feature-based methods,
3D-based method and statistical methods.

2D feature-based methods aim at establishing correspondences
between feature points of the optical image and the point cloud
projected in the optical image domain. In (Moussa et al.), the
authors propose a method that uses ASIFT features (Morel and
Yu) to match a colorized point cloud with an optical image.
Aberrant correspondences are then filtered out using RANSAC
(Fischler and Bolles). The final 3D pose is estimated by solving
a Perspective-n-Point problem (Lepetit et al.) in which the 2D
coordinates of feature points in the optical image is associated
with the 3D locations of the corresponding feature points in the
point cloud. González et al. propose a method for estimating
the location of an optical image relatively to a 3D colorized
point cloud of the same scene. The image is first enhanced to
increase its contrasts. Then, the projection of the point cloud
is manually resized in order to fit the optical image as well as
possible. After that, correspondences are estimated by averaging
cross-correlation and least square metrics. Finally, the 3D pose is
retrieved using RANSAC. This method assumes that the original
image and the point cloud are acquired at very close location
otherwise the distortion brought by the resizing method would
affect the correspondence finding step. Although 2D feature-

based methods provided straight forward ways to estimate the
optimal alignment between optical image and point cloud, they
typically rely on shared information between the two modalities.
This can be a major drawback on LiDAR systems are primarily
designed to collect range rather than spectral measurements.

3D-based methods offer to align the 3D LiDAR point cloud
with the 3D reconstruction of a set of optical images. Corsini
et al. propose a two-step method for 3D-based point cloud to
image alignment. First, a 3D sparse point cloud is reconstructed
from a set of input optical images by using Structure From Mo-
tion (SFM) algorithm. The SFM algorithm is designed to find
2D correspondences in images of an input set of images and to
regress the 3D pose of each image as well as the 3D position of
each feature point, producing a sparse point cloud. After that, the
4-points congruent set (Aiger et al.) algorithm is used to align
the sparse 3D point cloud with the 3D LiDAR point cloud. Later,
Abayowa et al. propose a similar method for aligning a 3D Li-
DAR point cloud with a set of aerial optical images. A dense
3D point cloud model is built from the set of optical images us-
ing the dense 3D reconstruction method described by Furukawa
and Ponce. Then, the pose of the dense point cloud is recovered
by using Iterative Closest Point (ICP) (Besl and McKay) algo-
rithm in order to minimize the distance error between the dense
point cloud and the LiDAR point cloud. Although these methods
achieve high quality results, they require a set of input optical im-
ages instead of a single image. Moreover, 3D registration meth-
ods are largely sensitive to missing data that often appear in real
urban LiDAR data.

Statistical methods for point cloud to image registration
try to define metrics that can be used to measure similarities
between the two input modalities. Most of the time, the metric is
computed in the 2D image domain. The work described in Miled
et al. proposes to align the sparse projection of a LiDAR point
cloud with an optical image by comparing both modalities using
Mutual Information (MI). In Miled et al., this metric is used to
find the dependency between the colors carried by the optical
images and the reflectances brought by the LiDAR point cloud.
The pose between the image and the point cloud is computed
using a variational model that maximizes the MI metric between
the two modalities. This method achieves very convincing re-
sults. However it strongly relies on the quality of the reflectances
aquired by the LiDAR sensor. In practical use, only very few high
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quality LiDAR sensors can reach such levels of accuracy. Most
common sensors acquire reflectance with high level of noise.
Moreover, the reflectance is only relevant in certain scenarios
and cannot be used on wet surfaces or highly reflective surfaces
for example. To overcome the problem of using reflectance, a
method for the registration of a raw LiDAR point cloud with a
single image is proposed in Castorena et al. (2016). There, the
authors propose to fuse and align the modalities at the same time
by computing a dense image from the projection of the point
cloud and by aligning edges of both modalities. This method can
only perform well if the acquisition center of both modalities
are very close. Otherwise a lot of ambiguities can arise from
the LiDAR projection in the image domain which often leads to
large errors in the calibration estimation. Later, (Guislain et al.)
proposed a method that aims at aligning only visible points of
the LiDAR point cloud with the optical image. To do so, they
first estimate the visible points given the optical image point of
view using Rubinstein et al. (2008). The remaining points are
used to produce a dense image of reflectances by performing
bilinear inpainting. This dense reflectance image is aligned with
the optical image using a metric that is less sensitive to missing
data than Mutual Information. In the case where the reflectance
is not available, they offer to compute the same metric on a
dense normals map of visible points. This method achieves very
good results when the visibility estimation performs well. This
is the case when each different objects of the 3D scene are well
separated. However, in the case of urban scenes, the amount of
missing data as well as the heterogeneity of the shapes and object
is very challenging for visibility estimation methods as shown in
(Biasutti. et al., 2019). Therefore, the quality of the results on
real urban data often lacks of accuracy.

In this paper, we only consider the case of fine alignment be-
tween a LiDAR point cloud and an optical image. Thus, we es-
timate that the deformation induced by the perspective between
the two modalities can be ignored as the original alignment is
close to the optimal one. Therefore, it is sufficient to only esti-
mate a 2D transformation between the optical image and the point
cloud in the image domain, which largely simplifies the problem,
but limits its usage to close initializations. In the next section, we
propose a novel method for LiDAR point cloud and optical image
alignment that uses the topology of the LiDAR sensor to gener-
ate a dense image without any visibility ambiguities. This dense
image is later aligned with the optical image using a variational
model.

3. Methodology

In this section, we present each step of the proposed framework
for point cloud to image registration. The proposed framework
is highlighted Figure 1: first, an image is created by rendering
the triangulation based on the sensor topology of the point cloud.
Then, this rendering is aligned with the optical image using a
variational approach to align the gradients of both modalities.

3.1. Fast mesh reconstruction in sensor topology

The first step of the proposed framework consists in the recon-
struction of the mesh of the point cloud. The problem of mesh

(a)

(b)

(c)

Figure 2: Mesh reconstruction scheme. (a) is the input point cloud, (b) the point
cloud as seen in sensor topology and (c) the reconstructed mesh.

reconstruction consists in linking points of a point cloud with tri-
angles in order to approximate the surface of the objects in the
scene. Surface reconstruction is traditionally done by smooth-
ness approaches (Lipman et al., 2007; Xiong et al., 2014), prim-
itive approximation (Schnabel et al., 2009; Lafarge and Alliez,
2013) or global regularity approaches (Li et al., 2011a,b; Monsz-
part et al., 2015). However, these methods are often computation-
ally expensive. Moreover, they often require strong assumptions
on the homogeneity of the point cloud, which is not suitable in
the case of LiDAR acquisitions. To overcome these problems,
we propose a very fast approach for mesh reconstruction that ex-
ploits sensor topology to instantly create a raw mesh from the
point cloud. Note that more precise meshes can be reconstructed
using the analogue method proposed in Guinard and Vallet (2018)
but with a substantive impact on the computational time. How-
ever this work focuses on the efficiency and the performance of
the final alignment between LiDAR point cloud and optical im-
age. Thus, the use of the method proposed in Guinard and Vallet
(2018) is out of the scope of this work, although it would be in-
teresting to test.

Modern LiDAR sensors often acquire 3D points following a
defined pattern from which we can build a dense image (Biasutti
et al., 2018). Indeed each point is defined by two angles and a
depth, (θ, φ, d) respectively, with steps of (∆θ,∆φ) between two
consecutive positions. Each point p of the LiDAR point cloud
can be mapped to the coordinates (x, y) with x = b θ

∆θ
c, y = b

φ
∆φ
c

of a 2D map, hereinafter referred to as u. An example of a point
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Figure 3: Triangle construction from image in sensor topology.

(a) (b)

(c) (d)

Figure 4: Rendering of mesh at optical image location. (a) is the optical image,
(b) is the point cloud projected in the optical image domain without mesh recon-
struction, (c) is a texture-less rendering of the mesh and (d) is the depth rendering
of the mesh reconstructed from the point cloud.

cloud (Figure 2(a)) as seen from the sensor topology can be met
Figure 2(b). This representation of the point cloud enables direct
neighborhood computation: the set of neighbors of a given point
can be directly retrieved by checking the adjacent pixels of its
projection in u.

For each pixel (x, y) of u, 2 triangles 4ul,4bt are created as
follows:

4ul = {u(x, y), u(x + 1, y), u(x, y + 1)}
4br = {u(x + 1, y), u(x + 1, y + 1), u(x, y + 1)}

This principle is illustrated on Figure 3. After that, triangles are
filtered by discarding the ones that have at least one edge that is
longer than a certain threshold t, typically t = 1.0m. This step
prevents separate objects from being connected together which
enhances the overall quality of the mesh. An example of recon-
structed mesh is showed Figure 2(c). Finally, the mesh is being
rendered from the optical camera location, with the same intrinsic
parameters. This produces a dense image du of the point cloud.
As the mesh is not textured, du is filled by the values of the z-
buffer of the rendering (i.e. the depth of each pixel). Figure 4
displays an example of a sparse projection of the point cloud (b)
in the image domain of (a) compared to texture-less rendering
(c) and depth rendering (d). We can see that the renderings are
largely denser than the sparse projection, resulting in the appear-
ance of strong depth gradients.

3.2. Depth to optical image alignment
As mentioned in Section 2, the alignment between a LiDAR

point cloud P and an optical image I is non-trivial as both modal-
ities do not share any common attribute. The mesh rendering du

provides strong depth gradients in the image domain. These gra-
dients correspond to object contours which can also be met in the
optical image. Although strong depth gradients can occur without
appearing in the optical image, and vice-versa, it is reasonable to
assume that most depth gradients also appear in the optical im-
age in real data. Therefore, aligning P and I in the domain of
I can be simplified as the alignment between the gradients of du

and I. However, this assertion is only true if the initialization of
the alignment between du and I is relatively close. Indeed, the
perspective induced by the 3D rendering introduces deformations
that are proportional to the depth of the scene. Thus, if the ini-
tialization is too far from the optimal alignment, the alignment
between the gradients of du and I is not possible.

The method described in Sutour et al. offers to align gradients
of two modalities expressed in the same image domain. To that
extent, they define a variational model in which gradient align-
ment between images u1 and u2 is done by maximizing the fol-
lowing criterion:

C(T ) =

∫
Ω

∣∣∣∇u1(Ttx,ty,z(X)) · ∇u2(X)
∣∣∣ dX,

Ttx,ty,z(X) =

1 + z 0 tx

0 1 + z ty
0 0 1

 X

where Ω is the domain of definition of I and Tz,tx,ty represents a 2D
affine transform with 3 degrees of freedom: vertical and horizon-
tal translation tx, ty as well as zooming z. In the case of LiDAR
point cloud to optical image alignment, rotation should also be
considered in the transform as we cannot assume that the rotation
between both sensors is always null. Therefore, we propose to
extend the model presented in Sutour et al. in order to estimate
rotation as well as translation and zooming.

We define T̄z,tx,ty,θ the 4 degrees of freedom (tx, ty translation, z
zoom and θ rotation) transformation matrix such that:

T̄tx,ty,z,θ = Ttx,ty,z

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

s cos θ −s sin θ tx

s sin θ s cos θ ty
0 0 1


with s = 1 + z to simplify notations. Similarly to Sutour et al.,
the gradients of du and I are aligned by maximizing the following
criterion:

C(T̄ ) =

∫
Ω

∣∣∣∇du(T̄tx,ty,z,θ(X)) · ∇I(X)
∣∣∣ dX.

Using this formulation, an explicit optimization scheme is built to
maximize the proposed criterion at each iteration n, by perform-
ing a gradient ascent on each parameters of the transformation
T̄z,tx,ty,θ: 

tn+1
x = tn

x + λ1
∂C
∂tx

(T̄tx,ty,z,θ)
tn+1
y = tn

y + λ2
∂C
∂ty

(T̄tx,ty,z,θ)
zn+1 = zn + λ3

∂C
∂z (T̄tx,ty,z,θ)

θn+1 = θn + λ4
∂C
∂θ

(T̄tx,ty,z,θ)
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Table 1: MAE of each method compared to the manually aligned data for each
parameter on 50 randomly generated transformations.

Method Mean Absolute Error
tx ty z θ

Mutual Information 16.3 11.9 0.05 0.46

Sutour et al. (baseline) 2.91 6.76 0.006 0.57

baseline + rotation 2.96 6.29 0.004 0.04
baseline + rotation + refined 1.93 3.31 0.005 0.03

where the partial derivatives of C(T̄tx,ty,z,θ) are defined as follows
for each iteration:

∂C
∂tx

(T̄tx ,ty ,z,θ) =

∫
Ω

σ∇2d̄u(X)
(
1
0

)
· ∇I(X)dX,

∂C
∂ty

(T̄tx ,ty ,z,θ) =

∫
Ω

σ∇2d̄u(X)
(
0
1

)
· ∇I(X)dX,

∂C
∂z

(T̄tx ,ty ,z,θ) =

∫
Ω

σ∇2d̄u(X)
(

x cos θ + y sin θ
−x sin θ + y cos θ

)
· ∇I(X)dX,

∂C
∂θ

(T̄tx ,ty ,z,θ) =

∫
Ω

σ∇2d̄u(X)
(
−x · s sin θ − y · s cos θ
x · s cos θ − y · s sin θ

)
· ∇I(X)dX

having d̄u(X) = du(T̄tx,ty,z,θ(X)) and σ = sign(∇du(X) · ∇I(X)).
The functional we aim at optimizing is not convex. Therefore,
it is highly subject to local maxima. However we consider that
the alignment we seek to perform only concerns data provided
by calibrated Mobile Mapping Systems. Therefore, the provided
alignment of the LiDAR point clouds and the optical images is
assumed to be close to the optimal alignment, as discussed here
after in Section 4.1.

For the gradient ascent scheme, we set λ1 = λ2 = 10−3 to be
larger than λ3 = λ4 = 10−5 as the translation expressed in pixel is
likely to be larger than the rotation or the zooming factor. We set
the maximum number of iterations to 200. However, most of our
experiments have shown that the method converges in less than
30 iterations on the data presented Section 4.

Finally, we propose to improve the gradient ascent scheme by
refining the search steps at each iteration. The search step λn

x at
iteration n is then defined as follows:

λn
x =

{
λn−1

x if Cn(T̄ ) > ρCn−1(T̄ )
λn−1

x /2 otherwise

with Cn(T̄ ) the energy at iteration n, ρ = 0.99. This improve-
ment prevents the algorithm from being directly stuck in a local
maxima, and provides better results in practice as demonstrated
in Section 4.1.

4. Experiments and results

We conclude this paper by presenting different results obtained
using the proposed framework. The proposed pipeline is evalu-
ated on the RobotCar dataset (Maddern et al.) which provides
images of resolution 1280 × 960px as well as point clouds com-
posed of millions of points. We demonstrate the efficiency of the
proposed method through a quantitative and qualitative analysis.

4.1. Quantitative analysis

The calibration of the RobotCar dataset does not provide a
perfect alignment between LiDAR point clouds and optical im-
ages. We propose to manually align mesh renderings with optical
images to create ground truths. We found out that the original
data alignment compared to the ground truth alignment presents
a Mean Absolute Error (MAE) of about 19px for translation, 0.9
degree for rotation and 0.01 for zooming. We propose to apply
comparable transformations on the manually align renders to gen-
erate evaluation data. The transformations are generated by ran-
domly and uniformly shifting the renders between −20 and 20
pixels on both x and y axis, rotating the renders between −1 and
1 degree and zooming by a uniform random factor between 0.95
and 1.05.

We compare our method with and without the refinement of
the search steps to the method proposed in (Sutour et al.), as
this method presents the baseline of gradient alignment with-
out the estimation of the rotation. Moreover, we also compare
our method to an exhaustive search of the maximum of the Mu-
tual Information (Viola and Wells III) as done in recent multi-
modal alignment methods, such as (Miled et al.). We compute
the MAE between each estimated parameter (tx, ty, z, θ) and the
ground truth. The results of this experiment are summarized in
Table 1. We can see that our method achieves very fine align-
ment of LiDAR point cloud and optical image. The method with
refinement of search steps provides finer results than each other
method. The use of the functional defined in (Sutour et al.) as
well as the extension presented in this paper outperforms the ex-
haustive search with Mutual Information metric.

Moreover, we can see that extending the original functional by
adding the regression of rotation improves the results not only in
the estimation of the rotation, but also in the overall alignment.
This is due to the fact that limiting the transformations to transla-
tion and scaling prevents the algorithm from finding the optimal
alignment. Therefore, the baseline algorithm finds another local
maxima which does not align well both modalities. This shows
the importance of predicting the rotation as well as the baseline
parameters of the transformation. Finally, the refinement of the
search steps prevents the variational model from being stuck in
local maxima, which makes it more robust to largely shifted ini-
tialization while keeping the same computational cost.

4.2. Qualitative analysis

We conclude our experiments with a qualitative analysis. Fig-
ure 5 presents the results of LiDAR point cloud to optical image
alignment using our method. The first row shows the original
alignment, the second row shows the results of the alignments
using our method, with closeup looks at the original alignments
and our results on the last two rows respectively. On each image,
the strong gradients of the depth renderings are represented by
green lines on the optical images.

The results presented in Figure 5 highlight that our model suc-
ceeds in aligning gradients of both modalities, producing a very
good 2D registration between LiDAR point clouds and optical
images. From initialization with shifted alignments (shown in
the first row), our method produces results where both modalities
are seamlessly aligned (second row). In particular, the last row of
Figure 5 shows some areas where the variational model perfectly
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Figure 5: Example of alignments produced by our method. The green lines correspond to the strong gradients of the depth render. The first row shows the original
alignment between the optical images and the mesh gradients. The second row shows the alignment produced by our method. A closeup look at details of original
alignment and our results is showed on the last two rows respectively.

matches the renders and the optical images on structures that dis-
play strong gradients such as roof lines or windows. Moreover,
the method only requires to match a small amount of gradients
in order to correctly align both modalities. This property makes
it more robust to outliers as some gradients of the depth render-
ing do not correspond to any gradient in the optical image, and
vice-versa, as discussed previously in Section 3.2. Finally, our
method is able to produce good alignment even when initialized
with large shifts between both modalities. This is specially visible
in the last column where we can see that in the original alignment,
the optical image is shifted from the gradients of the depth ren-
der. Despite this initialization, our method succeeds in producing
a very fine alignment of the two modalities as it can be seen on
the lowest line.

5. Conclusion

In this paper, we have proposed a novel framework for LiDAR
point clouds to optical images alignment. The first step of this
framework offers to reconstruct the mesh from the point cloud by
exploiting the topology of the sensor. After that, the mesh is ren-
dered with the same pose as the optical image. Finally, the depth
gradients of the rendered LiDAR mesh and the color gradients

of the optical image are aligned using a modified variational ap-
proach from Sutour et al.. The qualitative and quantitative results
demonstrate that the framework succeeds in very fine alignment
between both modalities.

Although the overall results of the proposed method are sat-
isfying, it depends on the initialization of the alignment. In the
future, we would like to extend the variational model to perform
the gradient alignment from coarse to fine scale to make it less
dependant on the initialization. We also would like to compare
our current results to the one obtained on renderings done with
the mesh produced by the method presented in Guinard and Val-
let (2018).
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