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Guaranteed Voronoi-based Deployment for Multi-Agent Systems under
Uncertain Measurements

Thomas Chevet1, Cristina Stoica Maniu1, Cristina Vlad1 and Youmin Zhang2

Abstract— In this paper, a decentralized robust tube-based
model predictive control algorithm is used for two-dimensional
Voronoi-based deployment of a multi-agent system in a bounded
convex area, where the planar motion of each agent is subject
to uncertain measurements. A bias bounded by a rectangle is
thus considered for each agent’s position measurement. The
convex area of deployment is then partitioned into guaranteed
Voronoi cells separated by a bounded unauthorized corridor.
By using a decentralized robust predictive control, each agent
is guaranteed to evolve inside the safety region defined by the
agent’s guaranteed Voronoi cell and to converge to a point in
a set centered on the Chebyshev center of this cell, driving
the multi-agent system into a static configuration. Simulation
results show the effectiveness of the proposed decentralized
control strategy on a fleet of quadrotors when one of the agents
is subject to a measurement bias due to a sensor fault.

I. INTRODUCTION

In numerous applications, the problem of deployment of a
multi-agent system (MAS) composed of unmanned vehicles
over a monitored area is of great interest. These applications
range from environmental monitoring to search or rescue
operations [1], [2], [3]. This problem has been widely studied
and various works rely on the deployment of the MAS
inside a dynamic Voronoi partition [4] of the area of interest.
Several existing results focus on driving the MAS into a
centroidal Voronoi configuration where the target point is
the center of mass of the Voronoi cell [5], [6], [7] but this
point can be difficult to compute. A simpler objective is to
consider the Chebyshev center of the cell [8], [9], [10], i.e.
the center of the largest euclidean ball inscribed in the cell.
However, these techniques guarantee the MAS convergence
into a static configuration under the assumption that the
agents’ positions are exactly known. When the agents are
subject to disturbances, a guaranteed Voronoi diagram [11],
[12], taking into account the uncertainty on the position,
is used. In this case, a prohibited corridor separates the
guaranteed Voronoi cells. The objective is then to reach a
static configuration where each agent lies on a target point
belonging to a guaranteed cell.

Several control algorithms have been studied for the
deployment of a MAS such as consensus based algorithms
[13], [1], potential field [2], gradient ascent [12] or model
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predictive control (MPC) [14], [9], [15]. Moreover, in the
case of a Chebyshev center based control algorithm, a state-
feedback control law ensures that a static optimized coverage
configuration is attained [8], [10]. In order to take into
account possible disturbances on the system, robust MPC
techniques have been proposed in [16], [17] for a single
system, based on tubes of robust positively invariant sets
[18], [19] centered on the system’s nominal trajectory. With
such a control algorithm, the system’s state is guaranteed to
remain inside the tube. In the context of multi-agent systems,
this property is used during the deployment to define safety
regions for the considered agents as in [20].

In this paper, a MAS composed of unmanned vehicles for
which the position is controlled via the velocity is consid-
ered. These agents are deployed inside a two-dimensional
convex bounded polyhedron called working space. Each
agent is considered to be subject to possible measurement
uncertainties on its position, bounded by a rectangle. Using
rectangles to bound the uncertainties, quadratic constraints
in the MPC problem are avoided. The working space is
then partitioned into guaranteed Voronoi cells based on these
uncertain rectangles centered on the nominal position of the
unmanned vehicles and separated by a prohibited corridor.
Then, by using a decentralized robust tube-based MPC law,
each agent tracks the Chebyshev center of its guaranteed
Voronoi cell. With this control law, the agent’s position is
constrained to remain inside the guaranteed Voronoi cell.
Thus, due to the properties of the tube-based MPC law, each
agent remains inside this cell which is then a safety region
for collision avoidance during deployment. The contribution
of this paper covers: 1) a decentralized tube MPC strategy
for the guaranteed Voronoi-based deployment of multi-agent
systems with uncertain measurements leading to a bounded
unauthorized corridor between the guaranteed Voronoi cells,
thus providing anti-collision guarantees; 2) the application of
the proposed control strategy on a fleet of quadrotors with
measurement bias due to sensor faults.

Section II describes the construction of the guaranteed
Voronoi diagram of uncertain rectangles. Section III presents
the proposed robust tube-based MPC algorithm for the
deployment of the MAS, based on the guaranteed Voronoi di-
agram of uncertain rectangles. An application of the guaran-
teed Voronoi deployment framework to a fleet of unmanned
aerial vehicles (UAVs) is detailed in Section IV. Finally,
concluding remarks and perspectives are drawn in Section V.

Notation. In the following, R is the set of the real
numbers. The matrices 0n×m and 1n×m are the matrices of
size n×m, with n and m positive integers, filled respectively



with zeros and ones. The matrix In is the identity matrix of
size n. The transpose of the matrix A is denoted by A>. A
matrix diag (a1, . . . , an) is a diagonal matrix with diagonal
elements a1, ..., an. The spectrum of the matrix A is denoted
by ρ(A). The vector |x| contains the absolute value of each
element of the vector x. The Euclidean norm of the vector x
is ‖x‖22 = x>x. The quadratic norm of the vector x weighted
by the matrix Q is ‖x‖2Q = x>Qx, where Q = Q> is a
strictly positive definite matrix, denoted by Q � 0. The set
of integers from n to m is denoted by n,m. The cardinality
of a set S is denoted by |S |. The Minkowski sum of two
sets A and B is the set A ⊕B = {a+ b|a ∈ A , b ∈ B}
and the Pontryagin difference of these sets is A 	 B =
{a ∈ A |a+ b ∈ A ,∀b ∈ B}.

II. GUARANTEED VORONOI DIAGRAM OF UNCERTAIN
RECTANGLES

A. Preliminaries

A multi-agent system Σ is deployed into a compact convex
region W ⊂ R2. An agent α ∈ Σ obeys the discretized linear
dynamics:

xα(k + 1) = xα(k) + Tsvα(k)

yα(k) = xα(k) + rα(k),
(1)

with xα =
[
xα yα

]> ∈ W, vα =
[
vxα vyα

]> ∈ R2 and
yα ∈ R2 the agent’s position, horizontal velocity and output,
respectively. Moreover rα ∈ R2 is a bounded measurement
disturbance and Ts is the sampling period of the system. The
nominal system associated with (1) for the agent α ∈ Σ is:

xα(k + 1) = xα(k) + Tsvα(k)

yα(k) = xα(k).
(2)

In order to simplify the reading of this section, the
time dependence is further dropped. In the literature, the
uncertainty rα is considered to be bounded either by a circle
[12], [11], an ellipse [21] or a polyhedron [11]. However, if
rα is considered to be bounded by a rectangle:

R0
α =

{
r ∈ R2

∣∣∣∣|r| ≤ [rxαryα
]}

, (3)

with rxα, r
y
α ≥ 0, the measurement disturbance is fully

encompassed. Thus, the output of the agent α ∈ Σ is
guaranteed to belong, at time instant k, to Rα = {xα}⊕R0

α.

B. Guaranteed Voronoi Diagram

When the positions xα ∈W of the agents, with α ∈ Σ, are
well known, the Voronoi diagram [4] of the compact convex
set W, in which the multi-agent system is deployed, is:

W =
⋃
α∈Σ

Vα, with Vα ∩ Vβ = ∅, ∀α, β ∈ Σ, α 6= β, (4)

with the Voronoi cells:

Vα =
{
x ∈W

∣∣‖x− xα‖2 ≤ ‖x− xβ‖2 , ∀β 6= α
}
. (5)

However, when the agents’ position is uncertain, this
definition is modified as presented in [11] or [12]. Given

two agents α, β ∈ Σ and their associated uncertain regions
Rα and Rβ , the set of the points closer to Rα than to Rβ

can be defined as follows:

H β
α = {x ∈W|‖x− y‖2 ≤ ‖x− z‖2 , ∀y ∈ Rα, z ∈ Rβ} .

The guaranteed Voronoi (GV) cell with respect to the con-
sidered uncertain measurements of the agent α ∈ Σ is then:

Vgα =
⋂
β∈Σ
β 6=α

H β
α (6)

and the GV diagram is now such that:⋃
α∈Σ

Vgα ⊆W, with Vgα ∩ Vgβ = ∅, ∀α, β ∈ Σ, α 6= β. (7)

In the following, the expressions guaranteed Voronoi cell
or guaranteed Voronoi cell of uncertain rectangles will
always designate a cell constructed by considering rectangle
uncertainties.

C. Cell Boundary

For two uncertain regions Rα and Rβ , the boundary of
the set H β

α is the set:

Bβ
α =

{
x ∈W

∣∣∣∣max
y∈Rα

‖x− y‖2 = min
z∈Rβ

‖x− z‖2

}
. (8)

Consider x =
[
x y

]>
and let xα,xβ be the centers

of the sets Rα and Rβ , respectively. Then, the following
expressions hold for all x ∈W:

max
y∈Rα

‖x− y‖22 = (|x− xα|+ rxα)
2
+(|y − yα|+ ryα)

2 (9)

min
z∈Rβ

‖x− z‖22 =
(
max

{
|x− xβ | − rxβ , 0

})2
+
(

max
{
|y − yβ | − ryβ , 0

})2

.

(10)

Given these two distances, the equality in (8) defines
the edge of H β

α . This boundary is then continuous and
composed of line segments and parabolic arcs, having for
focus one of the vertices of Rα. Due to this last statement,
Rα lies in the convex part of the parabolas inducing the
parabolic arcs. Thus, the region H β

α is convex [22].
Figure 1 illustrates an example of a compact convex

region W with two agents having for positions x1 and x2

and their associated uncertain rectangles R1 and R2. The
boundaries H 2

1 and H 1
2 delimit the GV cells (the red filled

areas). An empty corridor (the white area) appears due to
the position measurement uncertainties. The dashed lines
are the parabolic arcs mentioned before. However, the GV
cells are meant to be used as safety regions for the agents
and as position constraints in a MPC optimization problem
defined in Section III-B. Thus, the parabolic arcs are difficult
to use because they induce quadratic constraints within this
optimization problem. Since the set Rα is in the convex part
of the parabolas, an inner approximation of each parabolic
arc will be further built by the chords joining the two ends of
the succession of parabolic arcs instead of the parabolic arcs
themselves. Thus, the border of H β

α is only composed of
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Fig. 1. Example of guaranteed Voronoi diagram for two agents with
uncertain positions bounded by rectangles.

line segments and the GV cell Vgα is then a bounded convex
polytope. Notice that this trade-off between the complexity
and the accuracy of the results does not affect the guaranteed
Voronoi partition.

III. PROPOSED DEPLOYMENT CONTROL

A. Robust Tube-Based MPC for an Agent subject to Uncer-
tain Position Measurements

The proposed control strategy for the multi-agent system
deployment is based on a robust tube-based MPC [16].
Each agent α ∈ Σ follows the dynamics from (1) with an
uncertainty on the position measurement. Such a control law
is used to guarantee that the uncertain state of the system
(1) stays in a tube centered on the nominal state of (2). The
control input is then:

vα(k) = vα(k) + Kα (x̂α(k)− xα(k)) , (11)

where vα(k) is obtained via a MPC algorithm applied on
the nominal system (2) that will be described in Section III-
B, x̂α(k) and xα(k) are respectively the estimated and the
nominal positions of the agent α and Kα ∈ R2×2 is a state-
feedback gain. To estimate the state of the uncertain system
(1), a discrete-time Luenberger observer is used having for
gain matrix Lα ∈ R2×2:

x̂α(k + 1) = x̂α(k) + Tsvα(k) + Lα (yα(k)− ŷα(k))

ŷα(k) = x̂α(k). (12)

The estimation error between the real and the estimated
position x̃α(k) = xα(k)− x̂α(k) is such that:

x̃α(k + 1) = (I2 −Lα) x̃α(k)−Lαrα(k), (13)

with the spectrum ρ (I2 −Lα) < 1. The deviation between
the estimated and the nominal state eα(k) = x̂α(k)−xα(k)
is such that:

eα(k+1) = (I2 + TsKα) e(k)+Lα (x̃α(k) + rα(k)) , (14)

with ρ (I2 + TsKα) < 1. Both the gains Kα and Lα can be
obtained by using a pole placement technique or by linear
quadratic design.

Based on the definitions of x̃α and eα, the position of the
system (1) is such that:

xα(k) = xα(k) + x̃α(k) + eα(k). (15)

Definition 1 ([18]): A set S is called robustly positively
invariant (RPI) for the discrete-time system:

x(k + 1) = Ax(k) + w(k) (16)

if x(k) ∈ S , ∀x(0) ∈ S ,w(k) ∈ W , k ≥ 0, or if:

AS ⊕W ⊆ S . (17)

Definition 2 ([18]): A set is called minimal robustly pos-
itively invariant (mRPI) for (1) if it is a RPI set contained
in every RPI set for (1).

Since for systems (13) and (14) the spectra satisfy
ρ (I2 −Lα) < 1 and ρ (I2 + TsKα) < 1, there exists two
sets S̃ and S that are RPI [19] respectively for (13) and (14).
It was proven in [16] that if x̃α(0) ∈ S̃ (resp. eα(0) ∈ S),
then x̃α(k) ∈ S̃ (resp. eα(k) ∈ S) for all admissible
disturbance sequences and k ≥ 0. Then, by extension, with
the control law (11), the position of the agent α satisfies:

xα(k) ∈ {xα(k)} ⊕ S̃⊕ S. (18)

B. Decentralized MPC Algorithm for the Deployment of a
MAS subject to Uncertain Position Measurements

The decentralized model predictive controller proposed
for the nominal system (2) is derived from the technique
presented in [9]. The nominal speed vα for system (2) is
given by the optimization problem:

min
vα

Np−1∑
l=0

(∥∥xα(k + l)− xobj
α (k)

∥∥2

Q
+ ‖vα(k + l)‖2R

)
+
∥∥xα(k +Np)− xobj

α (k)
∥∥2

P
(19a)

s.t. xα(k + l + 1) = xα(k + l) + Tsvα(k + l), (19b)

xα(k + l) ∈ X, (19c)

vα(k + l) ∈ U, (19d)

xα(k +Np) ∈ Xλ. (19e)

In the cost function of the problem (19), the weighting
matrices Q = Q>,R = R> � 0 are diagonal matrices and
P is the solution of a discrete-time Riccati equation. The
integer Np > 0 is the prediction horizon.

In the optimization problem (19), the objective point
xobj
α (k) is the Chebyshev center of the guaranteed Voronoi

cell Vgα(k) of the agent α ∈ Σ. At each time the MPC
algorithm is run, all the agents α ∈ Σ broadcast their nominal
position xα and their uncertain rectangle R0

α. Then, even
when the actual bias on the position measurement in (1)
is null, each agent constructs its guaranteed cell based on
the uncertain rectangles Rα = {xα} ⊕ R0

α to account for
the noise and the model error. Since the agents evolve in
the set W, the GV cells are time-varying. The Chebyshev
center of Vgα(k) is the center of the largest ball Bα ={
x ∈ Vgα(k)

∣∣∣∥∥∥x− xobj
α

∥∥∥
2
≤ ρα

}
inscribed in Vgα(k) and is



the solution of the optimization problem:

max
xobj
α , ρα

ρα

s.t. ρα ≥ 0,

θαi ≥ hαi
>xobj

α + ‖hαi ‖ ρα, i ∈ 1, n,

(20)

with Vgα(k) =
{
x ∈W

∣∣∣hαi >x ≤ θαi , i ∈ 1, n
}

, hαi ∈ R2,
θαi ∈ R and the integer n > 0 the number of sides of Vgα(k).

The set of state constraints X is the set Vgα(k)	
(
S̃⊕ S

)
and the set of input constraints U is U 	 KαS, where
U =

{
v ∈ R2

∣∣∣|v| ≤ [vmax
x vmax

y

]>}
is a rectangle of hard

constraints on vα.
The final set Xλ is a contracted version of the set X based

on a contracted version of the GV cell:

Xλ =
{
xobj
α

}
⊕ λ

(
Vgα ⊕

{
−xobj

α

})︸ ︷︷ ︸
contracted Voronoi cell

	
(
S̃⊕ S

)
, (21)

with λ ∈ [0, 1). The constraint (19e) ensures that Xλ is a
controlled λ-contractive set [18] for system (2). Then, the
nominal system converges to a static Chebyshev configura-
tion [8], [10], where xα(k + 1) = xα(k) = xobj

α .
Finally, it was shown in [16] that, with the control law

given in (11), the real position xα and speed vα of the agent
α ∈ Σ satisfy the constraints xα ∈ X and vα ∈ U provided
that x̃α(0) ∈ S̃ and eα(0) ∈ S. Then, with the chosen
constraints and with the robust tube-based MPC control
algorithm, the real position of each agent is guaranteed to
stay inside its GV cell which is a safety region.

IV. APPLICATION TO A FLEET OF UAVS

A. UAV Model

Let Σ be a system composed of |Σ| quadrotor
UAVs. A non-linear continuous-time state-space model
of such a UAV can be derived from Lagrangian me-
chanics and a description of this model can be found
in [23], [9]. The considered state-space is Xα =
[xα yα zα φα θα ψα v

x
α v

y
α v

z
α ω

x
α ω

y
α ω

z
α]
>, with α ∈ Σ.

The signification of all the state variables is gathered in
Table I. This model is then linearized around an equilib-
rium point that corresponds to a hovering state Xeq

α =[
xeq
α yeq

α zeq
α 01×9

]>
leading to a linear state-space model:

Ẋα = A (Xα −Xeq
α ) + Buα (22)

where uα = Uα −Ueq
α , with Uα =

[
u1
α u

2
α u

3
α u

4
α

]>
the

duty cycles of the pulse width modulation voltages supplied
to the UAV’s motors and Ueq

α = mg
4K14×1 the input value to

maintain the UAV in hovering state.
In the following, all state variables will be considered to

evolve around their equilibrium values. The system (22) is
separated into five subsystems to apply the control strategy
described in the previous section. The position subsystem is:[

ẋα
ẏα

]
=

[
vxα
vyα

]
, (23)

TABLE I
NOMENCLATURE AND NUMERICAL VALUES

xα, yα, zα UAV’s center of mass coordinates
φα, θα, ψα Roll, pitch and yaw angles
vxα, vyα, vzα Linear speed of the UAV
ωxα, ωyα, ωzα Angular speed of the UAV
m = 1.4 kg UAV’s mass
Ix = Iy = 0.03 kg · m2 Moments of inertia along
Iz = 0.04 kg · m2 x, y and z directions
L = 0.2 m Arm’s length
C = 4 m Thrust to moment ratio
K = 12 N · V−1 Motor gain
g = 9.81 m · s−2 Gravitational acceleration

which provides the references to the pitch/roll subsystems:v̇xαθ̇α
ω̇yα

 =

0 g 0
0 0 1
0 0 0

vxαθα
ωyα

+
KL

Iy

0 0 0 0
0 0 0 0
0 0 1 −1

uθα,

(24)v̇yαφ̇α
ω̇xα

 =

0 −g 0
0 0 1
0 0 0

vyαφα
ωxα

+
KL

Ix

0 0 0 0
0 0 0 0
1 −1 0 0

uφα,

(25)
and, finally, the altitude and yaw subsystems are:[

żα
v̇zα

]
=

[
0 1
0 0

] [
zα
vzα

]
+
K

m

[
0 0 0 0
1 1 1 1

]
uzα, (26)[

ψ̇α
ω̇zα

]
=

[
0 1
0 0

] [
ψα
ωzα

]
+
KC

Iz

[
0 0 0 0
−1 −1 1 1

]
uψα . (27)

All the numerical values of the parameters are given in
Table I. The position subsystem (23) is sampled at Ts = 0.2
s. If the position measurement is subject to a bias, the
discrete-time version of the system (23) is identical to (1) and
the tube-based MPC strategy under uncertain measurements
described in Section III is used to control it.

The systems (24) to (27) are sampled at T ′s = 1 ms. For
these systems, the output is equal to the system’s state. For
each of them, a discrete-time linear quadratic regulator [24]
is designed with the weights: Qz = I2, Rz = 1000,

Qψ = diag (1, 0) , Rψ = 100,
Qθ,φ = diag (1, 1, 0) , Rθ,φ = 10.

(28)

The total control signal is then:

uα(k) = uzα(k) + uψα + uθα + uφα + uangle
α 14×1. (29)

The term uangle
α is meant to compensate the loss of upward

thrust caused by the UAV’s inclination. The total upward
thrust at time k is T (k) = mg cos θ(k) cosφ(k) and the
objective is then to have T (k) + 4Kuangle

α (k) = mg.

B. Simulation Scenario

A multi-agent system composed of 4 quadrotor UAVs
is deployed inside a square of 10 m side length W ={
x ∈ R2

∣∣|x| ≤ 5 · 12×1

}
. The position sensor of each agent

is considered to be subject to a bias bounded by a square of
0.4 m side length R0

α =
{
x ∈ R2

∣∣|x| ≤ 0.2 · 12×1

}
, ∀α ∈

1, 4.



For each agent, the state observer for the position
subsystem (1) is obtained by pole placement such that
ρ (I2 −Lα) = {0, 0} and Lα = I2, ∀α ∈ 1, 4.

With the state observer described before, a mRPI set for
(13) is immediately S̃ = R0

α from Definitions 1 and 2.
However, for the construction of S, a more complex method
must be employed. First, the gain Kα in (11) is computed
by using the method from [17]. This method, if feasible,
ensures that the sets W	

(
S̃⊕ S

)
, U	KαS, with α ∈ 1, 4

and U =
{
v ∈ R2

∣∣|v| ≤ 5 · 12×1

}
, are not empty (by using

the notations from [17], the tuning parameters used for this
method are λ = 0.1 and ρ = 0.57). Then, if the obtained
gain Kα ensures that (14) is stable, an approximation of the
mRPI set S is computed by following the algorithm from
[25]. Both the sets S̃ and S, as well as KαS, which are the
same for each agent, are presented on Fig. 2.

Then, each agent starts from a feasible random position
in W. Here, feasible means that xα(0) ∈ Vgα(0)	

(
S̃⊕ S

)
.

At t = 0 s, their position sensors are not subject to any
bias. However, as mentioned in Section III-B an uncertainty
bounded by a square of 0.4 m side length is always con-
sidered for the construction of the GV diagram. Thus, the
guaranteed Voronoi diagram is computed and each agent
starts tracking the Chebyshev center of its guaranteed cell.
At each time instant the MPC runs, each agent computes
its GV cell and its new Chebyshev center. At t = 13 s,
agent 4 is subject to a sensor fault leading to a constant bias
r4 = [−0.2 0.2]

> on the output of its position sensor.
During the simulation, for each agent α ∈ 1, 4, the set-

points for zα, vzα, the angles and the angular speeds are
respectively 5 m, 0 m.s−1, 0 rad and 0 rad.s−1. The speed
references for subsystems (24) and (25) are provided by the
position subsystem (23). To limit the values of the pitch and
roll angles and remain in a linear domain for the evolution
of the system, a rate limitation of 0.2 m.s−1 on each axis is
added on the variation of the objective point xobj

α .
For all the MPC algorithms, the considered tuning param-

eters are Q = 10I2, R = I2 and Np = 5. The contraction
factor for the constraint (19e) is chosen to be λ = 0.95. The
optimization solver for the MPC is generated with CVXGEN
[26] and the polyhedrons are computed with MPT3 [27].

C. Simulation Results

In this simulation scenario, the dynamical model for each
agent is the nonlinear model that can be found in [9].

The evolution of the position xα of all the 4 agents is
presented in Fig. 3 as well as the evolution of the nominal
position xα and the Chebyshev center xobj

α of all these agents.
This figure also shows the final (at t = 30 s) GV diagram
(the blue filled sets) as well as the final sets Vgα 	

(
S̃⊕ S

)
,

with α ∈ 1, 4, represented by the dashed lines. It can be seen
that the position of each agent converges to its nominal value
which converges to the Chebyshev center of the guaranteed
Voronoi cell, except for the agent 4 due to the bias on the
measurement. However, the position of agent 4 converges to
a point inside {x4} ⊕ S̃⊕ S ⊆ Vg4 as detailed in (18).
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Fig. 2. Approximations of minimum robustly positively invariant sets for
the control problem (the set KαS̄ is scaled to fit in the figure).
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obj
α .

This behavior is illustrated in Fig. 4. The nominal positions
x2 and x4 of the agents 2 and 4 converge to the Chebyshev
center of their associated cell. The same can be said for the
real position x2 of agent 2 that converges to its nominal
position x2. Until t = 13 s, the agent 4 behaves the same
way. But at this time instant, a sensor fault occurs for this
agent and a constant bias r4 = [−0.2 0.2]

> appears on the
measurement y4. As the top plots in Fig. 4 and Fig. 3 show,
the real position x4 of the agent 4 converges to x4 + r4.

The considered measurement bias introduces oscillations
on the difference between the estimated and the nominal
positions of the agent 4, i.e. x̂4−x4. Such a behavior induces
oscillations on the input signal of the UAV’s rotors and on
the agent’s movement as illustrated in Fig. 4. However, on a
real system, the dynamics of the rotor limits this behavior,
slowing down the movement of the agent. For the other
agents, the input signal converges to the equilibrium value
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Fig. 4. Distances between the real position of the agents 2 and 4 and
their nominal positions (top) and between the nominal positions and the
Chebyshev centers (bottom).

Ueq
α , with α ∈ 1, 3, with a similar behavior to the agent 2.

V. CONCLUSION

This paper presents a decentralized control algorithm to
deploy a multi-agent system in a bounded convex two-
dimensional area when the position measurement is subject
to a bias bounded by a rectangle. The proposed algorithm
relies on the guaranteed Voronoi diagram of the multi-agent
system and a robust tube-based model predictive control.
At each time instant, the guaranteed Voronoi diagram of
the rectangles centered on the nominal positions of the
agents is computed and the agents track the Chebyshev
center of their cells. With the considered decentralized tube-
based model predictive control strategy, each agent’s position
is guaranteed to remain inside its guaranteed Voronoi cell
(offering anti collision guarantee) and the multi-agent system
converges towards a static Chebyshev configuration, despite
the possible uncertain measurements.

Future work will extend this result for bounded perturba-
tions both on the state and on the measurements. Moreover,
this strategy will be applied to systems subject to actuator
faults. In addition, this control algorithm will be applied to
a real fleet of unmanned aerial vehicles.

ACKNOWLEDGMENT

This work was supported by the LIA of the CNRS on
Information, Learning and Control and the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed
and switching networks,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 863–868, 2007.

[2] R. M. Murray, “Recent research in cooperative control of multivehicle
systems,” Journal of Dynamic Systems, Measurement, and Control,
vol. 129, no. 5, pp. 571–583, 2007.

[3] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009.

[4] G. Voronoı̈, “Nouvelles applications des paramètres continus à la
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[19] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant
set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–
410, 2005.

[20] I. Prodan, S. Olaru, C. Stoica, and S.-I. Niculescu, “Predictive control
for tight group formation of multi-agent systems,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 138–143, 2011.

[21] M. Turanli and H. Temeltas, “Adaptive coverage control with guar-
anteed power Voronoi diagrams,” in 4th International Conference on
Systems and Informatics, 2017, pp. 7–13.

[22] H. Eggleston, Convexity. Cambridge University Press, 1958.
[23] Z. Liu, C. Yuan, and Y. Zhang, “Active fault-tolerant control of

unmanned quadrotor helicopter using linear parameter varying tech-
nique,” Journal of Intelligent & Robotic Systems, vol. 88, no. 2-4, pp.
415–436, 2017.

[24] B. Wang, K. A. Ghamry, and Y. Zhang, “Trajectory tracking and
attitude control of an unmanned quadrotor helicopter considering
actuator dynamics,” in 35th Chinese Control Conference, 2016, pp.
10 795–10 800.
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