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Abstract This paper presents a new decentralized algorithm
for the deployment and reconfiguration of a multi-agent for-
mation in a convex bounded polygonal area when considering
several outgoing agents. The system is deployed over a two-
dimensional convex bounded area, each agent being driven
by its own linear model predictive controller. At each time
instant, the area is partitioned into Voronoi cells associated
with each agent. Due to the movement of the agents, this
partition is time-varying. The objective of the proposed al-
gorithm is to drive the agents into a static configuration based
on the Chebyshev center of each Voronoi cell. When some
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agents present a non-cooperating behavior (e.g. agents re-
quired for a different mission, faulty agents, etc.), they have
to leave the formation by tracking a reference outside the
system’s workspace. The outgoing agents and their objec-
tive positions partition the convex bounded polygonal area
into working regions. Each remaining agent will track a new
objective point allowing it to avoid the trajectory of the out-
going agents. The computation of this objective position is
based on the agent’s safety region (i.e. the intersection of
the contracted Voronoi cell and the contracted working re-
gion). When the outgoing agents have left the workspace, the
remaining agents resume their deployment objective. Simu-
lation results on a formation of a team of unmanned aerial
vehicles are finally presented to validate the algorithm pro-
posed in this paper when several agents leave the formation.

Keywords Multi-agent systems · Unmanned aerial
vehicles · Decentralized model predictive control · Voronoi
tessellation · Formation reconfiguration

1 Introduction

Given their reduced cost, light weight, ease of maneuverabil-
ity and deployment, unmanned aerial vehicles (UAVs) have
been the source of a constant interest for both research and
industry for several years. With all these advantages, such
vehicles are used for a large scope of applications such as
forest fire surveillance and detection [2, 7, 18], ground and
resource monitoring [15, 25] or 3D mapping and modeling
[21, 33]. Control of UAVs is then an active research topic
[16]. For several of these applications, such as monitoring
or mapping missions, the use of a multi-agent system is ben-
eficial and sometimes required since it distributes the work
load. Each agent has then to be able to autonomously track
a given reference determined by the needs of the mission
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and/or maintain a given formation. All of this has to be done
while avoiding collisions with other agents from the system.

To carry out such missions, an area coverage problem
is often considered. Such problems have been vastly studied
[9, 26, 30, 32]. Some of the considered approaches [20, 24]
rely on set-theoretic methods [4], with different applica-
tions such as system deployment over a bounded region. For
multi-agent system deployment and formation control, vari-
ous strategies have been adopted such as proportional inte-
gral control [11], linear quadratic control [28], robust control
[36], sliding mode control [34] or model predictive control
(MPC) [23, 27]. When an agent becomes non-cooperating
because it ends up being faulty, both a fault detection [37]
and a fault tolerant control [39] algorithm are needed.

The study of area coverage problems mainly focuses on
centroidal Voronoi configurations [9, 19, 30–32]. Such a
configuration frequently relies on the centers of mass of a
Voronoi tessellation [38]. The center of mass of a Voronoi
cell is defined as the integral of the points of the cell weighted
by a density function [22]. This point can then be laborious
to obtain, depending on the considered density function. A
different approach considers the Chebyshev centers of the
Voronoi tessellation of the aforementioned region [8, 24].
The computation of such centers is of reduced complex-
ity compared to the computation of the center of mass, a
Chebyshev center being defined as the solution of a linear
optimization problem.

This paper considers a multi-agent system with a time-
varying number of agents, which are able either to leave the
system when they end up being non-cooperating, or to join it.
These agents are distributed over a convex two-dimensional
boundeddeploymentarea partitioned into a Voronoi tessella-
tion. While deploying, the agents track the Chebyshev center
of the cell they belong to, in order to converge towards a
Chebyshev static configuration [8, 24]. The reconfiguration
strategy for non-cooperating agents in [8] considers only one

outgoing agent (i.e. an agent leaving the formation). The
barycentric-based approach from [8] is not easily scalable
for the case of several outgoing agents at the same time.
The main reason is that if a remaining agent is located in-
side the area defined by the trajectories of two outgoing
agents, its barycenter might end up close to one of these
trajectories, leading to a possible collision with an outgoing
agent. To overcome this inconvenience for the case of sev-
eral outgoing agents, the main contribution of the present
paper covers the design of a decentralized MPC technique
based on safety regions of the remaining agents, allowing
us to steer each agent towards a new objective position in
order to achieve a Chebyshev static configuration. A 3-step
procedure is proposed to compute these safety regions and
these new objectives, which are not crossed by the outgo-
ing agents’ trajectories. (1) The hyperplanes defined by the
current position and the objective position of each of the

outgoing agents partition the bounded deployment area into
working regions for the remaining agents. (2) The safety

region is a convex set defined by the intersection of the con-

tracted Voronoi cell and the contracted working region of the
considered remaining agent. (3) The new objective position

for each remaining agent is the point, belonging to its safety

region, that minimizes the sum of the weighted distances to
the agent’s neighbors. This reconfiguration approach guaran-
tees that the outgoing agents leave the bounded area without
crossing the safety regions of the remaining agents. The re-
maining agents track the new objective positions computed
at each time instant and ultimately resume their deployment
objective towards a Chebyshev static configuration. In this
paper, a multi-agent system composed of quadrotor UAVs is
considered. In some applications such as forest fire monitor-
ing or surveillance, a constant altitude is required to avoid
damages. These applications justify a two-dimensional ap-
proach which can then be applied to unmanned ground or
surface vehicles.

Section 2 describes the model of the global multi-agent
system and the model of the individual UAV agents. Section 3
presents the mathematical tools needed for the deployment
and reconfiguration algorithms as well as a discussion on the
reconfiguration approach from [8]. Section 4 formulates the
main result: the control strategy when several agents leave
the formation. Finally, Section 5 details two simulation sce-
narios for UAV agents and the associated results. Concluding
remarks and perspectives are drawn in Section 6.

General notation. In the following,R is the set of the real
numbers andN is the set of the positive integers. The matrices
0n×m, 1n×m and In×m are of size n × m, with n,m ∈ N,
and contain respectively only zeros, only ones and ones on
the main diagonal. If n = m, the notations become 0n, 1n
and In. The transpose of the matrix A is denoted by A⊤.
A matrix denoted by diag (a1, . . . , an) is a diagonal matrix
with diagonal elements a1, . . . , an. The norm ‖x‖2 is the
Euclidean norm of the vector x such that ‖x‖22 = x⊤x. The
quadratic form ‖x‖Q is defined such that ‖x‖2Q = x⊤Qx,
where Q = Q⊤ is a strictly positive definite matrix, denoted
by Q ≻ 0. The set of all integers from m to n, with m ≤ n, is
denoted by {m, . . . , n}. The cardinality of a set S is denoted
by |S |. The Minkowski sum of two sets A and B is the set
A ⊕B = {a + b|a ∈ A , b ∈ B}.

Multi-agent system notation. A multi-agent system is
denoted by Σ and evolves in the state-space1 X. The sub-
system ΣW contains the part of the multi-agent system Σ
which is steered into formation inside the convex bounded
workspace W ⊂ X. The subystem Λ ∈ ΣW contains the
agents leaving the workspace. A set indexed by α is related
to the agent α ∈ Σ. A set Vi

α, W i
α or S i

α with a superscript
i ∈ {λ, λV, λW } is a contracted version of the corresponding

1 In the context of multi-agent systems, the state-space is also called
environment.
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set Vα, Wα or Sα centered on its Chebyshev center with a
contraction factor i.

2 Description of the System

This paper focuses on two aspects related to formation con-
trol: steering a team of UAVs in a desired formation and
reconfiguring the formation in the case of outgoing non-
cooperating agents. This section further presents both the
mathematical models of the multi-agent system and of the
individual UAV agents used in simulation.

2.1 General dynamics of the agents

Let Σ be a heterogeneous2 multi-agent system composed of
a time-varying number of agents N(t) evolving in an envi-
ronmentX. The agent α ∈ Σ is characterized by its state and
input vectors xα ∈ X ⊆ R

n and uα ∈ U ⊆ R
m. Each agent

obeys the continuous-time nonlinear dynamics:

Ûxα(t) = fα (xα(t), uα(t))

yα(t) = Cαxα(t)
(1)

with Cα ∈ R
p×n the output matrix, fα : X × U → Y the

evolution function and yα ∈ Y ⊆ R
p the measurement vector

of agent α.
The dynamics described by (1) are linearized around an

equilibrium point (x̄α, ūα), yielding ȳα = Cαx̄α. Thus the
continuous-time linear time invariant dynamics are:

Û̃xα(t) = Aα (xα(t) − x̄α)︸        ︷︷        ︸
x̃α(t)

+Bα (uα(t) − ūα)︸         ︷︷         ︸
ũα(t)

yα(t) − ȳα︸      ︷︷      ︸
ỹα(t)

= Cα (xα(t) − x̄α)
(2)

where Aα ∈ R
n×n and Bα ∈ R

n×m with the pair (Aα, Bα)

controllable and the pair (Cα, Aα) observable. In the follow-
ing, the variables with a tilde are the variations around the
equilibrium values.

To simplify the reading, the time dependency is dropped
for the remaining of the paper.

Assumption 1. The formation is composed of a time-varying

subsystem ΣW of Σ evolving in a convex bounded workspace

W ⊂ X.

Assumption 2. The communication between the agents is

perfect with no package loss or communication delay.

Assumption 3. At t = 0 s, the agents of Σ are all partic-

ipating in the formation and are not subject to any fault.

2 The proposed strategy holds for a heterogeneous multi-agent sys-
tem. However to simplify the presentation of the results, the simulations
are performed on a homogeneous multi-agent system.

2.2 Dynamical model of one UAV agent

Let Σ be composed of a set of quadrotor UAVs. These UAVs
evolve in the Earth’s frame (O, xEarth, yEarth, zEarth). A mobile
frame (O, xUAV, yUAV, zUAV) is attached to each UAV. Both
frames are presented in Fig. 1. This type of UAV is actuated
by four propellers driven by brushless direct current (BLDC)
motors. Each propeller generates a thrust ti = tizUAV, with
i ∈ {1, . . . , 4}, their sum being ft = ftzUAV. The torques
generated by the difference of propeller thrusts are mx =

τxxUAV, my = τyyUAV and mz = τzzUAV. The four elements
ft , τx , τy and τz are linked to the propellers’ thrusts ti , with
i ∈ {1, . . . , 4}, as detailed in [14]:



ft
τx

τy

τz



=



1 1 1 1
L −L 0 0
0 0 L −L
−C −C C C





t1
t2
t3
t4



(3)

where L is the length of an arm from the origin O to the
axis of a propeller as shown in Fig. 1 and C is the thrust to
moment ratio.

The state-space model of the UAV is writ-
ten by considering the state vector x =[
x y z φ θ ψ vx vy vz ωx ωy ωz

]⊤
, where x, y and z

are the UAV’s position in the Earth’s frame, φ, θ and ψ

the roll, pitch and yaw angles defining the orientation of
the UAV in the Earth’s frame and vx , vy, vz, ωx , ωy and
ωz their respective time derivatives. The state-space model
itself is derived from Lagrangian mechanics [5] and can be
found in Appendix A along with the numerical values of the
parameters.

Moreover, the thrust generated by a propeller is linked to
the duty cycle of the pulse width modulation voltage going
through its corresponding BLDC motor by the first order
relation [1]:

Ûti + ωmti = Kωmui , with i ∈ {1, . . . , 4}, (4)

where K is the motor gain,ωm its bandwidth, and ui the duty
cycle of its supply voltage.

Assumption 4. The time constant of the DC motor ω−1
m

is negligible compared to that of the UAV [35] and to the

sampling period.

φ θ

ψ

O

Front

Rear

Left

Right

zUAV

yUAVxUAV

xEarth

yEarthzEarth

t4

t3

t1

t2

L

Fig. 1 Schematic representation of a quadrotor UAV.
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Based on Assumption 4 and for simulation purpose, the
equation (4) is simplified to ti = Kui, with i ∈ {1, . . . , 4},
the vector u =

[
u1 u2 u3 u4

]⊤
being the input signal of the

model. All the numerical values for the model’s parameters
are gathered in Table 1 in Appendix A.

Finally, the UAV is considered to be equipped with a set
of sensors providing measurements such that C = I12. The
ouptput space Y and the state-space X are then identical in
(1) and (2).

2.3 Model linearization

For linearization purpose, the considered equilibrium point
corresponds to the hovering state of the UAV. At steady
state, the state vector is defined as x̄ =

[
x̄ ȳ z̄ 01×2 ψ̄ 01×6

]⊤
,

where x̄, ȳ and z̄ represent the equilibrium position of the
UAV and ψ̄ its equilibrium orientation. Thus, the total thrust
of the propellers is f̄t = mg, which is equally distributed over
all the propellers to have τ̄x = τ̄y = τ̄z = 0, and, equivalently,
ūi =

mg

4K , with i ∈ {1, . . . , 4}.
The nonlinear model from the equations in Appendix A

is linearized around the equilibrium point (x̄, ū) leading to a
linear state-space model around this point:

Û̃x =



03 03 I3 03

03 03 03 I3
03 A1 03 03

03 03 03 03



x̃ + K



08×1 08×1 08×1 08×1
1
m

1
m

1
m

1
m

L
Ix
− L

Ix
0 0

0 0 L
Iy
− L

Iy

−C
Iz
−C

Iz

C
Iz

C
Iz



ũ (5)

where m is the UAV’s mass, Ix , Iy and Iz are the moments
of inertia with respect to the axes xUAV, yUAV and zUAV il-
lustrated in Fig. 1 and g is the gravitational acceleration,

with A1 =



g sin ψ̄ g cos ψ̄ 0
−g cos ψ̄ g sin ψ̄ 0

0 0 0


. The observation equation

is omitted since C = I12. The numerical values of these
parameters are given in Appendix A, Table 1.

Assumption 5. The yaw angle ψ and the altitude z are con-

stant during the entire flight and equal to 0 and z̄ respectively.

With small variations of the pitch and roll angles θ and φ,

the model is linear time invariant [1].

The subspace of X whose elements are of the form3

x =
[
x y z̄ 01×9

]⊤
is denoted in the following by X . To

simplify the reading, all the fixed coordinates of the elements
of X will be dropped and X will be considered as a subset
of R2, X ⊆ R2. Thus, if x ∈ X , then x =

[
x y

]⊤
.

3 This means that all the elements of X have a constant altitude and
null angles, speed and angular speed.

In line with Assumption 5, the following bounds are
imposed [1]:

|φ| , |θ | ≤
π

12
rad and |ψ | ≤ 0.01 rad (6)

|vx | ,
��vy

�� ≤ 5 m · s−1 and |vz | ≤ 0.1 m · s−1. (7)

If these inequalities hold, it is considered that the linearized
model holds during the entire flight and this model will be
used to design a controller in Section 4.1.

3 Problem Formulation

In Section 2.1, the multi-agent system Σ is assumed to evolve
in an environmentX ⊂ Rn, a part of it,ΣW ⊆ Σ, being steered
into formation in a convex workspaceW ⊂ X. This section
presents mathematical objects constructed on this workspace
W, the Voronoi tessellation and the Chebyshev center of a
bounded set. It finally presents the main goal of the global
multi-agent system Σ based on these objects.

3.1 Voronoi tessellation

Assumption 6. The workspace W is a convex strict subset

of the state-space X. The projection ofW on X is denoted

by W and it is a bounded polygon4.

With Assumption 6, the set W ⊂ R2 is a convex bounded
polygon, R2 being equipped with the Euclidean norm ‖·‖2.
If |ΣW | agents are considered, it can be partitioned into |ΣW |
Voronoi cells such that:

Vα =

{
w ∈ W

���
xwα − w


2 ≤

xwβ − w


2

, ∀β , α
}

(8)

withVα ∩Vβ = ∅, ∀α, β ∈ ΣW, and W =

⋃
α∈ΣW Vα, where

xwα and xw
β

are the projections of the state vectors xα, xβ ∈ W

of agents α and β on W , with α, β ∈ ΣW. In addition to
their convexity, the cellsVα are bounded polygons due to the
boundedness of W .

In the following, the H -representation [29] of a polytope
P in Rn is such that:

P = {x ∈ Rn |HPx ≤ ΘP}

where HP ∈ R
m×n and ΘP ∈ R

m.
With Assumption 2, each agent receives full state infor-

mation from its neighbors and is then able to compute its own
Voronoi cell. Moreover, considering Assumption 1 and due
to the agents’ movement inside W , the Voronoi tessellation
is time-varying.

The Voronoi cells partitioning the set W being defined,
a remarkable point of these cells is needed for formation

4 The setWwill be used as a set of constraints in the MPC optimiza-
tion problem (12). The set W will be used when only two-dimensional
computations are needed.
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purpose. However, several points can qualify, e.g. the cen-
ter of mass (defined as the integral of the points of the cell
weighted by a density function), the barycenter (defined as
the weighted average of the vertices of the cell), the Cheby-
shev center etc. In this paper, the Chebyshev center is chosen
as the remarkable point of a Voronoi cell and it is presented
in the following section.

This choice is motivated by the simplicity of the linear op-
timization problem to be solved once the H -representation
of a cell is known. By construction, the Chebyshev center
of a polytope is the point maximizing the distance to all the
edges of the cell, thus reducing the collision risk between
agents when tracking this point.

3.2 Chebyshev center

Let P be a convex bounded polytope in Rn. Its Chebyshev
center, denoted by cc , is the center of the largest Euclidean
ball B = {x ∈ Rn | ‖x − cc ‖2 ≤ r} lying in P where r is the
radius of the ball B. If hi

P
and θi

P
, with i ∈ {1, . . . ,m},

denote the lines of HP andΘP from the H -representation
of P , the values of the Chebyshev center and the radius are
obtained by solving the linear optimization problem [6]:

maximize
cc, r

r

subject to

r ≥ 0,

θi
P
≥ hi

P
cc +

hi
P

⊤


2
r, ∀i ∈ {1, . . . ,m} .

(9)

In the following, the considered polytopes are the polyg-
onal Voronoi cellsVα, with α ∈ ΣW. Since each agent knows
the H -representation of its cell, they are able to compute
the corresponding Chebyshev centers. Moreover, since the
Voronoi tessellation is time-varying, the Chebyshev centers
are also time-varying.

Assumption 7. The set W and the number of agents in the

formation are given such that the Chebyshev center of each

cell Vα, with α ∈ ΣW, is unique.

Definition 1 (Static configuration [24]). A static configura-

tion for a formation is achieved whenever uα(k) = 0 and

xα(k) = xα(k0), ∀α ∈ Σ, ∀k ≥ k0.

Definition 2 (Chebyshev configuration [24]). A Cheby-

shev configuration for a formation is achieved whenever an

agent’s position xwα coincides with its associated Chebyshev

center ccα.

When Assumption 7 is verified and the agents are steered
with a full state-feedback control law, it has been proven
in [12, 24] that the formation converges towards a static
configuration if and only if it is a Chebyshev configuration.

3.3 Discussion on the barycentric reconfiguration approach

In [8], three decentralized MPC based algorithms are pre-
sented for the deployment of the agents towards a static
Chebyshev configuration inside W and the reconfiguration
of the agents in the case of an agent entering or leaving the
workspace. This last case occurs when an agent becomes
non-cooperating because it is either not needed anymore in-
side the workspace or faulty.

The barycentric-based reconfiguration algorithm [8] con-
siders only one outgoing agent. This section briefly presents
the weighted barycenter computation for an agent remaining
inside the workspace and explains the potential collision is-
sues when several outgoing agents leave the formation at the
same time.

When an agent l ∈ ΣW becomes non-cooperating, it will
start tracking a reachable point xref

l
outside the workspace

W. It then broadcasts its position xl and objective xref
l

to
the agents of ΣW \ {l} remaining insideW. Upon receiving
these information, the agents of ΣW \ {l} will change their
objective to their neighbors’ weighted barycenter.

Definition 3. For an agent α ∈ ΣW, a neighbor ν is either an

agent having a Voronoi cell Vν contiguous to Vα or a vertex

of Vα lying on the border of W . The set of all the neighbors

of α is denoted by Nα.

The projections of xl and xref
l

on X define a hyperplane
H in X . Let α be an agent of ΣW \ {l} and ν ∈ Nα a
neighbor of α. If their positions xwα and xwν lie in the same
half-space of X and d

(
xwα ,H

)
< d

(
xwν ,H

)
, the weight of

ν is set to κ > 1; else, the weight is set to 1. The neighbors’
barycenter cbar

α is the average of the weighted positions xwν :

cbar
α =

( ∑

ν∈Nα

ωνxwν

)
/

( ∑

ν∈Nα

ων

)

with ων ∈ {1, κ} the weight associated to the neighbor ν.

Example 1 (Construction of a neighbors’ barycenter) In
Fig. 2, the seven agents belonging to W are represented
by dots. The neighbors of the agent 2 (i.e. the elements of
N2) are represented by red dots. In this scenario, the agent 5
leaves the workspace to join xref

5 , thus defining the hyper-
plane H . In order to compute the neighbors’ barycenter cbar

2
(in red) of agent 2 which is an element of ΣW \ {5}, one has
first to identify the neighbors of agent 2. The agents 3, 5, 6
and 7 are agents having a Voronoi cell contiguous to V2 and
neighbors 8 and 9 are vertices of V2 lying on the border of
W . By Definition 3, they are then the neighbors of agent 2.
The dashed line is the set of points as far from H as agent 2,
thus all the neighbors being below this line are farther from
H than agent 2 and receive the weight κ. The neighbors’
barycenter of agent 2 (the red asterisk) is:

cbar
2 =

κ

(
xw7 + xw8 + xw9

)
+ xw3 + xw5 + xw6

3 (κ + 1)
. �
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W

H

ΣW = {1, 2, 3, 4, 5, 6, 7}

N2 = {3, 5, 6, 7, 8, 9}

∗c
bar
2

1

2

3

1

4

5

1

6

1

7

κ

8

κ

9

κ

x
ref
5

x (m)

y
(m

)

Fig. 2 Computation of agent 2’s neighbors’ barycenter.

1

23

4

5

6

7

10

11
12

W

∗

Agent 4’s

barycenter

x (m)

y
(m

)

Fig. 3 Example of barycenter position in the case of several outgoing
agents.

The method presented in [8] guarantees by construction
that the agents remaining in the workspace will move away
from the trajectory of the outgoing agent’s trajectory. How-
ever, it can be difficult to deal with the situation of several
agents leaving the workspace at the same time.

Example 2 (Illustration of a limit case of the barycentric-

based approach) An example of such a situation is illustrated
in Fig. 3. In this figure, agents 5 and 6 leave the workspace
and agent 4 ends up between two hyperplanes. Thus, all the
neighbors of agent 4 (N4 = {5, 6, 10, 11, 12}) receive the
same weight and the barycenter (the asterisk in Fig. 3) ends
up lying on the trajectory of one of the outgoing agents. �

Some adjustments are then needed to guarantee that an
agent remaining in the workspace will be driven away from
the outgoing agents.

In order to overcome this situation, this paper presents a
new way of driving the agents remaining in the workspace
when one or several agents leave the workspace at the same
time. The proposed approach is based on the computation

of a new objective point cmin
α minimizing the norm of the

vector5:
∑

ν∈Nα

ων

(
cmin
α − xwν

)
(10)

with Nα the set of the neighbors of agent α, under the condi-
tion that cmin

α belongs to a safety region avoiding the trajec-
tories of the outgoing agents. The computation of this safety
region along with the control technique necessary to lead the
agent to its objective are presented in the next section.

4 Control Algorithm

This section presents the main result of this paper: a new
strategy based on a decentralized linear MPC technique for
the reconfiguration of a multi-agent system deployed in a
bounded polygon when more than one of the agents leave the
system.

4.1 Proposed model predictive control technique

The controller presented here is meant to deploy the
multi-agent system ΣW inside a bounded convex polygonal
workspace and to reconfigure it when one or more agents
have to leave the workspace. The continuous-time linear
model (5) is discretized with a sampling period Ts = 0.2 s
giving the discrete-time linear time-invariant dynamics:

x̃(k + 1) = Fx̃(k) + Gũ(k). (11)

In the following, x̃(k), ũ(k), F and G are indexed by α ∈ ΣW
to differentiate the agents.

The control signal ũα(k) for α is given by solving the
convex optimization problem [8]:

minimize
ũα

Np−1∑

i=0

(̃xα(k + i) − x̃
obj
α (k)


2

Q

+

ũα(k + i) − ũ
obj
α (k)


2

R1

+

ũα(k + i) − ũα(k + i − 1)


2

R2

)
(12a)

+

̃xα(k + Np) − x̃
obj
α (k)


2

Pα

subject to

x̃
obj
α (k) = Fαx̃

obj
α (k) + Gαũ

obj
α (k), (12b)

x̃α(k + i + 1) = Fαx̃α(k + i) + Gαũα(k + i), (12c)

x̃α(k + i + 1) ∈ W, (12d)

ũα(k + i) ∈ U, (12e)

x̃α(k + Np) ∈ V
λ
α(k). (12f)

5 In the case of the neighbors’ barycenter, this vector is the null
vector.
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Objective point. In the case of the multi-agent system
deployment, the objective point x̃

obj
α of agent α ∈ Σ is the

Chebyshev center x̃cα =
[
ccα
⊤ 01×10

]⊤
. When an agent leaves

the workspace, its objective point is changed to a reachable
point outside the workspace x̃ref

α . An agent remaining inside
the workspace either keeps x̃cα as an objective or changes

it to x̃min
α =

[
cmin
α

⊤
01×10

]⊤
following the rules that will

be described in Section 4.3, with cmin
α being described in

Section 4.2.
Weights. In (12a), Q = Q⊤, R1 = R⊤1 , R2 = R⊤2 ≻ 0

are diagonal matrices. The matrix Pα is the solution of the
Riccati equation [3]:

Pα = F
⊤
α PαFα + Q

− F⊤α PαGα

(
R1 + G⊤αPαGα

)−1
G⊤αPαFα.

(13)

The elements of Q, R1 and R2 are chosen in order to
prioritize the importance of the cost function terms as fol-
lows: reach the agent’s designated position at constant alti-
tude (with Q), limit the input signal amplitude (with R1) and
its variations (with R2).

Constraints. The constraint (12b) imposes that the point
x̃

obj
α (k) is an equilibriumpoint of the linearized system for the

objective control input ũ
obj
α (k). The UAV dynamics lead to

ũ
obj
α (k) = 04×1. Then, in the case of a UAV, the second term

of the cost function (12a) is meant to minimize the amplitude
of the control input.

The constraint (12d) imposes that the state remains inside
the allowed range defined for the state variables in (6) and
(7). In the case of an outgoing agent,W becomesX for (12d).
In addition to these constraints on the state vector, bounds
are also defined for the control input (12e) according to the
physical limits of the actuators.

In (12f), the terminal set Vλ
α(k) is computed such that

V
λ
α(k) = ccα(k) ⊕ λ

(
Vα(k) ⊕

{
−ccα(k)

})
, where λ ∈ [0, 1).

The setVλ
α(k) is then a contracted version ofVα(k) centered

on its Chebyshevcenter. This constraint ensures thatVλ
α(k) is

a controlled λ-contractive set [4]. This constraint is dropped
in the case of an outgoing agent.

Prediction horizon. The objective point is considered
constant over the prediction horizon Np , while it actually
changes when the agents are moving. Thus, the value of Np

has to be sufficiently small such that the real objective point
at the end of the prediction horizon is close to its approxi-
mated position. Moreover, the prediction horizon Np has to
be sufficiently large in order to satisfy both the constraints
(12e) and (12f).

4.2 New objective for the remaining agents

As mentioned in Section 3.3, when several agents leave the
workspace at the same time, there is no guarantee that the
algorithm presented in [8] drives the remaining agents away

V2

V
0.5
2

c
c

2

1

2

3

4

5
6

7

W

x (m)

y
(m

)

Fig. 4 Construction of the contracted Voronoi cell V0.5
2 with a contrac-

tion factor λV = 0.5 from the Voronoi cell V2.

from the outgoing agents. A new objective cmin
α has then to

be considered for each agent α ∈ ΣW remaining in forma-
tion. This objective minimizes the norm of the vector from
(10) while remaining in a safety region which has the strong
property (by construction) that it does not contain the trajec-
tories of the outgoing agents. This safety region is computed
as the intersection of the agent’s contracted Voronoi cell and
the agent’s contracted working region. The construction of
these sets as well as the assignment of the weights to the con-
sidered agent’s neighbors are presented below. When these
elements are defined, the new objective cmin

α ∈ R2 is then the
solution of the optimization problem (14):

minimize
cmin
α

∑

ν∈Nα

ων

cmin
α − xwν

2
2

subject to cmin
α ∈ W

λW

α ∩ VλV
α

(14)

where Nα is the set of all neighbors of agent α, xwν is the
projection on W of the state-space vector of the neighbor
ν ∈ Nα andων ≥ 0 is the weight attributed to the neighbor ν.
The contracted Voronoi cellVλV

α and the contracted working
region W

λW

α are described in the following. The set Λ ⊂ Σ
is the set of all the outgoing agents and xwα is the projection
on W of the state-space vector of the agent α ∈ Σ.

Contracted Voronoi cell. The set VλV
α is a contracted

Voronoi cell such that VλV
α = cc

α ⊕ λV
(
Vα ⊕

{
−cc

α

})
, where

cc
α is the Chebyshev center of Vα and λV ∈ [0, 1) is the con-

traction factor. The H -representation of the contracted cell
is thenVλV

α =

{
x ∈ R2

��HVα
x ≤ λVΘVα

+ (1 − λV)HVα
ccα

}
,

with HVα
and ΘVα

such that Vα =

{
x ∈ R2

��HVα
x ≤ ΘVα

}
.

Example 3 (Construction of a contracted Voronoi cell) Fig-
ure 4 illustrates the construction of the contracted version
of the Voronoi cell V2 (in blue) with a contraction factor
λV = 0.5. The Chebyshev center of V2 is cc2 and the con-
tracted Voronoi cell centered on cc2 is V0.5

2 (in red). �

Contracted working region. The workspace W is such
that W =

{
x ∈ R2

��HW x ≤ ΘW

}
, where HW ∈ Rs×2 and
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ΘW ∈ R
s , with s the number of sides of W . Each hyperplane

defined by the |Λ| outgoing agents defines two half-spaces.
An agent α ∈ ΣW then belongs to the intersection of |Λ|
convex half-spaces Sα =

{
x ∈ R2

��HSα
x ≤ ΘSα

}
, where

HSα
∈ R |Λ |×2 and ΘSα

∈ R |Λ | such that:

Sα =

{
x ∈ R2

���
(
x − xwl

)⊤ (
xwα − xwl

)
> 0, ∀l ∈ Λ

}

where xw
l

is the position of the outgoing agent l ∈ Λ. The set
Sα is computed as the intersection of convex sets, thus Sα

is a convex set [10]. Notice that Sα can be unbounded. The
working region of agent α, denoted by Wα is the intersection
of Sα with the workspace W . The working region Wα is
then also a convex set. The Chebyshev center of the working
region Wα is denoted by cc

Wα

. The set Sα is contracted to
S

c
α in the same way as the Voronoi cell:

S
c
α =

{
x ∈ R2

�� HSα
x ≤ λW ΘSα

+ (1 − λW )HSα
cc
Wα︸                                 ︷︷                                 ︸

ΘS
c
α

}
.

A non-minimal H -representation of the contracted working
region W

λW

α of agent α is then:

W
λW

α =

{
x ∈ R2

����
(
HW

HSα

)
x ≤

(
ΘW

ΘS c
α

)}
. (15)

Example 4 (Construction of a contracted working region)

Figure 5 illustrates the construction of the contracted working

region W 0.5
2 for agent 2 with a contraction factor λW = 0.5

when the agents 6 and 7 leave the workspace. The objective
points xref

6 and xref
7 that are used to define the hyperplanes

H6 and H7 lie on those planes outside the scope of the
figure. The unbounded set S2 corresponds to the lightly
grayed space between the two hyperplanes H6 and H7. The
working region W2 = S2 ∩W (red dotted line) of the agent
2 has cc

W2
(in red) for Chebyshev center. Then, the set S c

2 ,
in dark gray, is computed as the contraction of the set S2.
Finally, the contracted working region of the agent 2 with a
contraction factor λW = 0.5 is W 0.5

2 (blue dotted line) and it
is such that W 0.5

2 = S c
2 ∩W . �

Remark 1 Notice that the set Sα can be the same for several
agents, e.g. in Fig. 5, S1 = S2 = S5. This means that these
agents share the same working region (i.e. W1 = W2 = W5)
and contracted working region (i.e. W 0.5

1 = W 0.5
2 = W 0.5

5 ).

Neighbors’ weights. The weights ων ≥ 0, with ν ∈ Nα,
are assigned depending on the position of the neighbor ν.
If xwν ∈ Sα and the distance between ν and each of the
hyperplanes defined by the outgoing agents is greater than
the distance between α and these hyperplanes, i.e.:

d
(
xwν ,Hl

)
≥ d

(
xwα ,Hl

)
, ∀l ∈ Λ,

then ν is a heavy neighbor (inducing an important attractive
behavior) and it will receive a weightωh . If ν is an outgoing

W
W2

W
0.5

2

c
c

W2

H7H6

S
c

2

S2

1

23

4

5

6

7

x (m)

y
(m

)

Fig. 5 Example of the construction of the set W
0.5

2 = W
0.5

1 = W
0.5

5 .

agent, it will receive a weight ωo. Else, ν is a light neighbor

(inducing a lighter attractive behavior than a heavy neighbor)
and it will receive a weight ωl . The assigned weights are
such that ωh > ωl > ωo in order not to cross the path of
the outgoing agents. The advantage with respect to [8] is
that the outgoing agents do not have the same weight as the
light neighbors to induce an even less attractive behavior.
The weight ωo will often be chosen such that ωo = 0.

Example 5 (Classification of the neighbors) In Fig. 6, agents
6 and 10 are the outgoing agents, their trajectories lying on
the hyperplane H6 and H10 (in green). The objective points
that are used to define H6 and H10 lie on these planes
outside the figure’s scope. For this example, the case of the
remaining agents 4, 16, 17 ∈ ΣW \ {6, 10} is studied6. The
dashed lines7 pass by the agent (4, 16 or 17 here) whose
neighbors are sorted and are parallel to a hyperplane (either
H6 or H10), i.e. the sets:

{
x ∈ R2

��d (x,Hl) = d
(
xwα ,Hl

)}
,

with α ∈ {4, 16, 17} and l ∈ {6, 10}. For the three considered
remaining agents, the neighbors lying on the same side of
the dashed lines as the outgoing agents are light neighbors

and receive the weightωl , while the others are considered as
heavy neighbors and receive the weight ωh . If a neighbor of
agent 16 had been in the gray area, it would have received the
weight ωh . None of the neighbors of agent 17 are outgoing
agents. Agent 6 is a neighbor of agent 4 and receives the
weight ωo. Agents 6 and 10 are neighbors of agent 16 and
receive the weight ωo. �

Remark 2 If all the outgoing agents follow parallel trajecto-
ries, all the neighbors of an agent lying between two of them

6 These agents are chosen to illustrate different possible cases: agents
4 and 17 have heavy and light neighbors, one with an outgoing neighbor
and one without, while agent 16 is the pathological case of an agent
with only light neighbors.
7 The dashed lines in Fig. 6 are piecewise lines made with the

leftmost or the rightmost lines.
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Fig. 6 Classification of the neighbors of agents 4, 16 and 17 when
agents 6 and 10 leave the workspace.

will receive a weightωl (orωo if the neighbor is an outgoing
agent).

4.3 New reconfiguration algorithm

In [8], whenever an agent has to leave the workspace, the
remaining agents would track their neighbors’ barycenter.
Here, in order to limit the movement of all the remaining
agents and thus the energy consumption, a new control strat-
egy is proposed for them.

Each remaining agent needs to know the outgoing agents
with a possible collision risk in order to compute its working
region and its new objective point. The set of the outgoing
agents considered by agent α ∈ ΣW is denoted by Oα. Agent
α will then track the reference given by (14) as long as Oα

will contain at least one outgoing agent. When Oα is empty,
the objective of agent α is the Chebyshev center ccα of its
Voronoi cell.

The set Oα, with α ∈ ΣW, contains all the outgoing
agents seen by the agent α. As described in the previous
section, whenever an agent l ∈ Σ leaves the formation, it
has for objective a point outside the workspace defining a
hyperplane Hl . The orthogonal plane to Hl passing by the
outgoing agent is denoted by Ol . The plane Ol defines two
half-spaces, X l

o and X l
r , where X l

o contains the objective
point of the outgoing agent, i.e.:

X
l
o =

{
x ∈ R2

����
(
xref
l − xwl

)⊤ (
x − xwl

)
> 0

}

X
l
r =

{
x ∈ R2

����
(
xref
l − xwl

)⊤ (
x − xwl

)
< 0

}
.
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Fig. 7 Construction of the sets Oα with α ∈ {4, 16, 17, 18} when
agents 6 and 10 leave the workspace.

If a remaining agent α ∈ ΣW belongs to X
l
o , the outgoing

agent l is added to Oα. When α switches from X l
o to X l

r , the
outgoing agent is removed from Oα. If a remaining agent α ∈
Σ belongs to X l

r , it will be said to be "behind" the outgoing
agent l. This procedure is described in Algorithm 1. In the
case of several outgoing agents, this procedure is applied to
all the remaining agents for each outgoing agent.

Algorithm 1: Construction of the set Oα of the
outgoing agents considered by the agent α

Input: The positions xw
l

and objectives xref
l

of the outgoing
agents, with l ∈ Λ, the position xw

α and the previous
set Oα of the agent α ∈ ΣW \ Λ

Output: The updated set Oα of the agent α ∈ ΣW \ Λ
for l ∈ Λ do

if
(
x

ref

l
− xw

l

)⊤ (
xw
α
− xw

l

)
> 0 and l < Oα then

Oα ← Oα ∪ {l};

else if
(
x

ref

l
− xw

l

)⊤ (
xw
α
− xw

l

)
< 0 and l ∈ Oα then

Oα ← Oα \ {l};
end if

end for

Example 6 (Constructions of the sets Oα) In Fig. 7, agents 6
and 10 are leaving the formation. The planes H6 and H10 are
the dashed lines passing by agents 6 and 10. The solid lines
orthogonal to H6 and H10 are the hyperplanes O6 and O10.
The direction of the movement of agents 6 and 10 is indicated
by the corresponding arrows along H6 and H10, allowing
one to define the half-spaces X 6

o and X 10
o containing the

objective points of agents 6 and 10, and their complements
X 6

r and X 10
r . In Fig. 7 the set X 6

o (in white), the set X 6
r (in



10 Thomas Chevet et al.

light gray) and the intersection X 6
o ∩X 10

o (in dark gray) are
presented. Agent 17 belongs toX 6

r ∩X
10
r since∀l ∈ {6, 10},

the inequality
(
xref
l
− xw

l

)⊤ (
x17 − xw

l

)
< 0 holds. Thus, it

does not consider the agents 6 and 10 as outgoing agents
for the definition of its working region, i.e. O17 = ∅. The
working region W17 of agent 17 is not defined. Agent 17 will
then track its Chebyshev center. However, agents 4 and 16
both belong to X 6

o ∩X 10
r . Thus, agents 4 and 16 consider

only the agent 6 as an outgoing agent for the construction
of its working region and O4 = O16 = {6}. The working
regions W4 and W16 are defined by considering that agent
6 is the only outgoing agent. Finally, agent 18 belongs to
X 6

o ∩X 10
o thus W18 is defined by considering that agents 6

and 10 are outgoing agents, i.e. O18 = {6, 10}. �

For an agent α ∈ ΣW, the working region Wα defined
in the previous section is obtained by considering only the
outgoing agents belonging to Oα. If Oα is empty, the work-
ing region is not defined and the remaining agent α tracks
its Chebyshev center. The control input for such an agent
α is then computed as presented in the previous sections.
Algorithm 2 summarizes the procedure applied at each time
instant for each cooperating agent remaining in the forma-
tion.

Algorithm 2: Computation of a cooperating agent’s
input based on the new reconfiguration strategy

Input: The positions of the neighbors xw
ν

, with ν ∈ Nα , the
positions of the outgoing agents xw

l
, with l ∈ Λ, the

position xw
α

and the previous set Oα of the agent
α ∈ ΣW \ Λ

Output: The control input ũα for the agent α ∈ ΣW \ Λ
begin

Compute the Voronoi cell Vα of the agent α;
Call Algorithm 1 to update the set Oα ;
if Oα , ∅ then

Compute the contracted working region W
λW
α ;

Compute the contracted Voronoi cell VλV
α ;

for ν ∈ Nα do

if ν ∈ Oα then
ων ← ωo

else if ∀l ∈ Oα , d
(
xw
ν , Hl

)
> d

(
xw
α , Hl

)
and(

xw
ν
− xw

l

)⊤ (
xw
α
− xw

l

)
> 0 then

ων ← ωh

else
ων ← ωl

end if

end for

Compute cmin
α by solving (14);

x̃
obj
α ←

[
cmin
α

⊤
01×10

]⊤
;

else
Compute the Chebyshev center cc

α
of Vα by solving

(9);

x̃
obj
α ←

[
cc
α

⊤ 01×10
]⊤

;
end if

Compute ũα by solving (12);
end

5 Simulations and Results

5.1 Simulation scenarios

This paragraph describes the two simulation scenarios illus-
trating the proposed approach.

First scenario. The multi-agent system Σ is composed
of twenty8 agents. They start at a hovering state at random
locations in a given bounded polygon W such that xinit

α =[
xα yα z̄ 01×9

]⊤
, with α ∈ ΣW. At t = 0 s, they start tracking

their Chebyshev center xcα =
[
ccα
⊤ z̄ 01×9

]⊤
. At t = 12 s,

three agents have to leave the workspaceW because they are
required for another mission. The agents in the formation
then follow the strategy described in Section 4.3 until the
outgoing agents are outsideW.

Second scenario. The same twenty agents are deployed
inside the workspace W with the same initial conditions as
in the first scenario. Once they reach a static Chebyshev
configuration, two agents are subject to an actuator fault
consisting in a loss of efficiency of 40% on one of their
rotors. These agents then leave the workspace W while the
remaining ones follow the strategy from Section 4.3.

5.2 Simulation parameters

The control algorithm for deployment and reconfiguration
of a multi-agent system presented in this paper is tested in
simulation with MATLAB. The optimization solvers for the
problems (12) and (14) are generated with CVXGEN [17].
This tool generates a custom solver for a given optimization
problem with a quadratic cost function and linear constraints.
This solver is easily portable to any platform since the C
sources of the program are provided. The toolbox MPT3.0
[13] is used to compute all the geometric elements. The
simulations are run on a desktop PC with Intel Core i7-
4790S (4×3.2 GHz) processor and 16 GB DDR3 RAM. The
mean total run time of the solver for problem (12) is 1.1 ms.
The mean total run time of the solver for problem (14) is 75
µs. The full simulation’s mean total run time is 83.486 s.

The agents in Σ obey the nonlinear continuous-time
model from Section 2.2. They evolve in the state-space X
with the constraints from (6) and (7). The plane W (i.e. the
projection ofW on the first two directions of the state-space)
has for H -representation:

W =




x ∈ R2

����������



−0.0566 −0.0389
0.0672 −0.1093
0.0528 0.0238
−0.0165 0.0521
−0.0492 0.0316



x ≤



0.9976
0.9917
0.9983
0.9985
0.9983






.

8 The proposed decentralized deployment algorithm has been sim-
ulated for 100 agents.
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Tuning parameters. The main objective of the
agents is to reach their objective point while re-
maining at constant altitude with a null yaw angle
regardless of the speed. Thus Q is chosen to be Q =

diag (10, 10, 100, 0.1, 0.1, 100, 0.1, 0.1, 100, 0.1, 0.1, 100).
The weights R1 and R2 are set to R1 = 0.1I4 and
R2 = 100R1 to follow these objectives while keeping the
input signal ũα

i
such that

��ũα
i

�� ≤ 0.15, with i ∈ {1, . . . , 4}
and α ∈ Σ. These weights are the same for the agents
in formation and the outgoing agents. If the contraction
factor λ from Section 4.1 is too small, the terminal set
might not be reached over the prediction horizon. It is
then set to λ = 0.5 for the problem to be feasible. If the
contraction factors λV and λW from Section 4.2 are too
small, the contracted working region might be empty. They
are then set to λV = 0.5 and λW = 0.8. The weights for the
heavy/light/outgoing neighbors from Section 4.2 are set to
ωh = 100, ωl = 10 and ωo = 0. With such weights, even
with an important number of light neighbors, the heavy
neighbors will still be dominating and the outgoing agents
will not have any attractive effect over the remaining agents.
The prediction horizon is chosen to be Np = 10.

Control input. The control action is separated into three
elements uα(k) = ũα(k)+ūα+uz

α(k). The signal ũα(k) is the
input signal provided by solving the optimization problem
(12). The signal ūα = ūα14×1 is the value of the input signal
when the UAV is at rest at a hovering condition. Its value is
given in Section 2.3. Finally, the signal uz

α = uz
α14×1 is meant

to compensate the loss of upward thrust when the UAV tilts.
The upward thrust applied to the UAV by one rotor is:

ti(k) =
1

4
mg cos θ(k) cos φ(k)zEarth, with i ∈ {1, . . . , 4} .

The signal uz
α is then such that ti(k) + Kuz

α(k)zEarth =
1
4 mgzEarth or uz

α(k) =
mg

4K (1 − cos θ(k) cos φ(k)). With such
a control input, the variation in altitude is less than 10 cm
which justifies two-dimensional illustrations.

Rate limitation. Finally, when an agent has to leave the
workspace, a rate limitation is imposed on the variation of its
objective. The variation rate per second is equal to a fourth
of the difference between the objective and the position of
the agent when it starts to leave the workspace.

5.3 Analysis of the first scenario

Twenty agents, represented by the black dots in Fig. 8, start
from random positions in the bounded polygon W , with an
initial state-space vector xinit

α =

[
xα yα z̄ 01×9

]⊤
, α ∈ ΣW.

At t = 0 s, they start tracking the Chebyshev center of their
associated Voronoi cell, represented by asterisks in Fig. 8.
During the first part of the simulation, between t = 0 s and
t = 12 s, the agents are deploying inside the workspaceW.

At t = 12 s, agents 1, 12 and 19 (as numbered in
Fig. 9) have to leave the workspace towards the points
xref

1 =
[
20 40 z̄ 01×10

]⊤
, xref

12 =
[
10 40 z̄ 01×10

]⊤
and xref

19 =[
15 40 z̄ 01×10

]⊤
.

The goal of Fig. 9 is to present the construction of the
objects necessary to compute the objective point of the agent
10 at t = 12 s. In Fig. 9, the half-lines with an arrow passing
by agents 1, 12 and 19 are part of H1, H12 and H19 indicating
the trajectories of these agents. The lines orthogonal to these
half-lines are O1, O12 and O19 used for the construction
of the sets Oα of the outgoing agents considered by the
agent α, with α ∈ ΣW, as described in Section 4.3. The
dashed polygons are the contracted working region W 0.8

10 (in
red) and the contracted Voronoi cell V0.5

10 (in black). The
set O10 of the outgoing agents considered by the agent 10,
as defined in Section 4.3, is such that O10 = {12, 19} since
the agent 10 is "behind" agent 1 as illustrated in the figure.
The dashed lines passing by agent 10 (in black) are used to
classify its neighbors in light/heavy/outgoing, based on the
process described in Section 4.2. The objective points of all
the remaining agents are also presented in Fig. 9, represented
by black diamonds, except for agent 3 since it is "behind" all
the outgoing agents and tracks its Chebyshev center.

In Fig. 10, the distances between four agents from ΣW
and their objectives are presented. During the first part, from
t = 0 s to t = 12 s, the agents are deployed inside the
workspace W. At t = 12 s, the objective point of agents 5,
10 and 11 are changed to xmin

5 , xmin
10 and xmin

11 , while agent 3
keeps tracking its Chebyshev center. Then, each time an
agent passes "behind" an outgoing agent (when the outgoing
agent is removed from Oα), there is an important variation of
the distance since the classification of the agent’s neighbors
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Fig. 10 Distances between the agents and their objectives for the first
scenario.

is changed. For instance, at t = 13.6 s, t = 17.2 s and
t = 19.6 s, the agent 11 passes behind the agents 1, 12
and 19, respectively, inducing a variation in the distance (in
green). In the end, when all the outgoing agents have leftW,
all the remaining agents converge towards their Chebyshev
centers. The variations that can be observed for agent 3 (in
red) around t = 16 s are due to the important movements
of its neighbors, leading to an important modification of its
Voronoi cell and thus of its Chebyshev center.

Finally, Fig. 11 presents the variations of the four com-
ponents of agents 11’s input signal ũ11 and ū11 + uz

11. The
signal provided by the MPC remains inside the constraints.
The amplitude of the oscillations is large in order to respect
the constraints on the pitch and roll angles. For this example,
it was chosen to present only the input signals for agent 11
because it is the worst case scenario, this agent having a small
working region for a long time.
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ūi

Constraint on ũi
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Fig. 11 Control inputs of agent 11 for the first scenario when agents 1,
12 and 19 leave the workspace.

A video showing the simulation is available on the
Laboratoire des Signaux et Systèmes’ YouTube channel at
https://youtu.be/nT2gtQQJQfM.

5.4 Analysis of the second scenario

The twenty agents start from the positions shown in Fig. 8.
They start tracking the Chebyshev center of their Voronoi
cell at t = 0 s. They are deploying inside the workspaceW
between t = 0 s and t = 5 s. However, at t = 5 s, agents
1 and 7 are subject to an actuator fault. Both these agents
undergo a loss of efficiency of 40% on one of their rotor.
The loss is on rotor 1 (as numbered in Fig. 1) for agent 1 and
on rotor 3 for agent 7. The matrices G1 and G7 from (11)
are then modified to become G

f

1 = diag (0.6, 1, 1, 1)G1 and

G
f

7 = diag (1, 1, 0.6, 1)G7.
Given the type of fault they are subject to, the

agents will leave W by following a trajectory that
does not request the use of the faulty rotor. These
points are xref

1 =

[
40 y1(t = 5 s) z̄ 01×9

]⊤
and xref

7 =[
x7(t = 5 s) 40 z̄ 01×9

]⊤
. Moreover, the input signals ū1+uz

1
and ū7 + uz

7 are modified to mitigate the loss of efficiency
by being respectively multiplied by diag

(
0.6−1, 1, 1, 1

)
and

diag
(
1, 1, 0.6−1, 1

)
. The constraint on the input correspond-

ing to the faulty rotor (u1 for agent 1 and u3 for agent 7) is
also multiplied by 0.6−1.

The objective of Fig. 12 is to present the construction
of the objects necessary to compute the objective point of
the agent 6 at t = 5 s. In Fig. 12, the half-lines with an
arrow passing by agents 1 and 7 are a part of H1 and H7

indicating their trajectories. The lines orthogonal to these
half-lines are O1 and O7 used for the construction of the

https://youtu.be/nT2gtQQJQfM


Decentralized MPC for UAVs Formation Deployment and Reconfiguration with Multiple Outgoing Agents 13

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

25

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

25

∗

∗

∗

∗
∗

•
1

•

•3

•

•

•
6

•
7

•

•
9

l

•

•
l

•
12

•
l

•

•

•

•
•

•

• l
�

�

�

c
min
6

�

�

�

�

�

�

�

�

�

l

h

W
0.8

6

V
0.5
6

O7

O1

H7

H1

x (m)

y
(m

)

• Agent’s position

∗ Chebyshev center position

� c
min
α

Fig. 12 Position of the agents and their objectives at t = 5 s and
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6 .

sets Oα of the outgoing agents considered by the agent α,
with α ∈ ΣW described in Section 4.3. The dashed polygons
are the contracted working region W 0.8

6 (in blue) and the
contracted Voronoi cellV0.5

6 (in black). The set O6, as defined
in Section 4.3, is such that O6 = {1, 7}. The dashed lines
passing by agent 6 (in black) are used to classify its neighbors
in light/heavy/outgoing, based on the process described in
Section 4.2. The objective points of all the remaining agents
are also presented in Fig. 9, represented by black diamonds,
except for the agents in the bottom left quarter of the polygon
which are "behind" the outgoing agents and keep tracking
their Chebyshev centers represented by asterisks.

The distances between four agents from ΣW and their ob-
jectives are presented in Fig. 13. As in the previous scenario,
the first part of the movement consists in the deployment of
the agents insideW. Then, at t = 5 s, the objective point of
agents 6, 9 and 12 is changed to xmin

6 , xmin
9 and xmin

12 , while
the objective of agent 3 remains xc3 . The behavior of the
agents is then similar to the behavior that was observed with
the previous scenario. The behavior of agent 3’s neighbors
do not cause an important change in its Chebyshev center,
leading to the distance between this agent and its objective
to be close to 0 from t = 4 s onward.

Finally, Fig. 14 presents the variations of the four com-
ponents of agent 7’s input signal ũ7 and the first and third
components of ū7 + uz

7. The signal provided by the MPC
remains inside the constraints. The constraint on ũ3 is not
shown on this figure since the faulty rotor is not in demand
and the variations of its input are really small. The behavior
of the other faulty agent is identical, the variations of ũ1 and
ũ2 being replaced by variations on ũ3 and ũ4. The behavior
of the agents of ΣW is the same as in the previous scenario.
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Fig. 13 Distances between the agents and their objectives for the second
scenario with an actuator fault occurring on the agents 1 and 7 at t = 5 s.
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Fig. 14 Control inputs of agent 7 for the second scenario when the
agent leaves the workspace with an actuator fault occurring at t = 5 s.

A video showing the simulation results is available on
the Laboratoire des Signaux et Systèmes’ YouTube channel
at https://youtu.be/nT2gtQQJQfM.

6 Conclusions and Future Works

This paper presents a reconfiguration technique for a multi-
agent system deployed over a two-dimensional convex
bounded polygonal workspace. In [8], the case of one agent
leaving the workspace is studied and it is generalized in this
paper to the case of several agents leaving the workspace at
the same time. The proposed technique is based on decentral-
ized linear model predictive control and dynamic Voronoi
tessellation. The agents remaining inside the workspace
tracking their Chebyshev center change their objective to
avoid potential collisions with the outgoing agents. The po-
sitions of these outgoing agents and their objectives partition
the plane into several working regions for the remaining

https://youtu.be/nT2gtQQJQfM
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agents. The new objective for each remaining agent is then a
point belonging to the intersection of the agent’s contracted
working region and its contracted Voronoi cell. These new
objective points are then computed at each time instant, while
the non-cooperating agents leave the workspace. When these
agents are outside the bounded area, the remaining agents re-
sume tracking their Chebyshev center. Using this technique,
non-cooperating agents are able to leave the aforementioned
workspace while avoiding collisions with agents remaining
inside of it. Two simulation scenarios are presented to test
the reconfiguration of the multi-agent system with different
types of trajectories for the outgoing agents.

As future works, the control algorithm will be applied to
an experimental testbed of UAVs available at the Networked
Autonomous Vehicles Lab at Concordia University. In order
to improve the resilience of the control algorithm presented
in this paper, other types of faults will be considered such as
position sensor faults which makes the Voronoi tessellation
uncertain. Future works will also consider an extension of the
proposed results with respect to (variable) communication
delays between the agents. Moreover, while this algorithm is
used as a controller in this paper, it will be modified to be
used as a path planning algorithm and combined with other
controllers to add resilience to perturbations and noises.

Appendix A UAV Model

The state-space model of the UAV is written by considering
the notations from Section 2.2. The state-space model itself
is derived from Lagrangian mechanics [5]:

Ûx = vx (16)

Ûy = vy (17)

Ûz = vz (18)

Ûφ = ωx +
(
ωy sin φ + ωz cos φ

)
tan θ (19)

Ûθ = ωy cos φ − ωz sin φ (20)

Ûψ = ωy

sin φ

cos θ
+ ωz

cos φ

cos θ
(21)

Ûvx =
ft
m
(cos φ sin θ cosψ + sin φ sinψ) (22)

Ûvy =
ft
m
(cos φ sin θ sinψ − sin φ cosψ) (23)

Ûvz =
ft
m

cos φ cos θ − g (24)

Ûωx =
Iy − Iz

Ix
ωyωz +

τx

Ix
(25)

Ûωy =
Iz − Ix

Iy
ωxωz +

τy

Iy
(26)

Ûωz =
Ix − Iy

Iz
ωxωy +

τz

Iz
(27)

where m is the UAV’s mass, Ix , Iy and Iz are the moments
of inertia with respect to the axes xUAV, yUAV and zUAV illus-
trated in Fig. 1 and g is the gravitational acceleration. The
numerical values of all the model parameters are presented
in Table 1.

Table 1 Values of UAV model’s parameters

Mass m = 1.4 kg
Inertia components Ix = Iy = 0.03 kg ·m2

Iz = 0.04 kg ·m2

Arm’s length L = 0.2 m
Thrust to moment ratio C = 4 m
DC motor gain K = 12 N
DC motor mechanical time constant ω−1

m = 5 ms
Gravitational acceleration g = 9.81 m · s−2
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