
HAL Id: hal-02100495
https://hal.science/hal-02100495v1

Preprint submitted on 19 Apr 2019 (v1), last revised 9 Sep 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Name-to-Hash Encoding Scheme for Vehicular Named
Data Networks

Hakima Khelifi, Senlin Luo, Boubakr Nour, Hassine Moungla

To cite this version:
Hakima Khelifi, Senlin Luo, Boubakr Nour, Hassine Moungla. A Name-to-Hash Encoding Scheme for
Vehicular Named Data Networks. 2019. �hal-02100495v1�

https://hal.science/hal-02100495v1
https://hal.archives-ouvertes.fr

A Name-to-Hash Encoding Scheme
for Vehicular Named Data Networks

Hakima Khelifi∗, Senlin Luo∗, Boubakr Nour‡, and Hassine Moungla§ ¶
∗School of Information and Electronics, Beijing Institute of Technology, Beijing, China

‡School of Computer Science, Beijing Institute of Technology, Beijing, China
§LIPADE, Paris Descartes University and Sorbonne Paris Cite University, France

¶CNRS, UMR 5157, Mines Telecom Institute, Telecom SudParis, CEA Nano-Innov Saclay, France
Emails: {hakima, luosenlin, n.boubakr}@bit.edu.cn, hassine.moungla@parisdescartes.fr

Abstract—In contrast to the host-centric model where the com-
munication is directed using the destination address, Information-
Centric Networking (ICN) adopts the content name as the
pillar network element to provide data discovery and delivery
process, as well as in other network functionalities. Named Data
Networking (NDN) is an active ICN project that uses hierarchical
unbounded names. These names are used in both interest and
data packets and other data structures that may consume more
memory with long lookup time. This paper targets the naming
aspect in vehicular named data networks and proposes a Name-
to-Hash Encoding scheme. The idea consists of hashing each
name components separately to a fixed length, then perform a
heuristic Wu-Manber-like algorithm lookup process. The former
process enhances the NDN to consume less memory compared to
hierarchical names, the latter process provides a fast lookup time.
We have evaluated the proposed scheme against different related
solutions using real domain datasets. Both theoretical analysis
and experiments prove that the proposed scheme is efficient in
terms of complexity, memory consumption, and lookup time.

Index Terms—Information-Centric Networking (ICN), Vehic-
ular Named Data Networks (VNDN), Naming Scheme

I. INTRODUCTION

Vehicular Ad hoc Network (VANET) [1] has been devel-
oped to improve driving safety and manage traffic condition.
However, several challenges have been found due to the use of
the TCP/IP communication model, especially from mobility,
routing, and security perspective. Thus, several researchers
show their efforts to propose various architectures such as
Information-Centric Networking (ICN) [2]. ICN is a new com-
munication paradigm that uses names as the main component
to retrieve the content instead of IP addresses.

Named Data Networking (NDN) [3], [4] is one of the
most active ICN implementations. NDN uses human-readable
hierarchical names to identify and deliver content. It uses two
types of packets: interest and data packets. Interest packet
is a request, triggered by the consumer to find content; The
data packet is a response of an interest packet. In NDN, each
node maintains three tables: Pending Interest Table (PIT) –
to keep trace of unsatisfied interests, Forwarding Information
Base (FIB) – to select the most convenient interface to forward
interest upstream, and Content Store (CS) – to locally store
the content.

Applying NDN on top of VANET has several advan-
tages [5]–[8]. By using the content name instead of the host

identifier, NDN can support a huge amount of information that
may be exchanged between vehicles and roadside units. The
mobility is also facilitated using the Interest-Data exchange
model [9], and enhanced by integrating in-network caching
feature [10]. In ICN-based networks, the network layer is
aware of the content delivery. Indeed, any node may cache
and serve the content from its local cache store careless of
the original producer reachability. Moreover, NDN secures
the content itself rather than securing the communication
channel [11].

It is important to recall that all these features are built
upon the content name. The efficiency of the naming scheme
(lookup process, memory consumption, etc.) has a direct
impact on network performance. NDN may have long names
to identify services and content, which leads to unbounded
(variable length) names. These long names may consume the
memory of both interest and data packet as well as PIT,
FIB, and CS tables. In addition, NDN has a search intensive
architecture, where the three different tables are consulted
before forwarding interest packets upstream or data packets
downstream. FIB lookup using Longest Name Prefix Match
(LNPM) requires to search in at hundreds of characters to
find a match. This is not suitable for delay-sensitive VANET
applications. Hence, the time to search in NDN data structures
and the occupied memory to store names must be optimized
to a high degree.

The aforementioned issues are the main motivation to
derive this research. Indeed, we propose in this paper an effi-
cient name compression and high-performance naming lookup
method, namely Name-to-Hash Encoding (NHE) scheme.
NHE aims at reducing the memory cost and speeding up
the name lookup process, it consists of two steps: name
compression, and name lookup process.

The remainder of this paper is organized as follows. Sec-
tion II reviews the NDN naming efforts and the related
lookup research. Section III details the proposed NHE scheme,
principles, and its components. In Section IV, we present the
simulation and the experimental results in terms of memory
compression and lookup time using three different datasets.
Finally, we conclude the paper in Section V.

II. BACKGROUND & RELATED WORKS

A. Naming Overview

NDN uses the content name in all network-related features
(e.g., content discovery, delivery, mobility management, secu-
rity, etc.). Thus, it assigns to each piece of content a human-
readable, unique, and location-independent name. The for-
warding plane uses this name to forward and deliver data back
to requesters without knowing host addresses. ICN architecture
can support various naming schemes including hierarchical,
flat or hash names, attribute-value, and hybrid names. Focusing
on NDN-based VANETs, the existing naming schemes can be
categorized into hierarchical and hybrid names. Hierarchical
names include a list of component to identify content separated
by a delimited element (e.g., slash (’/’), dot (’.’)); as an exam-
ple, /maps/cn/beijing/ is a hierarchical name refers to
the map of China, Beijing, where cn, maps, and beijing
are three components that construct the name. Hybrid names
combine at least two of the aforementioned naming schemes
to provide efficient names [12]. However, the selection of the
used scheme and how to merge them is a challenging task and
may affect the naming performance.

Due to the fact that names are the main element to derive
the communication in the NDN-based networks, different
challenges and issues may be raised, including:

• Processing Time and Throughput: contrary to fixed-length
IP addresses, NDN provides unbounded names without
imposing any design regulations to name designing. Ar-
bitrarily long names lookup process is a challenging task
that may require a linear time instead of a fixed time.

• Longest Name Prefix Matching: In contrast to classless
IP addresses, NDN names maintain a group of delimited
textual components. The longest prefix matching must
match the entire prefix (all components until the end
character) rather than any digit in IP. Consequently,
implementing traditional prefix matching in NDN may
not produce effective results.

The use of long, variable, and unbounded names may
consume more memory and affect the lookup process, hence
affecting the network scalability, especially in highly mobile
networks such as VANET. Thus, it is important to design
a careful naming scheme that takes the name length into
consideration with a fast lookup process.

B. NDN Lookup Research

Various efforts have been shown in order to provide an
efficient NDN lookup process. The proposed methods can be
regrouped as follows:

(1) Hash Table-based Methods: works in [13] and [14]
store hierarchical names in a a hash table. The lookup process
consists of finding a match for for a key against a set of
key’s prefixes in the hash table. However, these solutions can
work only for specific names, and consume the memory of
NDN tables caused by the redundant information in the hash
table. Moreover, the performance of these methods is highly

dependent on the names’ length, which is challenging to apply
to long names such as those used in vehicular networks.

(2) Bloom Filter-based Methods: are an alternative meth-
ods to describe set of names and a generalized form of hashing
with trade-offs among memory occupation. The prefix Bloom
filter proposed in [15] aims to store prefixes that share the same
first-level component in the same cache-line sized Bloom filter.
The Bloom filter is increased if the number of suffixes exceeds
the Bloom filter capacity. There are cases where multiple
Bloom filter expansions are required to store all the prefixes.
Although a dataset that requires Bloom filter expansion at
every name component level can be generated (unlikely to
happen in practice), a certain number of prefixes have large
numbers of suffixes.

(3) Trie-based Methods: efforts in [16] and [17] introduce
name encoding solutions with a Trie-based approach in order
to compress the name characters with a state transition array,
represent the prefix tree structure, and optimize the traverse
operations. However, a trie-based approach has several issues:
because the tree uses hashing codes for entity storage, this
may cause collision; and searching name in the tree has the
time O(n), which is the time complexity of tree searching that
is long and unsuitable for applications that require a fast name
lookup.

As stated in this section, the biggest weakness of hashing
the whole name is that it cannot perform a prefix matching
especially for long names. Although the method of name
decomposition tree has the ability to do so, it suffers from
long lookup time. Hence, we propose to use a hash function
in order to reduce the length of NDN names and thus provide
a short lookup time while keeping the prefix matching ability.

III. NHE: NAME-TO-HASH ENCODING SCHEME

In the following section, we present our proposed solution
called NHE scheme. NHE aims to reduce the memory con-
sumption in the packets as well as in PIT, CS, and FIB tables;
and accelerate the lookup process. NHE is based on two main
steps: The first step is name compression, and the second step
is name lookup, which is based on multiple string matching
concept (Wu-Manber-like algorithm) [18].

We must highlight that the compression and lookup steps
are local to the node. Thus, the collision of hashed names is
limited and becomes negligible, also the application dependent
name design principles remain intact.

A. System Model

We consider a connected vehicular network represented by
a directed graph G = (V, L), comprising set vehicle nodes
V , and links L. We denote lvi ,vj , the link connection l ∈ L
between two vehicle nodes (vi, vj) ∈ V . Each vehicle node
can be a consumer S, producer R, or intermediate node I with
caching abilities. Nodes may exchange two types of packets:
interest and data packets. Both interest and data packets carry
the requested/delivered content name. NDN uses a hierarchical
naming scheme n = (ni · /), where ni is a name component of

TABLE I: Summary of notations used in the paper.

Notation Meaning
V = {S ∪ I ∪ R} Vehicles (Consumer, Intermediate, Producer)
L Set of links
lvi ,v j Connection link between two vehicles

n = (ni · /) Name of the content
ni Name component of n

c Compressed name
ci Compressed name component
x Number of decomposed name components
N Number of names
Pcollision Probability of two hashed names
m Length of the smallest name
B List of last character of the compressed name
B′ List of first character of the compressed name

n. Table I illustrates a summary of the used notations in this
paper.

Interest and Data Forwarding Process: When a vehicle
node receives an interest packet, it checks first if the requested
content exists in its local CS. If a match is found, it will
forward back the data through the incoming interface, and
discard the interest packet. Otherwise, the vehicle node checks
if the requested name exists in the PIT table. If a match is
found, which means that a similar interest has already been
forwarded but no data has been returned yet, the vehicle node
will add the incoming interface to the PIT entry and discard
the interest packet. If no match is found, the vehicle node will
consult the FIB table to find the next-hop, and add a new PIT
entry. Otherwise, the interest packet is dropped.

Similarly, when a vehicle node receives a data packet, it
checks if the name already exists in the PIT. If a match
is found, it stores the data in the local CS, forwards this
data to all interfaces listed in the PIT entry, then deletes the
associated entry. Otherwise, the vehicle node considers the
packet unsolicited and discard it.

B. Name Compression Algorithm

As mentioned before, NDN names are variable length and
unbounded, using such long names consume more memory
space, and slow down the lookup process. To end-up with short
names and a high-performance lookup process, we propose to
use a hash function to reduce the length of NDN names.

First of all, we decompose our name n into a collection
of name components separated by the slash delimiter. We
use CRC32 (a 32-bit CRC algorithm) to hash each unequal-
length name component ni into a fixed-length string ci , that
represented by a binary code called: compressed name com-
ponent. Then, these compressed components are concatenated
successively to make a single string c, named: compressed
name that represents the original complete compressed name.
Algorithm 1 shows the name compression process.

The reason to use the CRC32 algorithm is a trade-off
between the computational complexity and the memory re-
quirement of the hash codes. Moreover, it has a simple
implementation and can be done at the line rate. Hence, the
computation of CRC32 can be performed while reading the

Algorithm 1 Name Compression Algorithm

Input: n: Content name
Output: c: Compressed name

1: for (ni in split(n,/)) do
2: ci := CRC32(ni);
3: c := c · ci;
4: end for
5: return c;

packet header, without adding any extra delay. In addition,
the result of hashing a component using CRC32 is a 4− byte
fixed-length string. The compressed name is represented by
4x byte string, where x is the number of decomposed name
components. The probability of two hashed names to be the
same in CRC32 presented as follow:

Pcollision = 1 − (
2k − 1

2k
)N−1

where N is the number of names.
However, in our work we treat the name by components,

therefore the collision probability becomes:

Pcollision =

Jmax∑
j=1
(1 − (

2k − 1
2k
)
PN−1
j)j

where j is the number of name components, Pj is the
proportion of names composed of j name components, Jmax

is the maximum number of decomposed name components of
the name in a list of N names, and k = 32 (CRC32). In this
way, a lower collision probability (false positive) is obtained.

To illustrate a naming compression example, detailed
in Figure 1, we have the following name /traffic/
Highway101/north/{400, 410}/{1323201600,
1323205200}/speed/19375887 to fetch information
from the north part of a highway. We decompose the
textual name to seven components that are separated
by the slash delimiter. Then, we use the CRC32
algorithm to hash each component, and concatenate
them to make a single hashed string that contains
only 28 bytes represented by hexadecimal code of
0X55602630F3238601DC2A30C29642AFF8D31F0AC8
0F26FEF6C2FED8D1. This compressed name is used in
all of CS, PIT, and FIB tables to reduce their sizes, as well
as used in received interest and data packet to speed up the
lookup process.

C. Name Lookup Algorithm

Finding a name in the entire table is not an easy task from
the view of memory and the time consumption, especially if
the table has a large set of names, this process is similar to
the multiple string matching problems. The second step in our
proposed scheme is the name lookup algorithm that is based
on using the Wu-Manber-like algorithm for multiple string
matching.

The Wu-Manber algorithm [18] aims to find the occurrence
pattern P in given text T , where P and T are all strings,

5560 2630f323 8601 dc2a30c29642aff8d31f0ac80f26fef6c2fed8d1

m

B’ B

hh’

Index Name Value
1
2

55602630f3238601

2

Index

3

Index Prefix_index

8601 1

h
Index

1 5560 1

Index FIB_indexh’

2

(1)

(2)

(3)

(4)

/traffic/Highway101/north/{400,410}/{1323201600,1323205200} /speed/19375887Requested name

0x55602630f3238601dc2a30c29642aff8d31f0ac80f26fef6c2fed8d1
Requested

Compressed name

2. Name Lookup Algorithm

FIB Hash Prefix

traffic

Highway101

north

{400,410}

{1323201600,1323205200}

55602630

f3238601

dc2a30c2

d31f0ac8

9642aff8

(1
)

D
e

co
m

p
o

si
ti

o
n

(2) Encoding

(3) Concatination

1. Name Compression Algorithm

speed

19375887

0f26fef6

c2fed8d1

Fig. 1: NHE Process

using heuristics to skip portions of the input text. However,
we have simplified this algorithm and made changes so it can
be adapted to finding names in a large name set. We have used
only two tables from three tables of the Wu-Manber algorithm:

1) HASH TABLE: contains a list of last B character of the
compressed name. Where each Hash entry is associated
with a list of indexes of PREFIX TABLE.

2) PREFIX TABLE: contains a list of first B′ character of
the compressed name. Where each entry also holds an
associated list of indexes of FIB entries in witch B′

exists.

After extracting the name from the NDN packet, and
compressing it using the first step of the name compression
algorithm, the matching stage is executed. A brief description
of the matching stage is shown in Figure 1, and illustrated
in Algorithm 2, where m is the length of the smallest name
in FIB. This is updated every time a new packet with shorter
name length is processed. Hence, for entries which are larger
than m, only first m characters are used for matching initially.
The lengths of substrings h and h′ are pre-configured. h is
listed into the HASH TABLE, and h′ is listed in the PREFIX
TABLE. List of pre f ix indexes in the HASH TABLE is ap-
pended to contain the index at which h′ is inserted in PREFIX
TABLE. List of FIB index in PREFIX TABLE is appended
with the index of FIB table where the complete compressed
name is stored.

For each new entry in FIB, if h is found in the HASH
TABLE, the entry is not inserted again, its h′ is inserted in
PREFIX TABLE and pre f ix index is updated. Similarly, for
each h′, if the entry in PREFIX TABLE already exists, then it
is not inserted again, rather its FIB index is updated.

The searching principle is to look for small hashes in the
HASH TABLE from where the subset of FIB is further reduced
by matching selected prefixes only. Where for any name that
needs to be found, substring C of size m is extracted from the

Algorithm 2 NHE Lookup Algorithm

Input: N : requested name
1: C := compressed name(N);
2: h := C.substring(m − B + 1,m);
3: h′ := C.substring(0, B);
4: Subset := NULL;
5: for (each entry i in Hash) do
6: if (hash[i].h == h) then
7: prefix index = Hash[i].prefix index;
8: for (each element j in prefix index) do
9: if (prefix index[j].h′ == h′) then

10: Subset := prefix index[j].FIB index;
11: end if
12: end for
13: end if
14: end for
15: if (Subset != NULL) then
16: for (each n in Subset) do
17: if (Subset[n].Name == C) then
18: return FOUND FIB index;
19: end if
20: end for
21: else
22: return NOT FOUND;
23: end if

compressed name, and further broken into substrings h and h′.
If h is not found in the HASH TABLE, then the name does not
exist. If found, then the associated pre f ix index list is used
to find entries in the PREFIX TABLE, which has the same value
as h′. If h′ is not found in the PREFIX TABLE, the insertion
algorithm was not executed properly. If found, the associated
FIB index list is used to find a subset of FIB entries which
are then compared with the full compressed name. Hence,
the actual number of strings matched is reduced to very few
possible entries. This lookup algorithm can be applied and
used in all three tables (CS, PIT, and FIB) without changing
the core design of NDN routing.

IV. IMPLEMENTATION & EVALUATION

We have implemented NHE and compared it against
LNPM [3] and Name Character Trie (NCT) [17] in terms
of time complexity, lookup time, and memory compression.
The evaluation has been performed on an Intel Core 5 Duo
CPU at 2.4 GHz and DDR3 SDRAM of 8 GB. Moreover,
we have used three datasets: BLACKLIST1, ALEXA2, and
SHALLALIST3. We have extracted 25 × 105 different domains
and URLs from BLACKLIST, top 106 URLs form ALEXA,
and 17× 105 from SHALLALIST. Also, we have cleaned these
domains and URLs to be represented as NDN names format,
e.g., google.com/map represented as com/google/map.

1BLACKLIST: www.urlblacklist.com
2ALEXA: www.alexa.com
3SHALLALIST: www.shallalist.de

TABLE II: Memory Compression.

Dataset Total Names Total length (MBytes) NCT (MBytes) NHE (MBytes) Compression (NCT) Compression (NHE)
ALEXA 1000000 47.41 47.41 4 0% 91.56%

SHALLALIST 1700000 95.96 84.14 7.80 12.31% 91.86%
BLACKLIST 2500000 224.86 118.36 18.53 47.36% 91.76%

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 5

C
om

pl
ex

ity
 (

10
9)

Number of Names (Millions)

LNPM (O(Ml*N))
NCT (O(n*mt))

NHE (O(B*N/m))

 0
 2
 4
 6
 8

 10
 12

1 2 3 4 5

Fig. 2: Time complexity

A. Time Complexity Analysis

Figure 2 represents the time complexity for all of NHE,
NCT, and LNPM. We can observe that the complexity in NHE
is very small compared to NCT and LNPM because NHE
is divided into two main algorithms: Name Compression and
Name Lookup. The average complexity of both algorithms is
the sum of the complexity of the two algorithms.

The complexity of Name Compression algorithm is deter-
mined by the complexity of the CRC32, which is of degree
O(|M |), where |M | is the length of the name. The processing of
CRC32 can be done at line rate, hence no additional time delay
is required, and parity speed is improved. The complexity of
Name Lookup algorithm is the complexity of Wu-Manber-like
algorithm, which is given by O(B∗N/m), where B is the length
of the character block, while N is the length of all names, and
m is the shortest length of the pattern.

In NCT, the time complexity equals to O(n ∗ mt), where
n denotes the average length of a name in the whole dataset
and mt denotes the average number of descendants per node.
Similarly, the time complexity in LNPM is described by
O(Ml ∗ N), where Ml is the longest length of the patterns.

B. Compression Rate

We define the compression rate by 1−s/TotalNames, where
s denotes the memory usage to store the compressed names
from three datasets by NHE, and TotalNames is the sum
of the string length of the original names in the datasets.
Table II presents the compression effect of the three domain
name datasets. The analysis shows NHE compression method
can achieve about 90% compression rate while NCT achieves
50% especially when the number of names increases. NHE

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5

C
om

pr
es

si
on

 (
M

by
te

s)

Number of Names (Millions)

Uncompressed Name
NCT
NHE

Fig. 3: Memory consumption after compression per number
of names in three datasets.

achieves more compression overall because of restricts all
name components to 4−bytes. Because NHE is a local process
on NDN node, the compression is also local, hence the global
collision is not a challenge.

Figure 3 illustrates the memory consumption after compres-
sion the three domain name datasets. We can notice that when
the number of domains increases, the number of compressed
names in NHE increases quite slowly compared to NCT.
Therefore, the memory cost in NHE grows slower than NCT,
which proves that NHE is efficient to maintain the memory
despite the domain set (either small or large size set).

C. Lookup Time

Figure 4a shows the lookup time for NHE and LNPM in
three datasets BLACKLIST, ALEXA, and SHALLALIST. We
can observe that NHE is faster than LNPM in all of the
tested datasets. Also, when the number of names increases,
the lookup time increases slowly in NHE compared to LNPM.

Figure 4b demonstrates the previous results. It shows the
lookup time in NHE, LNPM, and NCT, where we treat the
three datasets as individual FIB tables. For small datasets,
the performance is almost comparable with NHE, LNPM,
and NCT. However, when the size of the tables grows, the
difference becomes significantly large, where NHE increases
linearly compared to LNPM and NCT. Thus, and due to
the fact that NHE utilizes a heuristic method to select only
the necessary parts in the name by applying two tables and
performing a better prefix matching. While LNPM matches
names character by character, and NCT uses the tree searching
algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5 1 1.5 2

L
oo

ku
pt

im
e

(M
ill

is
ec

on
d)

Number of Names (Millions)

NHE Blacklist
NHE Alexa

NHE Shallalist
LNPM Blacklist

LNPM Alexa
LNPM Shallalist

(a) NHE and LNPM lookup time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5

L
oo

ku
pt

im
e

(M
ill

is
ec

on
d)

Number of Names (Millions)

LNPM
NCT
NHE

(b) NHE, NCT and LNPM lookup time.

Fig. 4: Lookup time calculation

V. CONCLUSION

The name and name lookup process are considered as a
critical part in NDN. The performance of other functionalities
is based on the efficiency of the naming scheme. In VANET,
many applications have a time-critical to receive and forward
the data in optimal time. As NDN names can be unbounded
and variable length and the lookup time based on these
names, this will end up with several problems in the memory
consumption and the lookup time. In this paper, we proposed
a new Name-to-Hash Encoding (NHE) scheme for vehicular
named data networks. NHE aims at reducing the memory
overhead while accelerating lookup speed regardless of the
length of names. The process is based on two steps: (1) a
name compression process, and (2) name lookup process based
on the Wu-Manber-like algorithm. We evaluated the proposed
scheme against related solutions using real domain datasets,
where both theoretical analysis and simulation experiments
prove the efficiency of NHE in terms of complexity, memory
consumption, and lookup time.

ACKNOWLEDGEMENTS

The work of S. Luo was supported by the National 242
Project under Grant No. 2017A149. Dr. Luo is corresponding
author.

REFERENCES

[1] S. Boussoufa-Lahlah, F. Semchedine et al., “Geographic routing proto-
cols for Vehicular Ad hoc NETworks (VANETs): A survey,” Vehicular
Communications, 2018.

[2] C. Fang, H. Yao et al., “A survey of mobile information-centric
networking: Research issues and challenges,” IEEE Communications
Surveys & Tutorials, 2018.

[3] D. Saxena, V. Raychoudhury et al., “Named data networking: a survey,”
Computer Science Review, 2016.

[4] B. Nour, K. Sharif et al., “A Survey of Internet of Things Communica-
tion using ICN: A Use Case Perspective,” Computer Communications,
2019.

[5] H. Khelifi, S. Luo et al., “Named Data Networking in Vehicular Ad
hoc Networks: State-of-the-Art and Challenges,” IEEE Communications
Surveys and Tutorials, 2019.

[6] H. Khelifi, S. Luo et al., “An Optimized Proactive Caching Scheme
based on Mobility Prediction for Vehicular Networks,” in IEEE Global
Communications Conference (GLOBECOM), 2018, pp. 1–6.

[7] H. Khelifi, S. Luo et al., “LQCC: A Link Quality-based Congestion
Control Scheme in Named Data Networks,” in IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2019.

[8] H. Khelifi, S. Luo et al., “Reputation-based Blockchain for Secure NDN
Caching in Vehicular Networks,” in IEEE Conference on Standards for
Communications and Networking (CSCN). IEEE, 2018, pp. 1–6.

[9] B. Nour, K. Sharif et al., “A Distributed ICN-Based IoT Network
Architecture: An Ambient Assisted Living Application Case Study,” in
IEEE Global Communications Conference (GLOBECOM). IEEE, 2017,
pp. 1–6.

[10] B. Nour, K. Sharif et al., “NCP: A Near ICN Cache Placement
Scheme for IoT-based Traffic Class,” in IEEE Global Communications
Conference (GLOBECOM), 2018.

[11] H. Khelifi, S. Luo et al., “Security and Privacy Issues in Vehicular
Named Data Networks: An Overview,” Mobile Information Systems,
2018.

[12] B. Nour, K. Sharif et al., “M2HAV: A Standardized ICN Naming
Scheme for Wireless Devices in Internet of Things,” in International
Conference Wireless Algorithms, Systems, and Applications (WASA).
Springer, 2017, pp. 289–301.

[13] W. So, A. Narayanan et al., “Named data networking on a router:
Fast and dos-resistant forwarding with hash tables,” in Symposium on
Architectures for networking and communications systems. IEEE, 2013.

[14] H. Yuan and P. Crowley, “Reliably scalable name prefix lookup,” in
ACM/IEEE Symposium on Architectures for networking and communi-
cations systems, 2015.

[15] D. Perino, M. Varvello et al., “Caesar: A content router for high-
speed forwarding on content names,” in ACM/IEEE symposium on
Architectures for networking and communications systems, 2014.

[16] Y. Wang, K. He et al., “Scalable name lookup in NDN using effective
name component encoding,” International Conference on Distributed
Computing Systems, 2012.

[17] S. Feng, M. Zhang et al., “A Fast Name Lookup Method in NDN Based
on Hash Coding,” pp. 575–580, 2015.

[18] Y. Lu, Y. Liu et al., “A Data-Deduplication-Based Matching Mechanism
for URL Filtering,” in IEEE International Conference on Communica-
tions (ICC), 2018.

