
HAL Id: hal-02100477
https://hal.science/hal-02100477v1

Submitted on 15 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation and Feasibility Study of
Near-data Processing on DRAM Modules
(DIMM-NDP) for Scientific Applications

Matthias Gries, Pau Cabré, Julio Gago

To cite this version:
Matthias Gries, Pau Cabré, Julio Gago. Performance Evaluation and Feasibility Study of Near-data
Processing on DRAM Modules (DIMM-NDP) for Scientific Applications. [Technical Report] Huawei
Technologies Duesseldorf GmbH, Munich Research Center (MRC). 2019. �hal-02100477�

https://hal.science/hal-02100477v1
https://hal.archives-ouvertes.fr

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 1

Performance Evaluation and Feasibility Study of
Near-data Processing on DRAM Modules

(DIMM-NDP) for Scientific Applications

Matthias Gries , Pau Cabré, Julio Gago

Abstract—As the performance of DRAM devices falls more and more behind computing capabilities, the limitations of the memory and

power walls are imminent. We propose a practical Near-Data Processing (NDP) architecture DIMM-NDP for mitigating the effects of the

memory wall in the nearer-term targeting server applications for scientific computing. DIMM-NDP exploits existing but unused DRAM

bandwidth on memory modules (DIMMs) and takes advantage of a subset of the forthcoming JEDEC NVDIMM-P protocol in order to

integrate application-specific, programmable functionality near memory. DIMM-NDP works on shared memory with the host CPU by

definition, takes advantage of abundant memory capacity in the main memory subsystem and remains economic by relying on

standard, unmodified DRAM devices.

We evaluate DIMM-NDP with a range of bandwidth, latency and compute-bound workloads from the domains of predictive data

analytics and machine learning that depend on dense and sparse linear algebra. Simulation results show up to 6.3x better performance

for bandwidth-limited applications, representing 79% of the theoretical peak, and up to 3x improved energy efficiency. We complement

the evaluation with feasibility checks for DIMM-like form factors to offer 32GB to 128GB capacity per DIMM, hardware overhead costs

(below 20%), and power envelopes for standard (13W) and custom DIMMs (40W). A sensitivity analysis of interface properties for

comparison with traditional accelerator coupling over PCIe, as well as a case study on porting software kernels, showing in the order of

one month programming effort per application, outline reasonable operating points for DIMM-NDP.

Index Terms—Processing In-Memory, near-memory accelerator, NUMA, software porting, performance engineering, case study.

✦

CONTENTS

1 Introduction 2
1.1 Limited Adaptation of NDP so far . . . 2
1.2 Motivation for DIMM-NDP 2

2 Related Work 2
2.1 Synchronization between Host and NDP 3
2.2 Integration of NDP Technology 3
2.3 Variants of NDP Functionality 3
2.4 Form Factors 3
2.5 Positioning DIMM-NDP 3

3 DIMM-NDP Architecture 3
3.1 Architecture Overview 3
3.2 NDP Unit Setup 4
3.3 Lateral Transfers between Units 4
3.4 ECC Handling 4

4 Software View of DIMM-NDP 4
4.1 Workload Partitioning and Placement . 4
4.2 Protection/Virtual Address Spaces . . . 5
4.3 Synchronization 5
4.4 Software Implementation Flow 5

• Matthias Gries is with Huawei Technologies Düsseldorf GmbH at the
Munich Research Center (MRC), Riesstr. 25, 80992 München, Germany
E-mail: gries@computer.org

• Pau Cabré and Julio Gago are with Metempsy, Pamplona 88, Barcelona
08018, Spain
E-mail: {pau.cabre|julio.gago}@gmail.com

Research Report released on April 15th, 2019

5 Hardware Setups for DIMM-NDP 5
5.1 Power & Area Analysis of Blocks 6
5.2 Chip Packages and Form Factors 6
5.3 Resulting NDP-enabled Mem Modules . 6
5.4 Cost Analysis for Memory Module . . . 7

6 Evaluation Setup and Flow 7
6.1 Selected Workloads 7
6.2 System Configuration 8
6.3 Evaluation Flow 9

7 Performance Evaluation of DIMM-NDP 10
7.1 Performance and Efficiency Results . . . 10
7.2 Near-data vs. Loosely Coupled Acc . . . 11
7.3 NVDIMM-P Asynchronous Accesses . . 13
7.4 Software Porting Effort 14
7.5 Discussion of Further NDP Variants . . 14

8 Concluding Remarks 15

References 15

All product or company names that may be mentioned in this
report are tradenames, trademarks or registered trademarks of their
respective owners.

https://orcid.org/0000-0001-9379-1603

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 2

1 INTRODUCTION

The implications of the memory and power walls on mem-
ory subsystems are imminent [1], [2]. Operations have to
move closer to data in the memory hierarchy in order
to reduce redundant data movement as one of the major
sources of wastage [3], [4], [5]. As a result of decades of
scaling DRAM devices for memory capacity, the memory
subsystem has been adapted to keep pace in terms of
bandwidth, as shown in Fig. 1 for the stream [6] benchmark.
“Brute force” effects, such as adding more memory chan-
nels, are nearly exploited and challenged by signal integrity,
pin limitations and process technology scaling, as the design
of analog frontends for IO interfaces becomes more com-
plex [7]. Recent approaches to mitigate the memory wall

10

100

1000

10000

100000

1000000

1990 1995 2000 2005 2010 2015 2020

st
re

a
m

 c
o

p
y

 b
a

n
d

w
id

th
 [

M
B

/s
]

year

64b SDRAM, single channel, in-order core

ooo core

Dual channel
RDRAM

Dual channel
DDR2-400

Dual socket, 3 channels
integrated MC, DDR3-1333

Dual socket, 4 channels
integrated MC, DDR4-2133

Fig. 1. Reported Stream [6] bandwidth on system-level, annotated with
architecture modifications to sustain memory performance.

follow either in-memory (on the same technology process,
such as [8] and references therein) or near-memory (e.g., 3D
stacked, as in [9], [10], [11], [12]) ideas. These represent
either longer-term research, since the economic manufac-
turing at high density still has to be shown, or relatively
costly solutions with stacked DRAM, like High-Bandwidth
Memory (HBM) and the Hybrid Memory Cube (HMC), that
are limited by memory capacity and more costly to integrate
than standard DRAM devices.

However, the effects of dark silicon [13] lead designers
to more heterogeneous architectures. Programmers become
more experienced with using accelerators and non-uniform
memory in return. We can rely on this trend to introduce an
acceptable solution by building on the concept of NUMA
(non-uniform memory accesses) to associate memory loca-
tions with near-data accelerators.

1.1 Limited Adaptation of Near-Data Processing so far

The lack of adapting Near-Data Processing (NDP) in- or
near-memory may be attributed to the following challenges:

• The integration of processing has been tried on the
same technology process with the memory, either Non-
Volatile Memory (NVM) or DRAM. In case of DRAM,
this leads to either not scalable and slow, or not very
complex designs, whereas the area of NVM integration
and manufacturing is an open field of research.

• High-performance solutions (e.g., HBM, HMC) require
stacking of logic and DRAM dies at higher costs and

limited capacity, may depend on 2.5D integration with
additional interposers and are subject to further thermal
stress and testing challenges.

• Lacking standards in the past for interface protocols
and programming, such that NDP has been perceived
as an application-specific and proprietary solution.

1.2 Motivation for DIMM-NDP

The main features of DIMM-NDP are:

• Building on standard IP: NDP units enhance the Media
Controller (MedC) on a memory module. The MedC is a
discrete buffer chip positioned side-by-side the DRAM
devices on the module and needed for forthcoming
interface standards like JEDEC NVDIMM-P [14], [15],
Gen-Z [16] and CCIX [17].

• DIMM-NDP employs unmodified DRAM chips and
exploits unused rank-level bandwidth on DIMM, such
that we follow the economy of scale of manufacturing
standard DRAM.

• Memory capacity is not wasted. We focus on NDP in the
shared memory subsystem of the host, where both sides
(host and NDP) have concurrent access to memory.
The memory module appears as normal Load-Reduced
DIMM if NDP is switched off.

• Versatility: We use standard cores with special func-
tional units as programmable NDP units that different
application domains can take advantage of, as expected
for a server setup.

• We take advantage of recent standard protocols to
ease the implementation, namely forthcoming JEDEC
NVDIMM-P [14], [15] that introduces asynchronous
transfers as a subset, as well as NUMA and math
libraries like BLAS [18] for programming.

By relying on standard DRAM, modular DIMMs and com-
mon programming abstractions, we see DIMM-NDP as
an enabler for gradually introducing NDP into general-
purpose servers for use with many applications that benefit
from CPU-centric programming and high memory capacity.
We lower the bar for adapting Near-Data Processing (NDP)
in the main memory subsystem, since DIMM-NDP does not
waste DRAM capacity. Application programmers can thus
gradually migrate memory-bound code to DIMM-NDP by
working on shared memory.

The contributions of this paper are a) the proposal of
the DIMM-NDP architecture and host-CPU centric pro-
gramming view amenable to scientific computing b) the
performance evaluation of DIMM-NDP, c) a case study of
the usability looking at the software porting effort, and d)
revealing design tradeoffs in terms of form factor, perfor-
mance, power and costs with feasibility checks.

After surveying related work in the next section, sec-
tions 3 and 4 introduce the architecture and software stack
for DIMM-NDP. Section 5 shows feasibility checks for form
factors, power and overhead costs. We describe the eval-
uation flow, performance results and the software porting
efforts in sections 6 and 7, followed by concluding remarks.

2 RELATED WORK

Near-Data Processing (NDP) may happen in-memory on
the same technology process for DRAM or Non-Volatile

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 3

Memory, or near-memory, where processing and memory are
implemented on different process technologies, also see the
surveys [1], [2]. We focus on the latter case, since in-memory
variants require further research on manufacturing before
widespread adaptation.

2.1 Techniques for Synchronizing Host and NDP

Solutions range from a) hardware-supported coherence [19],
[20] enabling many styles of synchronization, b) using
uncached memory regions [10], [11], [21] for exchanging
information and separate address spaces for the actual
computations (incurring overhead for copying data), and
c) software-managed cache maintenance [9], [22] on shared
memory regions for synchronization points defined by soft-
ware. The hardware architecture may impose a handover
mechanism, such that either the host or the NDP side work
on the shared address range exclusively [21]. Contrarily
to these approaches, in [23], a network stack is mapped
onto the memory organization, such that the system appears
as IP network-connected, distributed system for use with
message passing (MPI).

Our solution allows concurrent accesses from host and
NDP sides for shared address ranges. This enables many
synchronization methods in software and is less limiting
than, e.g., [21], [24], where only one side (host or NDP) can
be in control of the memory at a time.

2.2 Options for Integration of NDP Technology

Recent focus has mainly been put on Through Silicon Via
(TSV)-enabled heterogeneous die stacking [9], [10], [11], [12],
[21], [25], where a logic die can be placed underneath a
DRAM solution. Alternatively, logic can be put on memory
modules next to DRAM devices, for instance, in distributed
data buffer chips [24]. Finally, NDP may happen closer to
the memory controllers of the main SoC (like in [26]), which
is similar to a traditional on-die accelerator with a shortened
path to main memory.

We favor lower costs, higher memory capacity and a
modular solution over peak performance by relying on
standard DRAM devices, modules and protocols, whereas
solutions like [19], [24] modify DRAM interface logic and
the protocol to the host respectively. High-bandwidth 3D-
stacks are limited by memory capacity and thus not suitable
for flat main memory of most server systems.

2.3 Variants of NDP Functionality

The functionality of NDP may vary from a set of fixed
functions [22], [27] (including data reorganization [28], [29]),
reconfigurable grid of functional units [11], [21], ASIPs (like
LIW units [12]), to general-purpose, enhanced lightweight
cores with a reduced memory hierarchy [9], [10], [25], [30].

Our solution stays with the access granularity of a rank
(64B for DDR4), i.e., not with smaller device-level granular-
ity as in [21], [24], [26]. As a result, we can share memory
regions and do not have to copy and transcode data between
host and NDP to a finer degree of parallelism. We can reach
the same level of usable bandwidth, as long as 64B accesses
are exploited, which we support by standard cores with L1
caches as NDP units that programmers are familiar with.

2.4 Different Form Factors for Memory Modules

NDP has been proposed for Buffers-on-Board [19] (BOB)
where a proprietary protocol can be applied between the
host and the BOBs, DIMMs complying to standard form fac-
tors [21], [24], DIMM interposers [22] and more accelerator-
like deployments [26].

A standard DIMM carrying high-density DRAM stacks
and a NVDIMM-P media controller (without NDP func-
tionality) is described in [31]. Former DRAM buffer designs
targeting standard modules include JEDEC DDR3 MB [32]
and JEDEC AMB [33]).

2.5 Positioning DIMM-NDP

Our solution offers higher bandwidth than [22], [24], as we
re-organize traditional ranks on DIMM into independent
channels. This is at the expense of board-level routing
(i.e., additional PCB layers), which we think is feasible for
accelerator-like deployments (comparable with, e.g., GPUs
and FPGA setups) since a) we share memory with the host
and pay for memory only once, and b) avoid more costly
silicon-interposer solutions required for high-bandwidth
memory (see cost analysis in subsection 5.4).

We thus offer a gradual migration and upgrade path for
server-class applications and their ecosystem that depend
on high memory capacity, at a manageable degree of paral-
lelism defined by the number of DIMMs and NDP-enabled
memory ranks.

3 DIMM-NDP ARCHITECTURE

DIMM-NDP increases available bandwidth for processing
by implementing NDP units locally on memory modules
(DIMMs). Media Controllers (MedC), as required for forth-
coming standards like NVDIMM-P [14], [15] and Gen-
Z [16], are complemented with NDP units, such that DIMMs
can operate independently. In addition, memory ranks on
DIMM may be reorganized as independent channels on
DIMM (i.e., laid out as independent channels), as visualized
in Fig. 2. The required routing can be solved on PCB-level
with additional routing layers, as we still rely on the ball
pitch of standard DRAM devices.

3.1 Architecture Overview

An overview of the building blocks involved is shown in
Fig. 3. In the host System-on-Chip (SoC), the Memory Con-
troller (MC) is enhanced with a memory-mapped control
and status register interface to access DIMM-NDP instances.
This register interface is a proxy to the more complex regis-
ter interface implemented in the Media Controller (MedC).

The MedC placed on DIMM provides a fast path to
DRAM if NDP units are switched off. The host’s MC em-
ploys a plain DDR4/DDR5 protocol to access main memory
in this case. The fast path is configured on a rank-by-rank
basis (ranks seen by the host that may be laid out as in-
dependent channels on DIMM). That means, selected ranks
on the host channel may use the NVDIMM-P protocol [14],
[15], while all others employ plain DDR4/5.

If NDP units are enabled, the host’s memory bus em-
ploys JEDEC NVDIMM-P asynchronous accesses to handle
variable latency for requests issued by the host to the

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 4

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

I) NDP base configuration, 2DPC
• 51.2 GB/s peak bandwidth for MedC’s

• Each DIMM can use 25.6GB/s separately

II) NDP with 1:4 rank disaggregation, 2DPC
• 4 local channels on DIMM usable by MedC
• 204.8 GB/s peak bandwidth for MedC’s

Standard configuration without NDP

• One 64b host channel as example

• Two DIMMs on the same channel

• Each DIMM populated with 4 mem ranks

• Ranks & DIMMs compete for bandwidth

• Peak bandwidth: 25.6 GB/s – DDR4-3200

CPU/host memory
bus channel

LRDIMM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

LRDIMM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Media

Ctrl

(MedC)

LRDIMM-NDP

Independent local
memory channels

CPU/host memory
bus channel

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Media

Ctrl

(MedC)

LRDIMM-NDP

SoCSoC

a) Standard DIMM

configuration

b) NDP-enabled DIMM

configuration

Fig. 2. Overview of DIMM-NDP memory organization and advantage with DIMM-local channels, 2 DIMMs per host channel.

MC
Master
FSMs

Ctrl/status
Register IF

Core
cluster

Core
cluster

Core
cluster…

CPU/host SoC

Master PHY

Media
Ctrl

(MedC)

M
D
M
C

Slave PHY

IMP computeNDP compute unit

CPU/host memory bus

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Slave FSMs

Light
core

ACC ACC

DB RCDDB DBDB … …

DIMMs

DIMM-local
memory

channel(s)

NDP

Register IF

LRDIMM fast path
(NDP bypass)

Fig. 3. Overview of DIMM-NDP architecture utilizing shared main mem-
ory with the host SoC.

corresponding ranks. Asynchronous accesses do not depend
on DRAM timing nor DRAM organization (banks, pages
and so on). Requests from the host are thus re-queued at
the MedC. The MedC employs its own memory controller
(MDMC) to schedule accesses from NDP units and accesses
from the host according to DDR4/5 timing. Since mem-
ory is shared between the host and the NDP units, they
compete for memory bandwidth whenever accesses occur
concurrently. MDMC’s scheduling policy resolves conflicts
between the host and NDP units by priorities and DRAM
timing parameters.

3.2 NDP Unit Setup

For versatility and energy efficiency, we consider in-order
cores as programmable NDP units (similar to ARM’s
Cortex-A55 core) that can be enhanced with functional units
for vector and matrix processing (accelerators [ACC]). We
assume that the register file for the vector unit can be reused
by the matrix unit. In our evaluation setup described in
section 6, the ARMv8-A [34] core for NDP uses Scalable
Vector Extensions (SVE, [35]) and the specific organization
of the matrix unit from [36].

An NDP unit employs a reduced memory hierarchy of
one level of caches plus an optional scratchpad memory
in parallel to the L1 caches. We associate one NDP unit
with each local memory channel. An NDP unit may access
neighboring channels on the same DIMM at slightly higher

access latency over the on-die hierarchical interconnect of
the MedC chip.

3.3 Lateral Data Transfers between NDP Units

Lateral memory requests between the memory ranks and
channels on the same DIMM are quick, since the MedC
buffer includes the corresponding NDP units and local
memory controllers (MDMCs in Fig. 3). Data requests issued
by one NDP unit to other DIMMs and channels of the host
can be routed through the memory controllers of the host
SoC, but will be slower than local accesses. Forthcoming
NVDIMM-P [14] will provide signaling channels to notify
the host of pending events and actions at the DIMM side.
NDP-data can be kept local on the same DIMM by, for
instance, employing a NUMA-aware memory allocator to
reduce the need for lateral transfers.

3.4 ECC Handling

If the NVDIMM-P [15] protocol is switched on, we assume
that the Error-Correcting Code (ECC) processing is done at
the media controller on DIMM, as many different types of
DRAM and non-volatile memory may be used on DIMM
with NVDIMM-P, requiring custom ECC methods. The host
can have access to ECC event statistics that happen on the
DIMM, such that this information can be used in a higher-
level RAS policy (Reliability, Availability and Serviceability).
If NDP is switched on, the MDMC instance (see Fig. 3) is
responsible for ECC processing in our case.

4 SOFTWARE VIEW OF DIMM-NDP

By building on the currently most pervasive JEDEC memory
interface, hardware coherency techniques are not available.
For using accelerators, this is manageable in software since
programmers of scientific applications are familiar with syn-
chronizing activity on CPUs and accelerators, like FPGAs
and GPUs.

4.1 Workload Partitioning and Data Placement

By choosing coarser-grained programmable cores as NDP
units, the degree of parallelism remains manageable. The
number of cores in the host CPU and the number of NDP

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 5

Device driver
Linux Kernel
resource allocation

• NDP resource

• Mem-mapped IF

Libraries

OpenBLAS libSVM …
• APIs for math

function calls

• Single-process

subprograms

• Subprograms implement

math functions on ACCs

Apps &
frameworks

• Apps using

library calls
…

…

…

…

…

…

Hardware

• Remote

procedure call

MC

NDP Register IF

Media Controller

Register IF

NDP
core

ACC

Host side DIMM side

Memory bus

Bare metal
code

NDP-specific code shielded

by libraries and firmware

Application programmers

care about standard APIs

Fig. 4. DIMM-NDP programming abstraction on host and NDP sides and host-centric programming flow.

units are similar, such that, e.g., a pragmatic 1:1 association
of host cores and NDP units for offloading may be ap-
plied. Data are partitioned by the number of NDP-enabled
DIMMs. This is similar to using a number of PCIe-attached
accelerators and thus a well-known workable constraint for
programmers of scientific applications.

The MedC buffer is in control of several local ranks on
DIMM, such that an NDP unit co-located at one rank can
access data on the other ranks at the same MedC. Transfers
between DIMMs must go over the host memory controller
(MC) by signaling events over NVDIMM-P. Programmers
can influence the frequency of remote transfers by exploiting
a NUMA memory allocator on the host to keep the data
local, and by means like data replication, exploiting the
capacity of main memory.

4.2 Protection/Virtual Address Spaces

The infrastructure for address space protection and memory
management of a standard core for use with NDP remains
important for limiting the scope of the NDP unit. The
assumption is that the process on the host that reserved
the NDP unit is also responsible for configuring the unit,
such that the unit runs in the same address space as the
host process. The scope of the NDP unit can be reduced by
only taking over a subset of the address translation tables
of the host process to the NDP side. Alternatively, the NDP
core may use a reduced translation table, e.g. by employing
large pages or segments as done in, e.g., [37].

Translation entries can only be changed by a process on
the host that reserved the NDP resource in the first place.
The NUMA memory allocator for NDP is implemented on
the host, such that data structures can be set up before
handing over execution to the NDP side to avoid frequent
updates of the translation tables at the NDP side.

4.3 Synchronization

With DIMM-NDP, programmers may use the host as the
master that triggers activity on NDP units explicitly over
their register interface. Alternatively, synchronization may
happen over shared memory regions in a more distributed
fashion. We thus expect synchronization points defined by
software, such that the memory subsystem will be in a

well-defined state by employing explicit cache maintenance
operations on the host and NDP sides.

4.4 Software Implementation Flow

An NDP unit runs bare-metal in a first revision for scientific
workloads and thus supports only one application context.
We do not consider context switches on the NDP side, i.e.,
an NDP unit can only be reserved by one process on the
host. We interpret “bare-metal” as bare machine computing
as, e.g., applied in [38], where a self-contained Application
Object includes a minimal single-execution operating envi-
ronment. For instance, the NDP bare-metal code does not
cover exception handling. Exceptions are handed over to
the host process, either by signaling over the NVDIMM-P
backchannel and/or shared memory. In our NDP context,
the setup of the NDP execution environment is configured
by the host process that allocated the NDP unit as a resource.

Overall, migrating code to DIMM-NDP becomes
straightforward, particularly if the same instruction set is
supported on the host and NDP.

A functionally correct implementation can be derived
quickly with bare-metal compiled code on the NDP units.
Effort can then be put on iterative refinements for per-
formance tuning (see study in subsection 7.4), e.g., along
vectorization and using scratchpad memory. Fig. 4 provides
an overview of a first release of a software setup.

Programming complexity is shielded by established
math libraries that the programmer is used to. In order to re-
serve and configure NDP resources, we can take advantage
of the known NUMA abstraction to, for instance, co-locate
data and NDP units. Each NDP-enabled DIMM appears as
a separate NUMA domain. The NUMA allocator is imple-
mented on the host, following a CPU-centric programming
model as the host has access to the complete capacity of
main memory.

5 HARDWARE SETUPS FOR DIMM-NDP

We distinguish module options for DIMM-NDP that sup-
port 2 and 4 local memory channels on DIMM respectively.
Feasibility checks are considered for JEDEC DDR4, as com-
prehensive information is available for DDR4, and DDR5 is
not standardized yet. We analyze two form factor options,

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 6

TABLE 1
Characteristics of Compute and Memory Building Blocks Reported in Related Work

Block Clock Technology Area Power Description

ARM Cortex-A53 core 1.8GHz TSMC FF+ 16nm 0.5mm2 200mW [39], running Dhrystone

64b mem IO frontend DDR4-3200 10nm 6 - 9mm2 400mW
[40], [41] for power estimation,
[42], [43], [44] for areaa)

Scratchpad 16nm 1.5mm2 [45], for 2MB capacity

Vector unit 1GHz 40nm 4mm2
<300mW [46]: SP-FP data type, 1024b vectors

Vector unit 250MHz LSI 28nm 30mW [47]: 32b int, ≤1024b vector length

Vector unit 1GHz 28nm 3.6mm2 [48]: DP-FP type, 4x128b lanes, 300KB caches

Matrix unit 700MHz 28nm ≤115mm2
<40W [49]: 8b int, 256x256 MAC array, 4MB SRAM

a) Additional 10% to 20% area for memory controller

power and chip area requirements, as well as overhead costs
for the complete modules.

5.1 Power and Area Analysis of Building Blocks

Based on related work listed in Table 1, we project required
area and power back-of-the-envelope. On a recent 10nm
technology process, we estimate a feasible vector unit design
for 512b vectors, including register file (16 to 32 vector
registers), to take less than 1mm2 and consume 100mW to
200mW at 1 to 1.5GHz clock range for use by the NDP unit.
Scaling down the 256x256 matrix unit of the TPU [49] to
the dimensions we consider for multiply-and-accumulate
(MAC) operations as a special unit, still on 28nm, we need:

16 x 16 MAC: area 0.45mm2, power: below 150mW
32 x 32 MAC: area 1.8mm2, power: below 600mW

These are upper limits, since our design will use a more
recent process technology, providing us headroom for a
higher clock rate and/or support of different data types.
We assume that the register file for the vector unit can be
reused by the matrix unit.

The area requirements for the MedC buffer chip on a
10nm-like process are summarized in Table 2 for the two
DIMM scenarios of interest using two (standard DIMM)
and 4 (custom DIMM) local memory channels for NDP
respectively. The analog memory IO frontend blocks are the
major contributing factor.

5.2 Chip Packages and Form Factors

The following analysis shows that the size of the MedC
device is determined by the need for IO balls and not by
the logic complexity of the buffer (see area evaluation in the
preceding subsection for comparison).

5.2.1 DIMM Memory Module Form Factor and Power

The power envelope for a DDR4 DIMM is typically dimen-
sioned for about 13W [50]. An LR-DIMM can hold up to
36 DRAM x4 devices, one RCD [51], and 9 DB [52] chips,
employing both sides of the DIMM. An NDP-enabled MedC
chip that supports two local DDR4 channels needs a 900-ball
package estimated from prior art (Intel SMB [53], JEDEC
DDR3 MB [32] and JEDEC AMB [33]). At a 0.8mm ball pitch
as used by DRAM devices, such a package requires roughly
25mm x 25mm or a rectangular layout. This package fits

on a standard DIMM with about 28mm usable height. A
standard DIMM has enough room for 18 x8 DRAM devices,
x8 DBs and the NDP-enhanced MedC, using both sides of
the DIMM as sketched in Fig. 5 a).

Example a) horizontal placement,

x8 devices, 32GB, DIMM form factor,

2 local channels, 2Tops, 13W

Example b) vertical placement,

x4 devices, 128GB, custom DIMM

height, 4 local channels, 16Tops, 40W

Fig. 5. DIMM-NDP modules: a) standard, b) custom DIMM form factors.

5.2.2 Accelerator Form Factor (Custom DIMM) and Power

A custom form factor allows higher design power, e.g., 40W,
but needs additional power lines and cooling. This is the
option for highest performance and capacity. Example: 4
channels with x4 DRAM need 72 DRAM devices, requiring
roughly double the regular DIMM height using both PCB
sides, see Fig. 5 b). Alternatively, 4 channels with x8 DRAM
need 36 DRAM devices that can be arranged in 3 rows,
such that only about 10mm extra height is needed. The
MedC chip package roughly needs a 1500-ball package as
estimated from prior art (e.g., IBM Power8 buffer [54]). The
package takes 32mm x 32mm area at 0.8mm ball pitch and
26mm x 26mm area at 0.65mm pitch respectively.

5.3 Resulting NDP-enabled Memory Modules

The following NDP-enabled modules use the estimations
from the previous subsections. DRAM device power is
derived from Micron’s DDR4 device power models [41] at
100% utilization with 2/3 reads, 1/3 writes (no power down
cycles), open-page mode, 50% hit rate, 50% bit toggle rate.

5.3.1 NDP on Regular DIMM within 13W at 32GB

In this setup, the MedC embeds two in-order cores with
their vector and matrix units to support two local DRAM
channels at 51GB/s peak bandwidth for DDR4-3200. With
16Gb DRAM x8 devices, the total capacity of the DIMM is
32GB. The power envelope stays within 13W based on the
conservative estimation in Table 3.

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 7

TABLE 2
Area Estimation of NDP Building Blocks on 10nm-like Technology Process for MedC Buffer Chip

Standard DIMM Custom DIMM
Block Area Quantity Total Area Quantity Total Area

In-order core with L1 caches 1mm2 2 2mm2 4 4mm2

Vector unit, 512b 1mm2 2 2mm2 4 4mm2

Matrix unit (16x16 | 32x32) 0.5mm2| 2mm2 2 1mm2 4 8mm2

Glue logic (MDMC, buses, etc.) 4mm2 2 8mm2 4 16mm2

Memory IO frontend 9mm2 3 27mm2 5 45mm2

Optional scratchpad 1.5mm2 2 3mm2 4 6mm2

NVDIMM-P asynchronous accesses 2mm2 1 2mm2 1 2mm2

Estimated MedC chip area (sum) <45mm2
<85mm2

TABLE 3
Power Analysis of NDP on standard and custom DIMMs, logic at 2GHz on 10nm-like Technology Process

Standard DIMM Custom DIMM
Block Power Quantity Total Quantity Total Note

In-order core 0.3W 2 0.6W 4 1.2W
Vector unit, 512b 0.3W 2 0.6W 4 1.2W
Matrix unit, 16 x 16 0.3W 2 0.6W 2Tops total (MAC counting as 2 ops)
Matrix unit, 32 x 32 1.2W 4 4.8W 16Tops total (MAC counting as 2 ops)
Glue logic 2W 1 2W 2 4W MDMCs, on-die buses, FSMs, etc.
Mem IO frontend 0.4W 3 1.2W 5 2W local channels and interface to host
x8 DRAM device 0.4W 18 7.2W including ECC, DDR4-3200
x4 DRAM device 0.32W 72 23W including ECC, DDR4-3200
Discrete DBs (if needed) 0.8W 1 0.8W 1 0.8W mainly 2x memory IO frontend

Estimated DIMM total power (sum) 13W 37W

5.3.2 NDP Accelerator Form Factor ≤ 40W, 128GB

The MedC embeds 4 cores, each with one 32x32 MAC array
and one vector unit, to support 4 local DRAM channels at
102GB/s bandwidth for DDR4-3200. With 16Gb x4 devices,
we reach 128GB capacity, staying below 40W (Table 3).

5.4 Cost Analysis for Memory Module

Cost factors vary depending on specific supply chains, i.e.,
the following should be seen as indicative only. Assuming
a volume of 1 million DIMMs, non-recurring engineer-
ing (NRE) costs can be neglected for the most part. This
corresponds to about 60k fully populated sockets, which
we consider as low volume and realistic to achieve. We
recognize the following factors that limit additional costs to
less than 20% by switching from LRDIMM to DIMM-NDP:

• PCB layout with additional routing layers: Overhead is
less than $10 per board (see [55] for an overview of PCB
cost factors).

• MedC buffer chip: Additional costs are below $30 since
the buffer has a similar complexity as a smartphone
chipset [56].

• DRAM costs: Stay the same. At $7/GB1, costs for 128GB
plus ECC are about $1000.

• Cooling and power distribution: the 128GB DIMM-
NDP can still be cooled by air flow (16 boards, 40W
each, equal two “heavy” PCIe boards); overhead of a
few dollars per board.

1. DRAM spot price, as of Dec. 2018 tracked at DRAMeXchange:
https://dramexchange.com/

DRAM costs remain the dominating factor of the DIMM. In
comparison, solutions based on HBM and HMC are up to
one order of magnitude more expensive than DDR4 at the
same capacity due to TSV processing steps and TSV area
for heterogeneous stacking, testing and package costs [57].
[58] suggests a price premium of about 3x for HBM2 over
GDDR5. In addition, we have to factor in the costs for
custom logic for each stack to support NDP units in a
heterogeneous 3D stack or have to consider a wide memory
interface in the media controller. Silicon interposer costs for
integrating HBM are at the same level as the costs for the
buffer chip stated above due to the required area.

6 EVALUATION SETUP AND FLOW

6.1 Selected Workloads

In order to characterize DIMM-NDP, we complement low-
level benchmarks for memory bandwidth and latency with
full applications from the domain of data analytics, scientific
computing and machine learning as representatives of a
wider range of compute methods.

6.1.1 Elementary Tests

• stream [6] stresses memory bandwidth for 4 different
matrix compute kernels.

• Pointer chasing, as in lmbench [60], reveals round-trip
memory latency under low load.

https://dramexchange.com/

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 8

TABLE 4
Characteristics of Selected Data Sets for liblinear and libSVM Applications

Name Type Classes Samples Features
Features/

Use casesample [avg.]

News20.binary sparse 2 20K 1.4M 462 text classification in newsgroups
Avazu sparse 2 40M 1M 15 click-through prediction for ads
Protein sparse 3 18K 357 102 protein structure prediction
e2006-tfidf sparse 8 16K 150K 1218 financial risk assessment
YearPredictMSD dense 86 463K 90 90 year of song prediction by audio features

TABLE 5
Host SoC Configuration as Reference

Parameter Description

Core count up to 48 ARMv8-A [34] out-of-order
Core type ARM Cortex A76-like [59] (decode width 4, 16 SP-FLOPS/cycle), AArch64 state
Core frequency 3GHz
HW prefetcher stride prefetcher on I$ (degree 1), D$ (degree 4) and L2 (degree 8)
L1 cache 64KB I$ and 64KB D$ per core
L2 cache 512KB per core, private
Last Level Cache up to 48MB exclusive with L2$’s
Main memory 8 channels at DDR4-3200
MC memory control FR-FCFS (first row hit – first come first served); open adaptive open-page mode
Interconnect 2 bi-directional rings, 16B/clock per direction
PCIe IO 32 available PCIe gen4 lanes for accelerators

6.1.2 Applications

Kaggle’s survey on the state of data science [61] reveals
methods like logistic regression, neural networks and de-
cision trees in the top-5 of the most popular techniques.
We choose representative workloads from this set that span
memory and compute-bound programs.

• liblinear [62] for solving linear classification and re-
gression. The solvers rely on Level-1 vector Basic Lin-
ear Algebra Subprograms (L1 BLAS) and are memory
bandwidth-bound.

• libSVM [63] for solving support vector classification,
regression, and multi-class classification. The solvers
rely on L1 BLAS vector operations and are memory
bandwidth-bound.

• SSD [64] (Single Shot MultiBox Detector) applies convo-
lutional networks for the detection of multiple objects in
images. SSD relies on Level-3 BLAS matrix operations
and is more compute than memory-bound.

• xgboost [65] addresses classification and regression
problems with gradient boosting by employing deci-
sion trees, relying on tree traversals, and is memory
latency-bound.

6.1.3 Data Sets

The data sets in Table 4 are selected for liblinear and libSVM
and listed at the libSVM page ([63], from various sources).
These represent different set sizes and feature sets. The
number of samples are shown for training. Additional 10%
to 20% are usually available for testing.

For SSD, we apply the SSD300 model with the Pascal
VOC07+12 dataset referenced at the SSD webpage [64] for
training the object class recognition in images.

For xgboost, we use the kaggle-higgs competition for
identifying Higgs bosons (250k events with 30 features) and
the YearPredictMSD data sets. Both are referenced in the
xgboost distribution [65].

6.2 System Configuration

6.2.1 Host SoC

Inspired by recent high core-count CPUs like Qualcomm
Centriq (48 cores), Marvell ThunderX2 (32 cores), AMD
EPYC (32 cores) and Intel Xeon Scalable Processor (28 cores)
and their memory subsystems, we consider the reference
system in Table 5 as host SoC.

6.2.2 NDP Unit

The parameters for one NDP unit are summarized in Ta-
ble 6, including vector, matrix and scratchpad support.
Considering up to 2 DIMMs per host memory channel and
four ranks per DIMM, we can have up to 64 NDP units per
host SoC socket.

6.2.3 Mapping from System-physical to DIMM/DRAM-

physical Addresses by the Host

As in related work [19], [67], address interleave between
DRAM banks, ranks and channels on cacheline granularity
on the host memory bus has to be adapted to keep data local
to NDP units. In our case, fine-grain address interleave be-
tween DIMMs and host channels should not be applied for
NDP-enabled memory ranks. The MedC buffer on DIMM
may apply any address interleave scheme for the ranks and
banks under its control to reach higher utilization.

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 9

TABLE 6
Configuration for one NDP Unit

Parameter Description

Core type ARMv8-A [34] in-order, ARM Cortex A55-like pipeline, AArch64 state
Core frequency 2GHz
Vector support SVE512-like [35]
Matrix support 16 x 16 single-precision Floating Point MAC array [36]
Memory single channel at DDR4-3200
MDMC mem control FR-FCFS (first row hit – first come first served); open adaptive open-page mode
L1 cache 32KB I$ and 64KB D$ per core
Scratchpad optional 2MB

TABLE 7
Energy per Elementary Operation on 10nm-like Process Extrapolated from [4], [5], [40], [66]

Operation
Host: High-freq NDP: Low voltage

Description
process [pJ] process [pJ]

Exec, 1 instruction 110 (OoO) 13.1 (InOrder) complexity of control logic, I$
Idle 40 (OoO) 10 (InOrder) factoring in IPC, CLK, leakage
Integer simple / complex 0.1 / 3 0.07 / 2.2 Int Add / Int Mul
FP simple / complex 0.9 / 3.7 0.7 / 2.8 FP Add / FP Mul
SIMD Int simple / complex 0.2 / 6 0.15 / 4.5 128b width
SIMD FP simple / complex 1.8 / 7.4 1.3 / 5.5 128b width
SVE vector instruction (4x) 512b: 4x the value of 128b SIMD instr
D$ read 20 17 64b value
L2$ read 170 512b, includes wiring
LLC read 400 512b, includes wiring, on-die buses

DRAM access (DIMM) 3 to 10 pJ/bit typ. depending on operating pointa)

DRAM access (IO) 1.1 to 1.7 pJ/bit for address, cmd, data linesa)

DRAM background power 93 mW for each x8 device refresh overhead & active standby [41]

a) DRAM read & write percentage, DRAM page hit & further statistics derived from simulation
in Gem5 and used with the DDR4 Micron power model [41] for x8 devices at DDR4-3200

6.3 Evaluation Flow

6.3.1 Performance Evaluation

The Gem5 simulator [68] is used as framework in system
emulation mode. We added the following enhancements to
model the features described in subsection 6.2:

• The out-of-order core model is calibrated to match
the performance level of a modern core in terms of
issue width, internal bandwidth, queue depths and
functional units

• We derived the NDP unit model from a Gem5 branch
that models vector instructions (SVE [35]) and added
SVE gather/scatter support

• NVDIMM-P-like asynchronous communication be-
tween the host and NDP core systems is modeled by
a bridge block between the two subsystems

• We implement the matrix unit as additional functional
unit that reassigns selected SVE command encodings
for use with the unit (a real implementation requires
new instructions)

• We model the impact of cache maintenance by ARM
cache-clean & invalidate operations on virtual ad-
dresses (thus covering all cache levels on the host) on
the host and the NDP sides

We use ARM’s compiler for HPC, release 18, as starting
point for SVE-enabled assembly, as well as the ARM Instruc-

tion Emulator (ArmIE) for functional verification of the SVE
implementation.

For partitioning the execution of the workload onto the
host and DIMM-NDP, we split the workload into execution
phases where either the host or the NDP side is active on the
working set. In this way, we can manage synchronization
with spinlocks on shared memory in software and rely on
explicit cache maintenance for consistent data. In order to
determine these phases, we profile the workloads on real
x86 and ARM servers and not in simulation to:

a) Derive the number and length of the phases for the
complete workloads

b) Assess and characterize the loss of scalability due to
parallel overhead (such as communication and syn-
chronization) at high core and NDP unit counts, where
appropriate depending on the programming approach

With performance counters, we determine hot code sec-
tions. We further classify these into CPU and memory-
bound sections by using LLC statistics, such as MPKI and
LLC usage. We prefer offloading procedures to NDP, either
at low level (e.g., for batches of BLAS1 dot product calls in
libSVM) or at higher level (e.g., for calls of the optimization
solver in liblinear).

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 10

6.3.2 Energy Evaluation

We use activity counters to project energy efficiency with
annotations for logical and memory operations for recent
10nm-like process technology by extrapolation from [4], [5],
[40], [66], see Table 7. We use these for ranking alternatives
for design-space exploration, but not for absolute results. We
do not consider energy consumption related to waiting for
acquiring a spinlock. Spinlocks are the mode of operation
for this case study, but can be improved by, e.g., explicit sig-
naling and power down phases triggered over the DIMM-
NDP register interface.

7 PERFORMANCE EVALUATION OF DIMM-NDP

This section describes results for performance evaluation of
DIMM-NDP based on simulation of the microarchitecture
in a system setup with selected workloads, as well as
an assessment of the software porting effort to reach the
reported performance.

7.1 Performance and Efficiency Results

7.1.1 Model Calibration

We use the elementary stream and lmbench tests (subsec-
tion 6.1) to align achievable latency and bandwidth by our
core models with existing designs.

7.1.1.1 Host “Big” Core: The round-trip latency for
read accesses under light load as determined by pointer
chasing on main memory reaches about 270 core clock
cycles (90ns), which is about 10% to 20% worse than for an
high-end server, representing a mid-range setup. Similarly,
latencies for the cache levels are set based on measurements
on real systems (several Intel Xeon v3 and v4 processor sys-
tems, ARM Juno R2 board with ARM Cortex-A72, Huawei
TaiShan 2280 ARM server with HiSilicon Kunpeng 916, and
APM X-C1 evaluation boards).

7.1.1.2 NDP “Little” Core: The unloaded latency to
main memory derived from pointer chasing reaches about
115 core clock cycles (58ns) mainly due to a reduced mem-
ory hierarchy compared to the big core setup. As expected,
the usable bandwidth from main memory for the little core
much more depends on efficient prefetching, either in hard-
ware or software, but can reach the same level of utilization
as the big core of about 85% for stream and BLAS1 kernels
with the use of the vector unit. The effort for this kernel-
specific tuning will be discussed in subsection 7.4.

7.1.2 Kernel-level Performance

We apply isolated single unit models for the host SoC and
the NDP unit to evaluate compute kernels. Assuming a
balanced symmetric use of the units, we then extrapolate
full system performance by the number of units that can
work independently (up to 48 cores on the host, up to 64
NDP units in the memory subsystem with 8 channels if 4
ranks per DIMM and two DIMMs per channel are used). For
the host model, we restrict the available memory bandwidth
and LLC capacity for one core to 1/nth of the host’s memory
bandwidth and LLC capacity, with n representing the total
core count we want to extrapolate performance for. For one
NDP unit, on the other hand, we assume that the unit can
exploit the full bandwidth of one memory channel locally on

the DIMM. We exclude initialization time of data structures
from the execution time of kernels. We consider a dataset-
dependent warmup phase in simulation such that we reach
a steady state, both for the use of data (e.g., weight vectors)
and the architecture model (e.g., branch predictor state).

23.8

0

2

4

6

8

10

p-chase sdot saxpy ddot daxpy sgemv dgemv sgemm

Latency

limited

Bandwidth

limited

Compute

limited

Fig. 6. DIMM-NDP speedup over host CPU for compute kernels, extrap-
olated from single-unit models.

Fig. 6 shows the speedup for compute kernels on DIMM-
NDP compared to the host for 8 NDP units per memory
channel. Pointer chasing (p-chase) is latency-limited and
benefits from the smaller memory hierarchy of NDP. dot and
axpy are BLAS level 1 kernels (vector - vector operations),
gemv BLAS level 2 (matrix - vector ops), and gemm BLAS
level 3 (matrix - matrix ops) kernels respectively for either
double (d) or single (s) precision floating-point operations.
sgemm takes advantage of the matrix unit (dimension 16x16
considered for the evaluation).

BLAS-L1 kernels are limited by memory bandwidth and
thus take full advantage of the additional bandwidth offered
by DIMM-NDP. sgemm benefits from matrix operations and
is rather limited by computations. sgemm could scale fur-
ther for larger matrix units.

7.1.3 Performance of Applications

We employ a full-system simulation model, coupling the
model of the host with the model of NDP computing by
a custom bridge block that allows both sides to operate
on shared memory, while the host model has to adhere to
NVDIMM-P-like timing. Also, as for the kernel results, the
host model is subject to scaled-down bandwidth depending
on the number of active cores at the host side. Fig. 7
shows the relative performance for libSVM and liblinear for
different numbers of NDP units per host memory channel.
The selection of the right version of a compute kernel (e.g.,
degree of unrolling and prefetching) is dataset-dependent.
The software optimizations are described in more detail in
subsection 7.4.

For liblinear, we offload the full solver to NDP. Dataset
YearPredMSD can take advantage of kernels that are tuned
for dense data structures and scales best, coming close to
the results of the kernels shown in Fig. 6. The speedup
for datasets avazu and news20.bin flattens out for liblinear,
since the degree of parallelism is limited by the number of 10
concurrent cross-validation runs and number of classes cho-
sen for this setup. Results are shown for solver 1 (support
vector classification). We also evaluated solver 0 (logistic
regression) that led to similar results (see section 7.4).

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 11

0

1

2

3

4

5

6

1 2 4 8

NDP units per host memory channel

avazu

e2006

news20.bin

protein

YearPredMSD

0

1

2

3

4

5

6

1 2 4 8

NDP units per host memory channel

libSVM liblinear

DIMM-NDP vs. host

full system speedup (6.3)

(3.3)

Data sets

Fig. 7. DIMM-NDP speedup over host CPU for libSVM and liblinear applications, full system.

For libSVM, we exploit concurrency by distributing sets
of samples to different NDP units on a more fine-grain
level than for liblinear, based on the code structure. Since
each sample may contain a different number of features,
balancing the load of the units becomes more challenging,
requiring dynamic workload distribution for best results.
Datasets with a limited number of features per sample
(YearPredMSD, avazu, protein) show reduced scalability
since the time spent in the BLAS L1 dot kernel is limited,
thus increasing the effort for managing the samples com-
pared to the host.

For SSD, about 95% of the time on the host is spent in the
convolutional layers that depend by 90% on the execution
of the sgemm BLAS L3 kernel. By employing the matrix unit
and optimizing the data reorganization stage for performing
convolutions with matrix multiplications, we are able to
achieve a speedup of 5.1. The assumption is that NDP units
run independent SSD instances.

TABLE 8
NDP Scratchpad Speedup for liblinear

Dataset News20 Avazu Protein e2006 YearPredictMSD

Speedup 1.94 1.96 1.08 1.68 1.10

7.1.4 Impact of Using the Scratchpad

Table 8 summarizes the speedup for liblinear for using a
scratchpad vs. relying on the L1 cache only. For this sensi-
tivity analysis, we approximate the behavior of a scratchpad
with a fully associative cache in parallel to the L1 cache
that is responsible for a separate memory region (i.e., data
placement in memory determines the right cache). For the
scratchpad version, we can remove much of the L1-specific
prefetch code in favor of bulk transfers to the scratchpad.
The scratchpad appears favorable for datasets where a de-
cent number of features can take advantage of the locality
offered by the scratchpad.

7.1.5 Energy Efficiency

Employing activity counters (see subsection 6.3), the relative
energy required by BLAS L1 and L2 kernels for different
vector and matrix sizes is shown in Fig. 8. The baseline
is the corresponding execution on the host processor. The

reduction of required energy is mainly due to fewer accesses
in the memory hierarchy triggered by cache maintenance
operations between cache levels. On kernel level, we recog-
nize a 3x to 4x potential for reducing energy.

0.0 0.2 0.4 0.6 0.8 1.0

blas1.1000000.daxpy

blas1.1000000.ddot

blas1.1000000.saxpy

blas1.1000000.sdot

cold_caches.10000x5000.dgemv

cold_caches.8x2000.dgemv

cold_caches.10000x5000.sgemv

cold_caches.8x2000.sgemv

warm_caches.10000x5000.dgemv

warm_caches.8x2000.dgemv

warm_caches.10000x5000.sgemv

warm_caches.8x2000.sgemv

Lower is better

Baseline

(host)

Fig. 8. NDP kernel-level reduction of energy for BLAS L1 and L2 kernels
and different vector and matrix sizes.

On application-level, Fig. 9 shows the efficiency results
for DIMM-NDP relative to complete execution on the host
for liblinear and the selected datasets for our full system
setup. We attribute 4x the energy for IO signaling from the
host compared to direct access by an NDP unit due to our
setup with 2 DIMMs per channel and buffers on DIMM. If
we reduce this factor to 2x, the results are impacted by less
than 3%. The reduction potential by 2x to 3x can thus mainly
be attributed to the efficiency of the BLAS Level 1 kernels.

0 0.2 0.4 0.6 0.8 1

avazu

e2006

news20bin

protein

yearpred

Lower is better

Baseline

(host)

Fig. 9. NDP application-level reduction of energy for liblinear and differ-
ent data sets.

7.2 Comparison of Near Main Memory Processing vs.

Loosely Coupled Accelerator

We perform a sensitivity analysis of the number of syn-
chronizations between the host and NDP units on the

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 12

TABLE 9
Coupling Characteristics between Host SoC and NDP Units with Different Interface Options for NDP.

Configuration
Peak bandwidth Host latency

Capacity
Peak NDP-local

Note
to/from host to NDP memory bandwidth

Standard DIMM, 2DPCa) 205GB/s <200ns 512GB 0.8TB/s host shared memory
Custom DIMM, 2DPCa) 205GB/s <200ns 2TB 1.6TB/s host shared memory
NDP over PCIe 63GB/s µs range ≤512GB ≤1.6TB/s extra DRAM costs
NDP over reduced PCIeb) 63GB/s 0.5µs range ≤512GB ≤1.6TB/s extra DRAM costs

a) 2 DIMMs per channel b) Such as latency-optimized Gen-Z [16] or CCIX [17]

1

1.2

1.4

1.6

1.8

2

2.2

4 8 16 32 64

1000ns-0.5xBW

1000ns-1xBW

1000ns-2xBW

600ns-0.5xBW

600ns-1xBW

600ns-2xBW

200ns-0.5xBW

200ns-1xBW

200ns-2xBW1

1.2

1.4

1.6

1.8

2

2.2

4 8 16 32 64

Slowdown vs. NDP near memory

Explicit cache maintenance With hardware coherence

Array size [MB]

[Round-trip latency for 64B packet –
relative PCIe Gen4 bandwidth]

Fig. 10. Slowdown of PCIe setup vs. DIMM-NDP near main memory for pointer chasing workload and varying array sizes.

performance of DIMM-NDP and a loosely PCIe-attached
accelerator with the same NDP units and memory capacity.
In this way, we characterize the impact of tight vs. loose
coupling on overall performance to position DIMM-NDP
relative to more established solutions. The comparison is
optimistic for the PCIe accelerator since memory must be
allocated on the card, usually at lower capacity than the
main memory of the host. Additional data partitioning and
bulk copying between the host and the accelerator required
in this case are not considered here.

7.2.1 PCIe NDP Setup

The DIMM-NDP advantage in terms of bandwidth and
latency compared to PCIe for working with the host is
summarized in Table 9, considering parameters from Ta-
bles 5, 6 and subsection 5.3. For phases where the host and
NDP units have to synchronize, our DIMM-NDP solution
in main memory should have an up to 3x advantage in
terms of bandwidth (if data are copied; by applying cache
maintenance, the advantage is higher) and up to 10x in
terms of latency. We use pointer chasing as a stress test
to highlight the impact of synchronization/communication
between the two sides. Arrays are initialized with random
access patterns by the host for use with pointer chasing by
the NDP units. For the NDP PCIe setup, the arrays have
to be copied to the NDP unit after initialization, whereas
for NDP in main memory the host performs cache-clean
operations. The results of the tests are communicated back
to the host accordingly.

4000

6000

8000

10000

12000

100 120 140 160 180 200 220

st
re

a
m

 c
o

p
y

 b
a

n
d

w
id

th

[M
B

/s
]

lmbench Round-Trip unloaded latency [ns]

Same COD

Neighbor COD

COD on remote

socket, best case

COD on remote

socket, worst case

Each CPU socket contains 2 Clusters-on-Die

(COD) that are exposed as NUMA domains

Fig. 11. Degradation of memory access latency and bandwidth with
distance between allocated NUMA nodes for compute and memory, on
Intel Xeon E5-2660v3 processor based dual socket server.

7.2.2 PCIe NDP Results

Fig. 10 presents the results for the pointer chasing test. We
distinguish two coherence methods. The results on the left
depend on explicit cache maintenance operations to clean
caches on either the host or the NDP side. This represents
the mode of operation that we use with DIMM-NDP as well,
and models the use of classic PCIe. The results on the right
rely on hardware coherence to keep data consistent and
thus represent future interfaces like CCIX [17]. We change
the round-trip latency and peak bandwidth to provide a
sensitivity analysis of these parameters, thus covering the
potential of protocol stacks for Gen-Z [16] and CCIX [17].

By varying the array size for pointer chasing, we change
the ratio of time spent on the host for initializing the

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

same COD neighbor COD COD on

remote socket,

best case

COD on

remote socket,

worst case

liblinear

stream

xgboost 0.6 kaggle-higgs

xgboost 0.6 yearpredMSD

SPEC FP 2006

SPEC INT 2006

SSD0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

same COD neighbor COD COD on

remote socket,

best case

COD on

remote socket,

worst case

liblinear

stream

xgboost 0.6 kaggle-higgs

xgboost 0.6 yearpredMSD

SPEC FP 2006

SPEC INT 2006

SSD

lmbench RT latency

(reference)(reference)

b) Serial runa) Parallel run liblinear

stream

xgboost kaggle-higgs

xgboost yearpredMSD

SPEC CPU FP 2006

SPEC CPU INT 2006

SSD

lmbench RT latency

Fig. 12. Degradation of workload performance on Intel Xeon E5-2660v3 processor based dual socket server depending on the allocation of NUMA
nodes for compute and memory.

array vs. time spent on NDP for traversing the array by
pointer chasing. The baseline (DIMM-NDP) is at least 60%
faster than the implementation on the host, i.e., DIMM-NDP
performs better, even though the host and NDP units have
to synchronize data on a fine time scale. Fig. 10 reveals a
slowdown of up to 2x compared to DIMM-NDP for the PCIe
cases, effectively slowing down the benchmark compared to
the host for selected configurations. We can also see a slight
slowdown for the configurations with hardware coherence
compared to explicit cache maintenance, whereas explicit
cache maintenance requires more programming effort.

7.2.3 Discussion of Near-Data Interface

The DIMM-NDP implementation for this setup is limited
by serializing synchronization and computing. The synchro-
nization can further be reduced by switching from using
spinlocks on shared memory to a more direct signaling path
controlled by the host over the memory-mapped register
interface of the NDP units.

Cache maintenance over levels of the memory hierarchy
on the host becomes a limiting factor for fine-grain preserva-
tion of consistent data, since the processing cores can either
compute or do cache maintenance. This is seen in Fig. 10
for small array sizes, as more frequent interactions between
the host and the NDP units are needed. The characteristics
in Table 9 suggest at least an advantage of 4x for DIMM-
NDP over the PCIe configuration for exchanges with the
host, whereas the results rather converge to a factor of
two. Overall, tighter coupling with the host by employing
DIMM-NDP enables more host-centric usages, since smaller
kernel calls can be offloaded to NDP units to achieve better
performance. This setup also enables a more gradual tran-
sition to using accelerators by offloading more and more
functions to DIMM-NDP on shared memory.

7.3 Slowdown of Workloads Running Mainly on the

Host due to NVDIMM-P Asynchronous Accesses

In order to characterize the impact of additional latency
introduced by NVDIMM-P asynchronous accesses on per-
formance for workloads running mainly on the host, we
perform a sensitivity analysis of latency on two 2P servers
(Intel Xeon E5-2660v3 processor and Huawei TaiShan 2280)
by placing compute in one NUMA domain and all memory
in a different NUMA domain, e.g., on a remote socket or

different cluster-on-die (COD). Fig. 11 shows the charac-
terization by our elementary bandwidth and latency tests
using one running instance on the x86 server. For repro-
ducible measurements, turbo mode, hyperthreading, active
and idle power savings states are switched off. As placing
the NUMA nodes for compute and memory on the same
COD has a more than linear advantage (bypassing any
interconnect bottleneck between CODs) over configurations
with higher distance, we select the “neighbor COD” config-
uration as reference in the following comparison.

Fig. 12 shows the speedup of workloads depending on
the distance between the allocated NUMA memory and
compute nodes. A parallel run is confined by the number
of cores in one NUMA domain, 5 cores in our case. Beside
the elementary tests, liblinear reveals the largest slowdown
of the workloads, corresponding to about 3% for every 10ns
of latency added, whereas all others degrade by less than
1.1% for every 10ns of latency added. This is in-line with
the study by Clapp et al. [69] who estimate up to 3.5% of
CPI increase for every 10ns added. Trends on the Huawei
TaiShan server are less pronounced, since the reference
configuration already incurs higher latency.

We expect the asynchronous access mode of NVDIMM-
P to add 10ns to 20ns of latency, since the host’s memory
controller has to pull data from the DIMM’s buffer after
the availability is signaled by the buffer. Also, our MedC
architecture introduces arbitration in its memory controller
MDMC before accesses from the host reach main memory,
adding up to about 50ns latency overall. As mitigation for
workloads that do not share data with NDP, hybrid chan-
nel configurations for the host memory bus are possible:
Defined ranks and DIMMs may only be used by the host
directly with the DDR4/5 protocol for best performance
using the abundant memory capacity of main memory.
NVDIMM-P can be enabled rank-by-rank, co-existing with
native DDR4/5 accesses on the same host channel.

In our gem5 simulation model, as memory-bound
phases are offloaded to NDP and do not depend on the
host bus, the overall slowdown due to NVDIMM-P latency
on the host bus (by sensitivity analysis of our bridge block
in gem5) becomes negligible at less than 1% for liblinear.

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 14

a) Compilation: 55 cycles/iteration

b) Manually reordered: 44 cycles/iteration

Clock cycles

Micro-

architecture

building

blocks

Fig. 13. Dreams [70] screenshot showing microarchitecture events over time before and after manual instruction reordering for a compute loop. The
number of cycles per iteration can be reduced by 20% in this example.

7.4 Software Porting Effort to Use DIMM-NDP

In order to reach the reported performance of DIMM-NDP,
we iteratively refined the software implementation on the
NDP side to take full advantage of data parallelism. The
case study underpins the potential of several tuning steps
to reach better performance on NDP’s in-order core and its
vector unit. This can be used as a proxy for estimating the
effort for providing customized application-specific libraries
for use with DIMM-NDP.

7.4.1 Optimization Steps

We distinguish the following optimization steps to quantify
the development effort for particularly tuning the hot BLAS
L1 kernels:

• Host-only reference: Optimization of data layout to
struct-of-arrays and loop fusion to simplify vectoriza-
tion, using baseline version on the host

• NDP baseline: Splitting workload into execution phases
based on profiling, implementing spinlocks to establish
handover between phases

• SWPF: Analyzing performance, adding software
prefetches, tuning memory access patterns

• Unroll: Experimenting with several unrolling sizes &
analyzing instruction scheduling

• Reorder: Manual instruction reordering
• Outer unroll: Outer loop unrolling with adaption of

prefetching and order of instructions
• Reduction: Optimization of vector reductions, using

predication and register blocking

Note that the effort for parallelization on several NDP
units is part of the first two steps and rather straightforward,
as the degree of parallelism is similar to the parallelism of
the number of cores on the host side. That means, we can

take advantage of profiling results and best-known methods
on a high-core-count CPU to check the partitioning for NDP.

As the optimization phases may reveal subtle side-effects
on a small scale between the microarchitecture blocks of our
NDP architecture, we use a custom version of the Dreams
tool to trace and track performance effects on cycle gran-
ularity together with our gem5 simulation models. Fig. 13
shows an example, where Dreams enables cycle-by-cycle
optimization by displaying the impact of manual instruction
reordering, as we trace the stages of the processing pipeline.

7.4.2 Porting Results

The following study summarizes the effort for the dataset
YearPredMSD. Fig. 14 shows the impact of the optimization
steps on the overall speedup that we are able to achieve for
the logistic regression solver. Most of the effort of about one
man-month has to be invested only once for establishing a
domain-specific library with common compute kernels, like
BLAS for linear algebra. Then, the application programmer
can mainly focus on the data layout and partitioning for
NDP. In this way, the programmer can start with a working,
host-centric implementation and gradually move function-
ality to NDP to tune performance.

7.5 Discussion of Further NDP Variants

7.5.1 PCIe Accelerator vs. near Main Memory

We think that near-memory processing at shared memory
of the main host SoC allows accelerating CPU-centric pro-
cessing where “big” cores can continue to shine, e.g., for us-
ing interpreted and dynamic languages (python, scripting,
etc.) and rich runtime environments (Java, perl, etc.) with
frequent calls of kernels, like the compute “dwarfs” [71].
We can take advantage of established programming abstrac-
tions for heterogeneity, such as NUMA and domain-specific

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 15

0

1

2

3

4

5

6

7

Host only

(reference)

NDP

Baseline

SWPF Unroll Reorder Outer

Unroll

Reduction

Optimization steps on NDP side

(1W) (1W)

(1W) (0.5W)

(0.5W)

(0.5W)
(0.5W)

Speedup

(effort in weeks)

Fig. 14. Impact of iterative optimizations of the NDP-sided software for
YearPredMSD dataset and logistic regression solver; relative full-system
performance with 8 NDP units per host memory channel are shown with
effort estimations in weeks (W) for one experienced programmer.

libraries, to ease the transition to programming NDP, while
the burden of data partitioning and managing data is re-
duced compared to memory capacity-limited accelerators.

7.5.2 Minimal DIMM-NDP Version

As long as the host’s memory controllers implement the
asynchronous read/write access subset of NVDIMM-P, the
register interface for using NDP can be implemented and
memory-mapped only at the DIMM side, at the expense of
communication overhead on the host memory bus. Like-
wise, the synchronization between host and NDP may hap-
pen completely in software over shared memory without
depending on the register interface. In this way, first gen-
eration DIMM-NDP can be introduced without having to
modify the IP of the host SoC.

7.5.3 Higher DRAM Speed Locally

The use of a MedC buffer on DIMM also enables the use of
faster memory devices locally on DIMM, such as GDDR and
HBM. Then, MedC always has to translate the protocols on
the host bus to local timing and protocols, like GDDR. The
host must thus use NVDIMM-P asynchronous requests for
all accesses to the DIMM, even if NDP is switched off.

7.5.4 Augmenting the Host with Special Units

One may argue about adding vector and matrix units to
the host SoC to achieve better performance. In our study,
for BLAS1/2 algebra, already the FPUs of the host saturate
the memory bandwidth seen by the host. Vector units do
not help the host in this situation, whereas NDP takes
advantage of the extra bandwidth available on DIMM. The
matrix unit may help the host for codes with high arithmetic
intensity. However, the unit is rather hard to integrate into
the general-purpose memory hierarchy of the host (includ-
ing its register context).

8 CONCLUDING REMARKS

We have evaluated the hardware feasibility, programming
effort and performance of Near-Data Processing (NDP) on
memory modules for server applications. Our proposal

DIMM-NDP for the hardware architecture and software
view targeting scientific applications looks promising for
simplifying the transition to NDP by utilizing commodity
DRAM devices on memory modules at high memory capac-
ity and bounded overhead costs:

• We can exploit the modularity of DIMMs for variable
deployments of NDP and for strengthening the role of
the host CPU by broader use with accelerated applica-
tions from different application domains.

• As the costs for DRAM become a dominant factor
in server deployments, DIMM-NDP makes sure that
memory capacity can always be used by the host, even
if NDP is switched off.

• Application code can gradually be moved to NDP since
the memory is shared and available at full capacity,
avoiding data partitioning and copying hassles com-
pared with more capacity-limited accelerators.

As a result, we expect many different application do-
mains to take advantage of programmable NDP units
and DIMM-NDP, as needed for a general-purpose server
architecture. We position DIMM-NDP complementary to
application-specific accelerators, while building on the soft-
ware infrastructure that has been established for accelerators
and heterogeneous computing to ease the transition. Later
generations of the technology may step away from a bare-
metal implementation and exploit support by an operating
system [72], also extending higher-level programming ab-
stractions to NDP units, such as OpenMP and openCL.

ACKNOWLEDGMENTS

The authors would like to thank Andrea Nobile, SUN Yun-
liang and Heiko Schick from Huawei MRC, as well as Oscar
Rosell, Isaac Hernández, Javier Bueno and Toni Juan from
Metempsy for their support of the project and invaluable
feedback.

REFERENCES

[1] P. Siegl, R. Buchty, and M. Berekovic, “Data-centric computing
frontiers: A survey on processing-in-memory,” in Int’l Symposium
on Memory Systems (MEMSYS). New York, NY, USA: ACM, Oct.
2016, pp. 295–308.

[2] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Mur-
phy, R. Nair, and S. Swanson, “Near-data processing: Insights from
a MICRO-46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, Aug.
2014.

[3] M. Horowitz, “Computing’s energy problem (and what we can
do about it),” in Int’l Solid-State Circuits Conference (ISSCC). New
York, NY, USA: IEEE, Feb. 2014, pp. 10–14.

[4] S. Borkar, “Exascale computing - a fact or a fiction? (keynote),”
Int’l Parallel & Distributed Processing Symposium (IPDPS), May
2013.

[5] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31,
no. 5, pp. 7–17, Oct. 2011.

[6] J. D. McCalpin. (2016, Jul.) STREAM: Sustainable memory
bandwidth in high performance computers. [Online]. Available:
https://www.cs.virginia.edu/stream/

[7] P. R. Kinget, “Scaling analog circuits into deep nanoscale CMOS:
Obstacles and ways to overcome them,” in IEEE Custom Integrated
Circuits Conference (CICC). New York, NY, USA: IEEE, Sep. 2015.

[8] B. Feinberg, U. K. R. Venalam, N. Whitehair, S. Wang, and E. Ipek,
“Enabling scientific computing on memristive accelerators,” in
Int’l Symposium on Computer Architecture (ISCA). Los Alamitos,
CA, USA: IEEE Computer Society, Jun. 2018, pp. 367–382.

https://www.cs.virginia.edu/stream/

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 16

[9] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Design and evalua-
tion of a processing-in-memory architecture for the smart memory
cube,” in Int’l Conference on Architecture of Computing Systems
(ARCS). Basel, Switzerland: Springer Int’l Publishing, Apr. 2016,
pp. 19–31.

[10] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,”
in Int’l Symposium on Computer Architecture (ISCA). New York,
NY, USA: ACM, Jun. 2015, pp. 105–117.

[11] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfig-
urable logic for near-data processing,” in Int’l Symposium on High
Performance Computer Architecture (HPCA). Los Alamitos, CA,
USA: IEEE Computer Society, Mar. 2016, pp. 126–137.

[12] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C.-Y. Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer,
T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob,
P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K.
O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam,
and Z. Sura, “Active memory cube: A processing-in-memory
architecture for exascale systems,” IBM Journal of Research and
Development, vol. 59, no. 2/3, 2015.

[13] M. B. Taylor, “Is dark silicon useful?” in Design Automation Confer-
ence (DAC). New York, NY, USA: ACM, Jun. 2012, pp. 1131–1136.

[14] B. Gervasi and J. Hinkle, “Overcoming system memory challenges
with persistent memory and NVDIMM-P,” in JEDEC Server Forum.
Arlington, VA, USA: JEDEC, Jun. 2017.

[15] Proposed DDR5 NVDIMM-P Bus Protocol, 2261.13C ed., JEDEC
Solid State Technology Association, committee JC-45.6, Nov. 2017.

[16] Gen-Z Core Specification, 1st ed., Gen-Z Consortium,
https://genzconsortium.org, Feb. 2018.

[17] An Introduction to CCIX, CCIX Consortium, Inc.,
https://www.ccixconsortium.com, 2018.

[18] University of Tennessee Knoxville and Oak Ridge National Lab.
(2017, Nov.) BLAS (basic linear algebra subprograms). [Online].
Available: http://www.netlib.org/blas/

[19] E. Vermij, C. Hagleitner, L. Fiorin, R. Jongerius, J. van Lunteren,
and K. Bertels, “An architecture for near-data processing systems,”
in ACM Int’l Conf. on Computing Frontiers (CF). New York, NY,
USA: ACM, May 2016, pp. 357–360.

[20] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,
K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: An efficient
cache coherence mechanism for processing-in-memory,” IEEE
Computer Architecture Letters, vol. 16, no. 1, pp. 46–50, 2017.

[21] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim,
“NDA: Near-DRAM acceleration architecture leveraging com-
modity DRAM devices and standard memory modules,” in Int’l
Symposium on High Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, Feb. 2015, pp. 283–
295.

[22] J. Cong, Z. Fang, F. Javadi, and G. Reinman, “AIM: Accelerat-
ing computational genomics through scalable and noninvasive
accelerator-interposed memory,” in Int’l Symposium on Memory
Systems (MEMSYS). New York, NY, USA: ACM, Oct. 2017, pp.
3–14.

[23] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,
T. Roewer, A. McPadden, O. OHalloran, D. Chen, J. Xiong, D. Kim,
W. mei Hwu, and N. S. Kim, “Application-transparent near-
memory processing architecture with memory channel network,”
in IEEE/ACM Int’l Symposium on Microarchitecture (MICRO). Los
Alamitos, CA, USA: IEEE Computer Society, Oct. 2018, pp. 803–
815.

[24] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-DRAM acceleration ar-
chitecture for large memory systems,” in IEEE/ACM Int’l Sympo-
sium on Microarchitecture (MICRO). Los Alamitos, CA, USA: IEEE
Computer Society, Oct. 2016.

[25] M. Drumond, A. Daglis, N. Mirzadeh, and D. Ustiugov, “The Mon-
drian data engine,” in Int’l Symposium on Computer Architecture
(ISCA). New York, NY, USA: ACM, Jun. 2017, pp. 639–651.

[26] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein,
“Highly scalable near memory processing with migrating threads
on the Emu system architecture,” in Workshop on Irregular Applica-
tions: Architecture and Algorithms (IA3). Los Alamitos, CA, USA:
IEEE Computer Society, Nov. 2016, pp. 2–9.

[27] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond
the wall: Near-data processing for databases,” in Int’l Workshop
on Data Management on New Hardware (DaMoN). New York, NY,
USA: ACM, Jun. 2015.

[28] M. Gokhale, S. Lloyd, and C. Hajas, “Near memory data structure
rearrangement,” in Int’l Symposium on Memory Systems (MEMSYS).
New York, NY, USA: ACM, Oct. 2015, pp. 283–290.

[29] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in
memory using 3D-stacked DRAM,” in Int’l Symposium on Computer
Architecture (ISCA). New York, NY, USA: ACM, Jun. 2015, pp.
131–143.

[30] M. Scrbak, M. Islam, K. M. Kavi, M. Ignatowski, and N. Jayasena,
“Exploring the processing-in-memory design space,” Elsevier Jour-
nal of Systems Architecture, vol. 75, pp. 59–67, Apr. 2017.

[31] S. Lee, B. Jeon, K. Kang, D. Ka, N. Kim, Y. Kim, Y. Hong, M. Kang,
J. Min, M. Lee, C. Jeong, K. Kim, D. Lee, J. Shin, Y. Han, Y. Shim,
Y. Kim, Y. Kim, H. Kim, J. Yun, B. Kim, S. Han, C. Lee, J. Song,
H. Song, I. Park, Y. Kim, J. Chun, and J. Oh, “A 512GB 1.1v
managed DRAM solution with 16GB ODP and media controller,”
in Int’l Solid-State Circuits Conference (ISSCC). New York, NY,
USA: IEEE, Feb. 2019, pp. 384–385.

[32] LRDIMM DDR3 Memory Buffer (MB), JESD82-30 ed., JEDEC Solid
State Technology Association, Oct. 2014.

[33] FBDIMM Advanced Memory Buffer (AMB), JESD82-20A ed., JEDEC
Solid State Technology Association, Mar. 2009.

[34] ARM Architecture Reference Manual – ARMv8, for ARMv8-A archi-
tecture profile, ARM DDI 0487d.a (ID103018) ed., ARM Ltd., Oct.
2018.

[35] ARM Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for ARMv8-A, ARM DDI 0584a.d (ID122117) ed.,
ARM Ltd., Dec. 2017.

[36] A. Nobile and G. von Boehn, “Multiply accumulator array
and processor device,” World Intellectual Property Organization
(WIPO), Int’l Publication Number WO 2018/228703 Al, Dec. 2018.

[37] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data process-
ing for in-memory analytics frameworks,” in Int’l Conference on
Parallel Architecture and Compilation (PACT). Los Alamitos, CA,
USA: IEEE Computer Society, Oct. 2015, pp. 113–124.

[38] G. H. Khaksari, R. K. Karne, and A. L. Wijesinha, “A bare machine
application development methodology,” FCS Int’l Journal of Com-
puters and Their Applications (IJCA), vol. 19, no. 1, pp. 10–25, Mar.
2012.

[39] L. Gwennap, “Kirin 950 takes performance lead,” in Mobile Chip
Report. Mountain View, CA, USA: The Linley Group, Nov. 2015.

[40] T. Vogelsang, “Understanding the energy consumption of dy-
namic random access memories,” in IEEE/ACM Int’l Symposium
on Microarchitecture (MICRO). Los Alamitos, CA, USA: IEEE
Computer Society, 2010, pp. 363–374.

[41] Calculating Memory Power for DDR4 SDRAM, TN-40-07 ed., Micron
Technology, Inc., 2017.

[42] C. Gonzalez, E. Fluhr, D. Dreps, D. Hogenmiller, R. Rao, J. Paredes,
M. Floyd, M. Sperling, R. Kruse, V. Ramadurai, R. Nett, S. Islam,
J. Pille, and D. Plass, “POWER9: A processor family optimized for
cognitive computing with 25Gb/s accelerator links and 16Gb/s
PCIe Gen4,” in Int’l Solid-State Circuits Conference (ISSCC). New
York, NY, USA: IEEE, Feb. 2017, pp. 50–51.

[43] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan,
C. Morganti, C. Houghton, D. Krueger, O. Franza, J. Desai, J. Crop,
D. Bradley, C. Bostak, S. Bhimji, and M. Becker, “The Xeon proces-
sor E5-2600 v3: A 22nm 18-core product family,” in Int’l Solid-State
Circuits Conference (ISSCC). New York, NY, USA: IEEE, Feb. 2015,
pp. 1–3.

[44] I. Cutress. (2017, Jun.) Analyzing the silicon: Die size estimates
and arrangements: The Intel Skylake-X review. [Online]. Available:
https://www.anandtech.com/show/11550/

[45] S.-Y. Wu, C. Y. Lin, M. C. Chiang, J. J. Liaw, J. Y. Cheng, S. H.
Yang, M. Liang, T. Miyashita, C. H. Tsai, B. C. Hsu, H. Y. Chen,
T. Yamamoto, S. Y. Chang, V. S. Chang, C. H. Chang, J. H. Chen,
H. F. Chen, K. C. Ting, Y. K. Wu, K. H. Pan, R. F. Tsui, C. H. Yao,
P. R. Chang, H. M. Lien, T. L. Lee, H. M. Lee, W. Chang, T. Chang,
R. Chen, and M. Yeh, “A 16nm FinFET CMOS technology for
mobile SoC and computing applications,” in Int’l Electron Devices
Meeting (IEDM). New York, NY, USA: IEEE, Dec. 2013.

[46] M. Stantic, O. Palomar, T. Hayes, I. Ratkovic, A. Cristal, O. Unsal,
and M. Valero, “An integrated vector-scalar design on an in-order
ARM core,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, no. 2, Jul. 2017.

https://genzconsortium.org
https://www.ccixconsortium.com
http://www.netlib.org/blas/
https://www.anandtech.com/show/11550/

TECHNICAL REPORT MRC-2019-04-15-R1, HUAWEI TECHNOLOGIES, MUNICH RESEARCH CENTER, GERMANY, APRIL 2019 17

[47] Y. Ge, M. Tomono, M. Ito, and Y. Hirose, “High-performance and
low-power consumption vector processor for LTE baseband LSI,”
Fujitsu Scientific and Technical Journal (FSTJ), vol. 50, no. 1, pp. 132–
137, Jan. 2014.

[48] Y. Lee, C. Schmidt, S. Karandikar, D. Dabbelt, A. Ou, and
K. Asanovic, “Hwacha preliminary evaluation results, v3.8.1,”
University of California at Berkeley, Electrical Engineering and
Computer Sciences, Tech. Rep. UCB/EECS-2015-264, Dec. 2015.

[49] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaf-
fey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Nor-
rie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis of a ten-
sor processing unit,” in Int’l Symposium on Computer Architecture
(ISCA). New York, NY, USA: ACM, Jun. 2017, pp. 1–12.

[50] A. N. S. Sarma and V. D. Ambali, “Cooling solution for computing
and storage server,” in IEEE Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm). New
York, NY, USA: IEEE, Jun. 2017, pp. 840–849.

[51] DDR4 Registering Clock Driver (DDR4RCD01), JEDEC JESD82-
31 ed., JEDEC Solid State Technology Association, Aug. 2016.

[52] DDR4 Data Buffer Definition (DDR4DB01), JEDEC JESD82-32 ed.,
JEDEC Solid State Technology Association, Nov. 2016.

[53] Intel C112/C114 Scalable Memory Buffer (SMB) data sheet, 332444-
001 ed., Intel Corp, May 2015.

[54] POWER8 Memory Buffer Datasheet for DDR3 Applications, 1st ed.,
IBM Corp., Jan. 2016.

[55] NCAB Group, “Cost drivers in PCB production,”
NCAB Group Seminars, 2015. [Online]. Available:
https://www.ncabgroup.com/downloads/

[56] TechInsights Inc. (2017, Nov.) Cost comparison Huawei
Mate 10, iPhone 8, Samsung Galaxy S8. [Online]. Available:
https://www.techinsights.com/blog/cost-comparison-huawei-mate-10-iphone-8-samsung-galaxy-s8

[57] M. Alfano, B. Black, J. Rearick, J. Siegel, M. Su, and J. Din,
“Unleashing fury: A new paradigm for 3-D design and test,” IEEE
Design & Test, vol. 34, no. 1, pp. 8–15, Feb. 2017.

[58] S. Burke. (2017, Aug.) The cost of HBM2 vs. GDDR5
& why AMD had to use it. [Online]. Available:
https://www.gamersnexus.net/guides/3032-vega-56-cost-of-hbm2-and-necessity-to-use-it

[59] L. Gwennap, “Cortex-A76 rev amps core design,” in Microprocessor
Report. Mountain View, CA, USA: The Linley Group, Jun. 2018.

[60] C. Staelin and L. McVoy. (2007, Nov.) Lm-
bench - system benchmarks. [Online]. Available:
http://lmbench.sourceforge.net/man/lmbench.8.html

[61] Kaggle Inc. (2017) The state of data science & machine learning.
[Online]. Available: https://www.kaggle.com/surveys/2017

[62] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal
of Machine Learning Research, vol. 9, pp. 1871–1874, Aug. 2008.
[Online]. Available: https://github.com/cjlin1/liblinear

[63] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, pp. 27:1–27:27, 2011. [Online]. Available:
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

[64] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “SSD: Single shot multibox detector,” in European
Conference on Computer Vision (ECCV). Cham, Switzerland:
Springer LNCS 9905, Oct. 2016, pp. 21–37. [Online]. Available:
https://github.com/weiliu89/caffe/tree/ssd

[65] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in 22nd ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: ACM, Aug.
2016, pp. 785–794. [Online]. Available: https://xgboost.ai/

[66] K. Czechowski, V. W. Lee, E. Grochowski, R. Ronen, R. Singhal,
R. Vuduc, and P. Dubey, “Improving the energy efficiency of big
cores,” in Int’l Symposium on Computer Architecture (ISCA). Los
Alamitos, CA, USA: IEEE, Jun. 2014, pp. 493–504.

[67] S. M. Hassan, S. Yalamanchili, and S. Mukhopadhyay, “Near
data processing: Impact and optimization of 3D memory system
architecture on the uncore,” in Int’l Symposium on Memory Systems
(MEMSYS). New York, NY, USA: ACM, Oct. 2015, pp. 11–21.

[68] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, May 2011.

[69] R. Clapp, M. Dimitrov, K. Kumar, V. Viswanathan, and T. Will-
halm, “Quantifying the performance impact of memory latency
and bandwidth for big data workloads,” in Int’l Symposium on
Workload Characterization (IISWC). Los Alamitos, CA, USA: IEEE
Computer Society, Oct. 2015, pp. 213–224.

[70] Intel Labs Barcelona, “Overview - Dreams -
AWB/Leap projects,” 2013. [Online]. Available:
http://asim.csail.mit.edu/redmine/projects/dreams

[71] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick, “A view of the parallel computing landscape,”
Communications of the ACM, vol. 52, no. 10, pp. 56–67, Oct. 2009.

[72] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, “It’s
time to think about an operating system for near data processing
architectures,” in 16th Workshop on Hot Topics in Operating Systems
(HotOS). New York, NY, USA: ACM, May 2017, pp. 56–61.

https://www.ncabgroup.com/downloads/
https://www.techinsights.com/blog/cost-comparison-huawei-mate-10-iphone-8-samsung-galaxy-s8
https://www.gamersnexus.net/guides/3032-vega-56-cost-of-hbm2-and-necessity-to-use-it
http://lmbench.sourceforge.net/man/lmbench.8.html
https://www.kaggle.com/surveys/2017
https://github.com/cjlin1/liblinear
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/weiliu89/caffe/tree/ssd
https://xgboost.ai/
http://asim.csail.mit.edu/redmine/projects/dreams

	Introduction
	Limited Adaptation of NDP so far
	Motivation for DIMM-NDP

	Related Work
	Synchronization between Host and NDP
	Integration of NDP Technology
	Variants of NDP Functionality
	Form Factors
	Positioning DIMM-NDP

	DIMM-NDP Architecture
	Architecture Overview
	NDP Unit Setup
	Lateral Transfers between Units
	ECC Handling

	Software View of DIMM-NDP
	Workload Partitioning and Placement
	Protection/Virtual Address Spaces
	Synchronization
	Software Implementation Flow

	Hardware Setups for DIMM-NDP
	Power & Area Analysis of Blocks
	Chip Packages and Form Factors
	Resulting NDP-enabled Mem Modules
	Cost Analysis for Memory Module

	Evaluation Setup and Flow
	Selected Workloads
	System Configuration
	Evaluation Flow

	Performance Evaluation of DIMM-NDP
	Performance and Efficiency Results
	Near-data vs. Loosely Coupled Acc
	NVDIMM-P Asynchronous Accesses
	Software Porting Effort
	Discussion of Further NDP Variants

	Concluding Remarks
	References

