
HAL Id: hal-02100467
https://hal.science/hal-02100467

Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typesetting Khmer
Yannis Haralambous

To cite this version:
Yannis Haralambous. Typesetting Khmer. Electronic Publishing, 1994, 7 (4), pp.197-216. �hal-
02100467�

https://hal.science/hal-02100467
https://hal.archives-ouvertes.fr

ELECTRONIC PUBLISHING, VOL. 7(4), 197–215 (March 1994)

Typesetting Khmer
YANNIS HARALAMBOUS

Institute of Oriental Languages and Civilizations of Paris
Private address: 187, rue Nationale, 59800 Lille, France
Fax (33) 20.40.28.64, Internet Yannis.Haralambous@univ-lille1.fr

SUMMARY
Because of the complexity of Khmer script, up to now there has been neither typesetting system
nor standard encoding for the Khmer language. In this paper are presented: (a) a complete type-
setting system for Khmer based on TEX, METAFONT and an ANSI C preprocessor, as well as
(b) a proposal of 8-bit encoding table for Khmer information interchange. Problems of phonic
input, subscript and superscript positioning, collating order, spelling reforms and hyphenation
are solved, and their solutions described. Finally an alternative solution using 16-bit output font
tables is briefly sketched.

KEY WORDS Khmer TEX METAFONT Computer Typesetting

1 INTRODUCTION

Certain languages use characters or character combinations which change according to the
context. A common example in English (but not in Portuguese and Turkish!) are the ‘fi’ and
‘fl’ ligatures. Everytime he/she encounters the combination of letters ‘f’, ‘i’, the typesetter
has to replace it by the ligature ‘fi’. This practice, while remaining exceptional for the Latin
script, becomes very important for certain Oriental scripts like Arabic (see [1], [2]), Indic
scripts, Korean or Khmer.

Because of the repetition and transformation of the various shapes involved in this pro-
cess, the best way of creating a font with strong contextual properties is to use a program-
ming language, like METAFONT. Part of the contextual analysis can be done by TEX (in
simple cases, such as Latin or modern Arabic), otherwise one has to use an independent
preprocessor.

In this paper we present a typesetting system for one of the most complicated scripts:
Khmer. In this case, the TEX/METAFONT/preprocessor approach is essential. Since there
has been no standardization for Khmer information interchange yet, we also present a pro-
posal for a Khmer 128-character table. This table has been submitted to ISO 10646 WG-2
for acceptance. Finally, the solutions to other typesetting problems such as hyphenation are
also presented.

0894–3982/94/040197–19$14.50
c©1994 by John Wiley & Sons, Ltd.

198 YANNIS HARALAMBOUS

2 THE KHMER SCRIPT

The Khmer script is used to write Khmer, which is the official language of the Cambodian
Republic and belongs to the Mon-Khmer group of Austroasiatic languages. It is a very old
and beautiful script, and from the typesetters point of view, one of the most challenging and
exciting scripts in the world.

To understand the complexity of Khmer typesetting, we will start with a quick overview
of the Khmer writing system. Khmer is written from left to right; the Khmer alphabet has 32
consonants, the following:

k B KE g F CGj d J D ONt Q T S n b V P X m y r

l v s h L

The character Y denotes the absence of consonant. From the typesetters point of view
and with respect to collating order, it might as well be considered as a consonant. We will
use a box ý to denote an arbitrary consonant.

These 33 “consonants” (except L) can appear as subscript consonants:

ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ý� ýǱ ý� ý�

ý� ý� ý� ý� ý� ý� ý� ý� �ý ý� ý� ý� ý� ý�

A subscript consonant is pronounced after the “primary” consonant. Nevertheless, as the
reader has certainly noticed, the subscript consonant �ý is written on the left of the primary
consonant.

It is also possible to have two subscript consonants carried by the same primary conso-
nant. In that case, the second subscript consonant has to be �ý. Examples: ñg� , ñs� .

A consonant, consonant + subscript or consonant + double subscript combination can
carry a vowel. There are 28 vowels:

ýA ýi ýi H ýI ýw ýw H ýW ýu ýuH ýU ýÒ eýI eýI H eýÔ eýØ

eý eýH Üý ÜýH Ýý eýA eýAH eýAÞ ýà u ýà ýAM ýH ýa

Although vowels are always pronounced after consonants, their graphical representa-
tion literally surrounds the consonant/subscript combination: they can appear above, be-
neath, on the right or on the left of consonants. Often a vowel’s glyph has two or three non-
connected parts.

When combining vowels with subscript consonants, the following graphical rules are
followed:

• if the subscript has a right protruding stem then the vowelýA connects to the subscript
and not to the consonant: ý� + ýA = ýÁ etc.

• if the consonant carries both a subscript �ý and a vowel with left branch, then the
latter is placed on the left of the former: �ý + eý = e�ý etc.

TYPESETTING KHMER 199

• if the consonant carries both a subscript consonant and a subscript vowel, then the
latter is placed underneath the former: ý� + ýU = ý�Ñ , �ý + ýU = �ýÑ etc.

Finally, a group of characters as described above can carry a diacritical mark. These are
always placed above the character:

ý' ýå ý" ýâ ýç ýé ýî ýë

We will call the combination of consonant and possible subscript consonant, second
subscript consonant, vowel and diacritical mark, a consonantal cluster. Theoretically there
can be 535,060 different consonantal clusters, but in practice less than 1% of them are really
used. An analytic decomposition of A. Daniel’s Khmer-French dictionary [3] has provided
no more than 2,821 different consonantal clusters out of 25,000 entries; colloquial Khmer
may require even less clusters.

Besides consonantal clusters there are also 14 “stand-alone” characters in the Khmer
alphabet:

f q _ ` ^ ~ } { z o x Z � \

These carry neither subscript consonants, nor vowels, nor accents. They cannot be found
in subscript form. Orthographical reforms of Khmer have in some cases replaced them by
“regular” consonantal clusters.

Inside a sentence, Khmer words are not separated by blank space. A blank space denotes
the end of a sentence (or of part of a sentence: it acts like the period or the semicolon in Latin
script).

Hyphenation occurs between syllables: a syllable consists of one or two consonantal
clusters with the sole restriction that the second cannot have a vowel. When a word is hy-
phenated, a hyphen is used. Sentences are “hyphenated” into words, but in that case, no
hyphen is used. So from the typesetters point of view, between two clusters hyphenation
can be

1. forbidden (when the two clusters belong to the same syllable);

2. allowed and produce a hyphen (when the two clusters belong to the same word);

3. allowed without producing a hyphen (when the two clusters belong to different words
in the same sentence).

This quick overview of the Khmer script has shown some of its particularities (see also [4],
[5], [6]). To conclude, the author would like to underline the fact that the main difficulty in
Khmer typesetting is the divergence between phonic and graphical representation of con-
sonantal clusters (see fig. 1).

This paper is divided into five sections:

1. the definition and discussion of an 8-bit encoding table for information interchange
and storage in the Khmer script. Consonantal clusters are encoded according to their
phonic representation;

200 YANNIS HARALAMBOUS

consonant subscript
consonant

2nd subscript
consonant

vowel diacritic

left part central part movable part right part

phonic

rep
res

en
tat

ion

graphical
representation

Figure 1. Decomposition of a Khmer consonantal cluster.

2. the presentation of three Khmer font families, designed in the METAFONT language.
These fonts correspond to the three main styles of Khmer type and provide sufficient
metaness1 to perform optical scaling, continuous interpolation from light to extra-
bold weight and strong raster optimization;

3. the description of the process according to which the graphical representation of con-
sonantal clusters is derived from the phonic one (this process being implemented in
an ANSI C preprocessor);

4. an overview of hyphenation and spelling reform rules and their realization in the pre-
processor;

5. shortcomings of the Khmer typesetting system and plans for future developments.

The author would like to thank Prof. Alain Daniel (Institute of Oriental Languages and
Civilizations, Paris) for his continuous support and encouragement and the Imprimerie Louis-
Jean (Gap) in the person of Maurice Laugier, for having financed this project.

3 AN 8-BIT ENCODING TABLE FOR THE KHMER SCRIPT

3.1 Discussion

As mentionned in the introduction, Khmer language is written using consonantal clusters
and stand-alone special characters. The collating order of consonantal clusters is given lex-
icographically according to the cluster components:2

Let C1 = c1s1s
′

1
v1d1 and C2 = c2s2s

′

2
v2d2 be two consonantal clusters,

where c1, c2 ∈ {consonants}, s1, s2 ∈ ∅ ∪ {subscript consonants}, s′
1
, s′

2
= ∅

or �ý, v1, v2 ∈ ∅ ∪ {vowels} and d1, d2 ∈ ∅ ∪ {diacritics}. Then

1 In METAFONT lingo, metaness is the possibility of parametrized variation of the characters shape, weight and
style.

2 The symbol ∅ denotes an empty set.

TYPESETTING KHMER 201

1. c1 ≻ c2 ⇒ C1 ≻ C2;

2. if c1 = c2 then s1 ≻ s2 ⇒ C1 ≻ C2 (where ∅ precedes any other
element);

3. if c1 = c2 and s1 = s2 then s′
1
≻ s′

2
⇒ C1 ≻ C2;

4. if c1 = c2, s1 = s2 and s′
1
= s′

2
then v1 ≻ v2 ⇒ C1 ≻ C2;

5. if c1 = c2, s1 = s2, s
′

1
= s′

2
and v1 = v2 then d1 ≻ d2 ⇒ C1 ≻ C2.

The table of 128 codes for Khmer characters presented below respects the collating or-
der. Besides consonantal clusters and special characters, the following signs have been in-
cluded in the 8-bit encoding:

1. digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

2. punctuation marks other than the ones borrowed from Latin script: í (leikto) a variant
form of the digit2, indicating that the previous word is repeated (similar to Latin bis),
| (khan) and $ (bariyatosan), equivalent to a full stop, ð (camnocpikuh) a graphical
variant of the Latin colon, and the French guillemets <, >;

3. the currency symbol R (rial);

4. the invisible code WBK (word-break) to indicate the word limits inside a sentence.

Have not been included in the table:

• the archaic characters ú and û which were abolished about a century ago;

• the punctuation marks ÿ (cow’s urine) and ü (cock’s eye), used in poetry, divina-
tion and classical texts;

• the variant forms ýÌ , ýÌ of ýi , ýI , used in [7].

These characters are nevertheless included in the TEX output fonts and can be accessed via
macros.

3.2 The Table

On fig. 2 the reader can see the table of codes 128–255 of the proposed 8-bit encoding for
Khmer information interchange and storage. The 7-bit part of the table conforms to ISO 646
(standard 7-bit ASCII). Positions 0xCF and 0xDF are empty.

Codes 0x80–0x9F and 0xC0 represent consonants; the corresponding subscript con-
sonants are offset by 32 positions: they are represented by codes 0xA0 – 0xBE and 0xE0.
The consonant 0x9F does not have a corresponding subscript consonant. The practice of
having subscripts 32 positions apart from primary consonants is similar to the 32-position
offset of uppercase and lowercase letters in ISO 646 (7-bit ASCII).

Codes 0xC0–0xCE represent special characters. Digits have been placed in positions
0xD0–0xD9, vowels in 0xE1–0xF5 and diacritics in 0xF8–0xFF. Finally, 0xFA is the
currency symbol, 0xDB–0xDE are punctuation marks and 0xBF is the word-break code
WBK.

202 YANNIS HARALAMBOUS

Hexa 80 90 A0 B0 C0 D0 E0 F0

0 k Q ý� ý� Y 0 ý� eýAÞ

1 B T ý� ý� f 1 ýA ýà u

2 K S ý� ý� q 2 ýi ýà

3 E n ý� ý� _ 3 ýI ýAM

4 g p ý� ý� ` 4 ýw ýH

5 V ý� ý� ^ 5 ýW ýa

6 F P ý� ý� ~ 6 ýu <

7 C X ý� ý� } 7 ýU >

8 G m ý� ý� { 8 ýÒ ý'

9 j y ý� ý� z 9 eýI ýå

A d r ý� �ý o R eýÔ ý"

B J l ý� ý� x í eýØ ýâ

C D v ý� ý� Z ð eý ýç

D O s ý� ý� � | Üý ýé

E N h ý� ý� \ $ Ýý ýî

F t L ýǱ WBK eýA ýë

Figure 2. Positions 0F80–0FFF of ISO 10646 (proposal).

TYPESETTING KHMER 203

Because of the 128-character limitation, the following characters have not been included
in the table: ýi H, ýw H, ýuH, eýI H, eýH, ÜýH, eýAH

They have to be represented by the following code pairs:

ýi H = 0xE2 0xF4 ýw H = 0xE4 0xF4 ýuH = 0xE6 0xF4

eýI H = 0xE9 0xF4 eýH = 0xEC 0xF4 ÜýH = 0xED 0xF4

eýAH = 0xEF 0xF4

3.3 Requirements for Khmer script software

As in the case of Arabic and Hindi, software displaying Khmer text has to provide context-
analytic algorithms. Below is an exhaustive list of the necessary context-dependent trans-
formations:

1. when code 0xBA follows a code in the range 0x80–0x9E, 0xC0 then their glyphs
must be permuted, for ex. k + �ý→ �k.

2. when code0xBA follows a pair of charactersαβ, withα ∈ {0x80–0x9E, 0xC0}, β ∈
{0xA0–0xBE, 0xE0} then the glyph of 0xBA must appear on the left of the glyphs
of α, β, for ex. P + ý� + �ý→ �P�.

3. when codes 0xE9–0xEC and 0xEF–0xF0 follow a combination of character codes
α, αβ, αβγ where α and β are as in the previous item and γ =0xBA, then the glyph
e must appear on the left of the latter combinations. Example: P+ ý�+ �ý+ eýA→
e�PÅ.

4. when codes 0xED and 0xEE follow a combination α, αβ, αβγ of codes as in the
previous item, then their glyphs must appear on the left of these combinations;

5. when code 0x89 (j) is followed by a code in the range 0xA0–0xBE, 0xE0 then
the variant glyph ò must be used. Example: j + ý� →ò� .

When the second code is 0xA9 then a variant glyph must be used for it as well:j+
ý� →òó .

These contextual transformations have been implemented by the author into a modified
version of the Macintosh freeware text editor Tex-Edit by Tim Bender, included in the pack-
age. In fig. 3 the reader can see the effect of striking successively keys <k>, <ý�> (<sub-
script modifier> followed by <y>), <�ý> (<subscript modifier> followed by <r>), <eýA>,
to finally obtain the consonantal cluster e�kÅ.

4 THE DESIGN OF KHMER FONTS IN METAFONT

4.1 Font styles

There are three styles used in Khmer typesetting: standing (aksar ch-hor), oblique (aksar
chrieng) and round (ak-sar mul). The latter is virtually identical to inscriptions of the 12th
and 13th centuries at Angkor Wat and is reserved for religious texts, chapter headings, news-
paper headlines, inscriptions and on other occasions where there is a desire to create a con-
trast with the oblique script, to add a touch of formality, or to provide variation of emphasis
(see [5]).

204 YANNIS HARALAMBOUS

Figure 3. A text editor with Khmer contextual properties.

The author has designed three METAFONT font families, corresponding to these styles;
samples of these fonts in 14.4 point size follow hereafter; figure 4 shows a sample headline
using the round font.

Standing characters

e³Þ�� M 1962 �peTskm� �§´nejmk e³Þsl' Üt-

Üs�knw gF�w g Yà PI e�pyuT� gì yU rYÜg� g nw gdì e£r e£ÞmÒ y

�p�Mgnw g rCÈ H§n'rps'y� n nw gesØm | rGW ¥p'Ýn-

�p§Plrd� eyI ge³ÞePlenH KW hÒ sPI rKi te±ÞehI y p" u-

Ün� PÒ kps�i m�peTs eKe³ÞÜtPà udÊ gz à e¶H rGW ¥p'enH-

eT | Sà ÜNkÜB� rvÈ j eyI gmi n ¸nX� e½HeLI y |

Oblique characters

e³Þ�� M 1962 �peTskm� �§´nejmk e³Þsl'Üt-

Üs�knw gF�w g Yà PI e�pyuT� gì yU rYÜg� g nw gdì e£r e£Þ-

mÒ y �p�Mgnw g rCÈ H§n'rps'y� n nw gesØm | rGW -

TYPESETTING KHMER 205

¥p'Ýn�p§Plrd� eyI ge³ÞePlenH KW hÒ sPI rKi te±Þ-

ehI y p" uÜn� PÒ kps�i m�peTs eKe³ÞÜtPà udÊ gz à e¶H r-

GW ¥p'enHeT | Sà ÜNkÜB� rvÈ j eyI gmi n ¸nX� e½H-

eLI y |

Round characters

e³Þ�� M 1962 �peTskm� �§´nejmk e³Þsl'ÜtÜs�k-

nw gF�w g Yà PI e�pyuT� gì yU rYÜg� g nw gdì e£r e£ÞmÒ y �p-

�Mgnw g rCÈ H§n'rps'y� n nw gesØm | rGW ¥p'Ýn�p-

§Plrd� eyI ge³ÞePlenH KW hÒ sPI rKi te±ÞehI y p" uÜn� -

PÒ kps�i m�peTs eKe³ÞÜtPà udÊ gz à e¶H rGW ¥p'enHeT

| Sà ÜNkÜB� rvi j eyI gmi n ¸nX� e½HeLI y |

Figure 4. Headline in round style.

In contrast to systems like PostScript, in which fonts are interpreted during the printing
process and where similar complexity can slow the process down, in the case of META-
FONT (see [8]) fonts are compiled separately and stored on disk in a highly compacted
form. On powerful platforms, fonts can be created by METAFONT just before the printing
process, stored on hard disk, and removed afterwards. On slower platforms (for example
personal computers), fonts are stored permanently on the hard disk. A METAFONT font
package takes much more space than a set of PostScript fonts; this disadvantage is counter-
balanced by the fact that fonts created by METAFONT are under the complete control of the
user: characters are already rasterized in an optimal and homogeneous way. Other advan-
tages of using METAFONT, in particular for the design of Khmer fonts, are the following:

206 YANNIS HARALAMBOUS

1. Modularity. Characters are designed in a modular way: descriptions of parts which
are repeatedly used are stored as subroutines with an arbitrary number of parame-
ters for adapting them to different situations where they can occur. A modular design
makes the font more homogeneous and easier to modify: a change in a subroutine
will affect the whole font.

2. Metaness. In Khmer, standing and oblique letters share the same design, except that
certain curves of the latter are rounder than the corresponding curves of the former
(for example, compare G with Ch, or �E� with /rKh/Ch). To preserve the similar-
ity between the two styles, standing and oblique fonts are generated using the same
METAFONT code; only the values of slant, roundness and interletter spacing param-
eters are different.

3. Raster optimization. Vertical strokes of Khmer letters must always be of the same
width, regardless of the resolution or of the output device. In the METAFONT “draw-
ing space”, coordinates are given in pixels; this is possible because of the fact that
output device characteristics are given at the beginning of the METAFONT run. The
condition “two vertical strokes should have the same width” is given by a simple lin-
ear equation “width of left stroke = width of right stroke” with the sole precaution that
the left edges of strokes fall on the pixel raster (this is obtained by the METAFONT

primitive round).

z1z1l z1r
z2

z2l z2r

z3z3l z3r z4z4l z4r

Figure 5. Raster optimization with METAFONT.

To illustrate this we will take the example of the two vertical strokes of letter k. As in
fig. 5 let’s call z1 and z2 the points which are on the baseline and on the central paths

TYPESETTING KHMER 207

of the two vertical strokes. Also let z3, z4 be the upper extremities of central paths of
the two vertical strokes. Let the straight segments [z1l, z3l], [z2l, z4l] be the left edges
of the vertical strokes, and [z1r, z3r], [z2r, z4r], their right edges. The fact that z1, z2
are on the baseline can be expressed as y1 = y2 = 0, where y∗ is the y-coordinate of
z∗. In the same way, the fact that the strokes are vertical can be expressed by the cou-
ple of equalities x1 = x3, x2 = x4 where x∗ is the x-coordinate of z∗. Their precise
location is given as a multiple of a global variable w, corresponding to the width of
a generic character: x1l = 1/14w, x2l = 0.86w. As mentioned in the previous para-
graph, the two strokes must have the same width (called stem). Since they are vertical,
we can determine their width by using only x-coordinates. The width equality can be
expressed as x2r − x2l = x1r − x1l = stem.

So far, so good. But let us consider an example in which things can go wrong. META-
FONT does its calculations in pixels or fractional parts of pixels which are rounded
afterwards to the closest integer value. Let us suppose that the two strokes are stem =
2.2 pixels wide. Of course this should always be rounded to 2 pixels. Now suppose
x1l = 1/14w = 1.2 and x2l = 0.86w = 14.4. Values will be rounded in the follow-
ing way: x1l = 1.2 → 1, x1r = 1.2 + 2.2 = 3.4 → 3, and hence x1r − x1l = 2,
while x2l = 14.4 → 14, x2r = 14.4 + 2.2 = 16.6 → 17 ⇒ x2r − x2l = 3 and so
the right stroke is one pixel wider than the left one.

To prevent this, one simply instructs METAFONT to round values while calculating
point locations. By writing x1l = round(1/14w) and x2l = round(0.86w), both
x1l and x2l will have integer values (in our example, 1 and 14); this implies that the
fractional parts of x1r − x1l are the same x2r − x2l and hence both will get rounded
in the same way (either to the right or to the left), and their values will remain equal
after rounding.

The METAFONT code3 that follows implements these operations; it is meant to illus-
trate the ease of raster optimization (hinting, in PostScript lingo) in this programming
language. Lines starting with % are comments.

x1r-x1l=x2r-x2l=x3r-x3l=x4r-x4l=stem;
% strokes are of same width "stem"
x1r=x3r; x2r=x4r;
% and they are vertical
x1l=round(1/14w); x2l=round(0.86w);
% their left edges take integer pixel values
fill z1r--z3r--z3l--z1l--cycle;
fill z2r--z4r--z4l--z2l--cycle;
% fill the strokes with black

The reader may have noticed that the “pen position” z2 is actually oblique, while z1
is horizontal. This fact has not influenced rasterization, since all roundings done in
this example are on the x-coordinate level. For the z2 pen position, a different kind of
optimization can be performed: in low resolutions the straight segment [z2l, z2r] may
look “broken”. This will mean that the angle being too small with respect to the pixel

3 This code is voluntarily kept simplistic; there are more elegant ways to program the same operations.. .

208 YANNIS HARALAMBOUS

size, the segment will be displayed as a certain number of concatenated horizontal
rows of pixels. The number of these rows is the rounded value of y2l − y2r. We can
decide to replace the oblique segment [z2l, z2r] by a horizontal one, if this number is
smaller than a certain value, for example 2. This will be written as:

if (round(y2l-y2r) <= 2): y2l:=y2; y2r:=y2; fi

where the assignment operator := will change the values of y2l, y2r.

Special care has been taken for raster optimization, since output devices in Cambodia
are mostly of very low resolution.

4. parametrization and optical scaling. When type is scaled, widths of strokes are not
necessarily scaled by the same factors. Large point sizes must be narrower and thin-
ner proportionally to standard point size; small point sizes must be larger and with
increased interletter space, to enhance readability. This problem is very well known
for the Latin script and is solved in METAFONT created font families like Computer
Modern. Similar solutions have been adopted for Khmer.

There is a second advantage of optical scaling and parametrization of character shapes.
In Cyrillic and Greek scripts one can define font families similar to Latin ones: there
already exist Cyrillic and Greek Times, Helvetica, Courier, Garamond, Baskerville
etc. The choice of a Khmer/Latin font combination is more delicate. Parametrization
of character widths gives the user the possibility to change the gray density factor of
the Khmer font and adapt it to the Latin font he is using.

In figure 6, the Khmer letter K has been reproduced 256 times, with different values
of two parameters: the widths of “fat” and “thin” strokes. The central vertical symme-
try axis represents “Égyptienne”-like characters, where the parameters have the same
value. This classification can of course be refined and enables an arbitrarily precise
choice of the font gray density.

5 TRANSLATING A PHONIC TO A GRAPHIC DESCRIPTION

In 3.3 we have given a quick overview of the minimal contextual analysis involved in dis-
playing Khmer script on screen. The situation is much more complicated in the case of high
quality typesetting.

TEX is the ideal tool for typesetting in Oriental scripts like Khmer, because of the inher-
ent fundamental concept of boxes (see [9], [10], [11]). Like in mathematical formulas, ele-
ments of a consonantal cluster are moved to aesthetically correct positions and then grouped
into a single and indivisible “box” which TEX treats as a single entity.

In this section we will see how the graphical representation of a cluster is constructed,
using both the preprocessor and TEX.

5.1 Graphical classification of Khmer cluster components

As already mentioned, there is a strong divergence between the phonic and graphical rep-
resentation of a consonantal cluster: for example, is c =G, s1 =ý�, s2 =�ý, v =eýA, then

TYPESETTING KHMER 209

�

� �

 � �

0 ! � �

� 1 " � �

P A 2 # � �

` Q B 3 $ � �

p a R C 4 % � �

� q b S D 5 & � �

� � r T E 6 ' � 	

 � � s d U F 7 (�

° ¡ � � t e V G 8) � �

À ± ¢ � � u f W H 9 * � �

� Á ² £ � � v g X I : + �

à Ñ Â ³ ¤ � � w h Y J ; , � Æ

ð á Ò � ´ ¥ � � x i Z K < - � �

ñ â Ó Ä µ � � � y j [L = . �

ò ã Ô Å ¶ § � � z k \ M > /

ó ä Õ Æ · ¨ � � { l ℄ N ?

� å Ö Ç ¸ © � � | m ^ O

õ æ × È ¹ ª � � } n _

ö ç Ø É º « � � ~ o

÷ è Ù Ê » ¬ � � �

ø é Ú Ë ¼ � Ǳ

ù ê Û Ì ½ ® �

ú ë Ü Í ¾ ¯

û ì Ý Î ¿

ü í Þ Ï

ý î ß

þ ï

ÿ

Figure 6. Test table for gray density fine-tuning of Khmer font

210 YANNIS HARALAMBOUS

for the same cluster e�GÂ, the former representation is <c><s1><s2><v> and the latter
<v (left branch)><s2><c><s1><v (right branch)>.

A thorough study of Khmer script and traditional typography, has resulted in the fol-
lowing classification of graphical components of a consonantal cluster:

1. the “left part”. Four elements which are placed on the left of a consonant: eý, Üý,

Ýý, �ý.

2. the “central part”. All consonants: k, B . . . Y. Also consonant + vowel ∈ {ýA,

ýAM, ýAÞ} combinations, whenever the vowel is attached to the consonant and not to a

subscript: , M, Þ etc. but not kÅ.

The difference between “left” and “central” part is that only the latter is taken into
account when determining the symmetry axis of the cluster.

3. the “movable” part. Subscripts and superscripts which are moved horizontally so
that their symmetry axis coincides with the axis of the central part: ý� . . . ý� , and ýi ,

ýI , ýw , ýW , ýU , ýÒ , ýà , ý" , ýâ , ýç , ýé , ýë .

4. the “right” part. Elements placed on the right of the central part, and not involved
in the determination of the cluster symmetry axis. In this category we have certain
subscript characters: ý� . . .ý�, as well as selected subscript and superscript vowels

and diacritical marks: ýu, ýÔ, ýØ, ýH, ýa, ý', ýå, ýî.

The effective graphical construction of a consonantal cluster by TEX, is done in the fol-
lowing way: the preprocessor’s output replaces the phonic representation of a cluster (in the
encoding described in 3.1) by a TEX macro \KHccl with 5 arguments: the first is a 9-digit
number representing the phonic representation of the cluster (and with the property that if
N,N ′ are numbers representing clusters C,C ′ then C ≻ C ′ ⇐⇒ N > N ′, where ≻ is
the collating order of clusters and> the usual ordering of integers); the remaining four argu-
ments correspond to the four parts of the graphical decomposition of a cluster as described
above. For example,

\KHccl{050311501}{e/r}{gA}{/k}{’}

indicates a left part e/r (e�ý), a central part gA (¤), a movable part /K (ý�) and a right

part ’ (ý'). This example illustrates the important fact that the symmetry axis of the central
part is not necessarily the middle axis of the box containing the central part:

¤� and not ¤�

The difference is more than just of aesthetic nature: in some cases the vertical alignment
of elements within a cluster is necessary to determine the cluster itself. Take for example
characters 0x89 (j) and 0x96 (P). When the latter is followed by a vowel ýA it becomes
¶, which is indistinguishable from the upper part of the former: it is the lower part ý� that
enables differentiation. But when both happen to carry the same subscript consonant, then
this lower part vanishes. The difference will be found in the alignment of the subscript con-
sonant: in the case of j one would have for example ò� , while in the case of ¶ it would be
¶� .

TYPESETTING KHMER 211

From these considerations we conclude that the symmetry axis location is a vital piece
of information for every character; it depends on the shape of the individual character and
cannot be given by a general font-independent rule.

In TEX there are several global parameters for a given font, but only 4 for every indi-
vidual character of the font: width, height, depth, italic correction. The author has used the
parameter “italic correction” as a carrier of the information related to the symmetry axis
location.

The construction mechanism is very simple: TEX typesets first the left part and the cen-
tral part of the cluster; then it moves to the left, by an amount equal to the italic correction
of the central part and typesets the movable part; finally it moves back to the right edge of
the central part and typesets the right part of the cluster.

To simplify this mechanism, all movable elements are of zero width. The reader can see
an example in fig. 7, where TEX boxes are displayed in gray and the symmetry axis of the
central part is shown as a dotted line.

Figure 7. Construction of a Khmer consonantal cluster by TEX.

5.2 Special cases and exceptions

The mechanism of cluster construction described above fails in certain special cases. These
are handled by using variant forms of graphical elements. A quick description of these cases
follows.

1. often two or three subscripts or superscripts are found in the same cluster. In these
cases the following rules apply:

(a) in the case of two subscript consonants, the second being necessarily �ý, a
deeper form of the latter is used: �ý + ý� = ñý� ;

(b) in the case of a subscript consonant and a subscript vowel, the vowel is placed
under the subscript consonant: ý� + ýÒ = ý�Ó . This rule also applies to the sub-
script consonant �: �ý + ýÒ = �ýÓ ;

(c) in the case of two subscript consonants and a subscript vowel, the consonants
are placed as in (a) and the vowel is placed on the right of �: �ý + ý� + ýÒ =
öý� ;

(d) in some cases we have both a superscript vowel and a diacritical mark. The
following combinations are known: ý� , ý
 , ý� , ýÆ , ý� , ý� ;

212 YANNIS HARALAMBOUS

2. to prevent confusion between the letterb followed by vowel ýA, and the letterh, the
former combination of consonant and vowel is written ´. A variant of this letter is
used in the presence of a subscript: ´ + ý� =�� .

3. when a cluster with �ý contains vowel ýÔ or ýØ, then the width of the primary con-

sonant determines the depth of the vowel: n + ýØ + �ý = �nÚ, but N + ýØ + �ý =

�NØ;

4. the letter L is not supposed to carry a subscript consonant; in some rare cases, it car-
ries subscript ý� : ÷L.

5.3 Operations depending on collating order

As mentioned in the previous section, the TEX command \KHccl, obtained by the prepro-
cessor, describes a cluster by means of five arguments. The last four arguments describe
the cluster graphically: they correspond to the four parts of the graphical decomposition of
a cluster, according to 5.1. The first argument corresponds to the phonic decomposition of
the cluster; it is a 9 digit number N = c1c2s1s2s3v1v2d1d2 where

1. c1c2 determines the primary consonant of the cluster: c1c2 goes from 01 = k, to 33
= Y;

2. s1s2 determines the (first) subscript consonant: s1s2 = 00 if there is no subscript
consonant, otherwise s1s2 goes from 01 = ý� , to 32 = ý� ;

3. s3 = 0 if there is no second subscript consonant, 1 if there is a second subscript �ý;

4. v1v2 determines the vowel: v1v2 = 00 if there is no vowel, otherwise v1v2 goes from
01 = ýA, to 28 = ýa;

5. d1d2 determines the diacritic mark: d1d2 = 00 if there is no diacritic, otherwise d1d2
goes from 01 = ý', to 08 = ýë .

A complete list of characters, alphabetically ordered, is given in the introduction. Collating
order rules mean that for clusters C,C ′ and their corresponding 9-digit numbers N,N ′, we
have

C ≻ C ′ ⇐⇒ N > N ′.

where ≻ is the collating order of clusters. The numbers N,N ′ can easily be ordered since
the collating order of clusters corresponds to their order as integers. This fact enables straight-
forward searching, sorting, indexing and other operations involving collating order.

6 HYPHENATION AND OTHER PREPROCESSOR FEATURES

6.1 Hyphenation

Hyphenation in Khmer obeys a very simple rule: words are hyphenated between syllables.
Unfortunately this rule can hardly be implemented on a computer since there is no algorith-
mic way of detecting syllables: a syllable can consist of one or two consonantal clusters.

TYPESETTING KHMER 213

With the help of Prof. Alain Daniel, an empirical hyphenation mechanism has been de-
veloped out of several general rules and observations. Below is a first set of rules — there
will be further refinement after thorough testing on bigger amounts of Khmer text.

Let C,C ′ be consonantal clusters. Hyphenation C-C ′ is possible whenever:

1. C ′ contains a vowel;

2. C contains a vowel such as ýi H, ýw H, ýu H, eýI H, eýH, ÜýH, Ýý, eýAH, eýÞ, ýà u, ýà ,

ýH, or one of the diacritical marks ý', ýé ;

Hyphenation is always possible before or after special characters.

TEX provides an internal hyphenation mechanism based on hyphenation patterns. Un-
fortunately this mechanism cannot be used in the case of Khmer consonantal clusters, since
these are enclosed in boxes and hence cannot be considered as characters by TEX. For this
reason, the hyphenation algorithm is performed by the preprocessor; whenever one of the
two above rules is satisfied, the TEX macro \- is included in the output. This command
expands as

\def\-{\discretionary{-}{}{}}

so that a hyphen is obtained whenever a word is hyphenated. There is no algorithm
yet for automatic decomposition of sentences into words: the user is asked to include WBK
(word-break) codes between words inside a sentence. These codes are converted into\KHwbk
commands by the preprocessor; \KHwbk expands into

\def\KHwbk{\discretionary{}{}{}}

that is: a potential hyphenation point, without hyphen.

6.2 Decomposition of special characters and spelling reforms

The special characters (codes 0xC1–0xCE) are mostly historical residues and loans from
other languages (Pali and Sanskrit). There have been many attempts by the Cambodian Min-
istry of Education to restrict their number, and eventually replace some of them by regular
consonantal clusters.

This replacement can vary from word to word. Prof. Alain Daniel has established a list
of reformed words and their replacements. This list is known to the preprocessor, which
will output every special character as a TEX macro with a numeric argument indicating the
potential replacement by some other special character or by a consonantal cluster. For ex-
ample, depending on the surrounding word, Z is output as \KHao0, \KHao1, \KHao2,
\KHao3 or \KHao4. If a certain boolean variable \ifreformed is false, then all five
macros will always expand into Z. On the other hand, if the boolean is true, then the first
macro will expand into Z, the second into e¿, the third into _, the fourth intoY and the fifth
into e¿î.

Below is a first list of reformed words, known to the preprocessor. The special characters
and their decompositions are set in bolder type.

214 YANNIS HARALAMBOUS

rà fl → rà Yi l

rfl → rYi l

fsu r → _su r

qs → fs

qsSr → fsSr

q½n → f½n

qsU r → fsU r

qs� ra → fs� ra

_k → Yuk

_s → Yus

�k` → �ke¿Þ

� g�k`→� g�ke¿Þ

^ → Z

^d� → YU d�

^n → YU n

^m! → Zm

^ru → Zru

^rU → ZrU

~ → rw

sà ~T�I → sà rwT�I

rà {k → ràlw k

r{k → rlw k

z → lW

zCæy → lW Cæy

z§ → lW §

z»n' → lW »n'

z½y → lW ½y

xºvæN → ÝYºvæN

x! → ÝY!

xk- → ÝYk-

xk�- → ÝYk�-

xºvæt → ÝYºvæt

xsU r → ÝYsU r

xsU r� → ÝYsU r�

�pZg → �pe¿g

rZk → re¿k

là Zn → là e¿n

sà Zk → sà e¿k

ZÝr → _Ýr

Z! → e¿î

ZgeÀg → e¿geÀg

Z¤� → Y¤�

Z� sné → _� sné

Zt → e¿t

ZÀn → _Àn

Zp´ti k → _p´-

ti k

ZÝr" → _Ýr"

Zshé → _shé

\ → e¿Þ!

\Tk → _Tk

7 SHORTCOMINGS AND PLANS FOR FURTHER DEVELOPMENT

The system presented in this paper enables high quality Khmer typesetting. It is the first
Khmer typesetting system which solves problems such as text input in phonic order, po-
sitioning of subscripts and superscripts, optical scaling, hyphenation and replacement of
special characters.

Nevertheless the graphical cluster-construction algorithm described in this paper has
certain flaws; a few examples:

• if a consonant with subscript consonant carries the ýu vowel, then the latter should
be justified at the right edge of the subscript, which is not necessarily aligned with
the right edge of the consonant. For example, in the (hypothetical) cluster v� �, the ýu is
badly positioned;

• take a narrow letter (like r, v) which carries a large subscript (likeý� orý�) and suppose
you are at the line boundary (either left or right); then contrarily to the normal use of
subscripts, it is the subscript which should be used for line justification, and not the
consonant.

These problems cannot be solved using the current mechanism (in which TEX considers
that all subscripts and superscripts are of zero width). It could be possible to use subscripts
with non-zero width, but (a) this would slow the process down, (b) it wouldn’t solve the
problem of the line boundary, since we are asking for contradicting properties: inside a sen-
tence subscripts should not interfere in determining the distance between clusters, while at
the line’s boundary they should4. Furthermore, one could imagine a sentence ending with
v� and the next sentence starting with r� . The blank space in between is hardly sufficient to
prevent clusters from from overlapping. Visually, the beginning of the sentence is lost.

Corrections to these problems can be performed manually (because these problems oc-
cur very rarely). However, a much more natural and global solution would be to treat con-
sonantal clusters as individual codes in a 16-bit encoding scheme. As mentioned in the in-
troduction, only 2,821 clusters (out of 535,000 theoretical possibilities) have been detected
4 Unfortunately, in TEX there is no such thing as a \everyline command.

TYPESETTING KHMER 215

in the fairly complete dictionary of Prof. Alain Daniel, so a 16-bit table would be more than
sufficient to cover them.

This method of Khmer typesetting, is part of the Ω project, undertaken by John Plaice
(Université Laval, Canada) and the author. The first realisation of Ω is an extension of TEX
(and the two utilities VPtoVF and DVICopy) to 16-bit fonts (allowing the use of 65,536
characters and 4,294,967,296 ligatures or kerning pairs). These fonts will be exclusively
virtual: since the DVI file format allows up to 32-bit fonts there is no need to extend its
specifications; DVI-files with 16-bit Ω fonts will be “devirtualized” through DVIcopy: the
16-bit virtual fonts will be replaced by their 8-bit base fonts. In this way Ω DVI files will be
converted to standard 8-bit DVI files; no special DVI drivers will be needed (not even virtual
font compatible ones). In the case of Khmer, the (unique) base font will contain the glyph
descriptions (in PK or PostScript format) and the virtual font will contain the definitions of
consonantal clusters. Since consonantal clusters will be treated by TEX as individual char-
acters, one will be able to define kerning pairs between them and solve the main problem
of Khmer typesetting.

Text input could still be done using the 8-bit encoding of section 1; internal ligaturing
will map the 8-bit description of consonantal clusters into their codes in the 16-bit table (a
preprocessor can still be used to perform explicit construction, if for any reason they are not
included in the table). This approach is similar to Kanji construction out of Kana characters
in Japanese, or to Hangoul construction out of elementary strokes in Korean.

Other projects using Ω concern vowelized Arabic, typesetting in Indic languages, Thai,
Amharic without preprocessor, use of calligraphic fonts (such as Adobe’s Poetica), redraw-
ing of Garamont’s Grecs du Roy etc. First releases of Ω projects are expected to take place
in fall 1994.

AVAILABILITY

The METAFONT, TEX and C sources of all software presented in this paper belong to the
public domain. They consitute a proposal for a Khmer TEX Language Package, submitted to
the Technical Working Group on Multiple Language Coordination of the TEX Users Group
and will be released after ratification. The α version of the package is currently being tested
in Cambodia, and can be obtained from the author.

Khmer keyboard layouts using phonic input of consonantal clusters are currently being
tested as well.

REFERENCES

1. Daniel Berry and Johny Srouji, ‘Arabic formatting with ditroff/ffortid’, Electronic Publishing—
Origination, Dissemination and Design, 5(4), 163–208, (1992).

2. Yannis Haralambous, ‘Typesetting the holy Quran with TEX’, in Proceedings of the 2nd Inter-
national Conference on Multilingual Computing—Arabic and Latin script (Durham), (1992).

3. Alain Daniel, Dictionnaire pratique cambodgien-français, Institut de l’Asie du Sud-Est, Paris,
1985.

4. Alain Daniel, Lire et écrire le cambodgien, Institut de l’Asie du Sud-Est, Paris, 1992.
5. Derek Tonkin, The Cambodian Alphabet, Transvin Publications, Bangkok, 1991.
6. Akira Nakanishi, Writing systems of the World, Charles E. Tuttle Company, Tokyo, 1980.
7. v³nu�kmeB� år, rVÆyrbs'PuP� ½snbN�w ty, P. s. 2505 [Dictionnaire Cambodgien, Édi-

tions de l’Institut Bouddhique, Phnom-Penh, 1962.]

216 YANNIS HARALAMBOUS

8. Donald E. Knuth, The METAFONTbook, Computers & Typesetting, Addison Wesley, 1986.
9. Donald E. Knuth, The TEXbook, Computers & Typesetting, Addison Wesley, 1986.

10. Helmut Kopka, LATEX, eine Einführung, Addison Wesley, 1991.
11. Helmut Kopka, LATEX, Erweiterungsmöglichkeiten, Addison Wesley, 2 edition, 1991.

