Collaboration:

Louis-Etienne DENAUD¹, Mark HUGHES², Andrezj KUSIAK³, Rémy MARCHAL¹, Sid'Ahmed OULD AHMEDOU¹, Fréderic ROSSI¹.

Aalto University

¹Arts et Métiers ParisTech LaBoMaP, France ³Université de Bordeaux, France ²Aalto University, Helsinki, Finland

Plan:

- 1. The project idea
- 2. The model principles
- 3. The simulation results

Anna DUPLEIX – PhD Candidate anna.dupleix@ensam.eu

Peeling process: veneer production

Why soaking?

Alternative methods to heating wood prior to peeling avoiding soaking

LABORATOIRE BOURGUIGNON

Heat transfer equations

 $M_{\lambda} = \frac{2\pi \cdot c^{2} \cdot \lambda^{5}}{e^{\frac{h.c}{\lambda.k.T}}}$ Planck's law

wood emissivity (no dimension) Stefan-Boltzmann constant (W.m⁻².K⁻⁴)

3

σ

7 / 15

Subdomain settings

Boundary conditions

ARTS ET MÉTIERS ParisTech

Temporal evolution of temperature within the bolt during one turn

Influence of the distance between the knife and the IR source

peeling speed v = 0.3 m/s

COST Workshop

ABORATOIRE BOURGUIGNON DES MATÉRIAUX ET PROCÉDÉS

а

Influence of peeling speeds and peeling thickness

Influence of peeling speeds and peeling thickness

FUTURE WORK

To integrate in the model:

green wood thermal properties : Cp, k = f(MC)
> with transient HotDisk[®]method (TREFLE, Bordeaux)
> should speed up heat penetration

green wood optical properties : emissivity, transmittivity, absorptivity = f(λ)
> modifying model's equations with IR volumic Beer- Lamberts absorption law(CNRS, Orléans)

with

(1)
$$\rho C_{p} \frac{\partial T}{\partial t} = \nabla (k \nabla T) + \beta I_{0} e^{-\beta r}$$

$$I_0 = \sigma T_{ext}^4$$
 and $\beta = -\frac{4}{2}$

$$\frac{4\pi\kappa}{\lambda}$$

(2) $Q_{rad} = h(T_{ext} - T) - \varepsilon \sigma T^4$

> should deepen radiation penetration

To experimentally validate the model

 to establish it as an essential decision-making tool to design in-line IR heating system directly embedded on the cutting machine

CONCLUSIONS SO FAR ON THE OPTIMUM CONFIGURATION

To locate IR source as far as possible from the knife

IR heating of green wood while peeling: a numerical model.

Thank you for your attention

15/15

Baldwin, R.F., (1975) Plywood Manufacturing Practices. Miller Freeman Publications Inc., San Fransisco, California, pp 62-78.

- Bardet, S., Beauchêne, J., Thibaut, B.,(2003) Influence of basic density and temperature on mechanical properties perpendicular to grain of ten wood tropical species. Annals of Forest Science. 60(1):49-59. Bedard, N., Laganiere, B., (2009) Debarking Enhancement of Frozen Logs. Part II: Infrared System for Heating Logs Prior to Debarking. Forest Products Journal. 59(6):25-30.
- Coste, N., (2005) Interest of radiant energy for wood peeling and slicing process. Master's thesis, University of Melbourne.
- Dupleix, A., Marchal, R., Bléron, L., Rossi, F., Hughes; M., (2011) On-line heating temperatures of green-wood prior to peeling. Joint International Symposium on Wood Composites and Veneer Processing and Products Proceedings.

Flir Systems (2004) ThermaCAM User's Manual.

- Gaudilliere, C., (2003) Contribution au développement d'une chauffe électrique rapide de bois vert de Douglas en vue de son déroulage. Master's thesis, Arts et Métiers ParisTech.
- Glass, S.V., Zelinka, S.L., (2010) Wood handbook, Chapter 04: Moisture relations and physical properties of wood. General Technical Report FPL-GTR-190 Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, US. 4-1 - 4-19.
- Lutz, J.F., (1960) Heating veneer bolts to improve quality of douglas-fir plywood. Technical report USDA Forest Service General FPL-2182, Forest Products Laboratory, Madison, WI, US.
- Marchal, R., Collet, R., (2000) Contribution au développement d'une chauffe électrique rapide de bois vert de douglas en vue de son déroulage. Technical report, Arts et Métiers ParisTech.
- Marchal, R., Gaudilliere, C., Collet, R., (2004) Technical feasibility of an embedded wood heating device on the slicer or the peeling lathe. International Symposium Veneer Processing and Products Proceedings. pp 29-44.
- Matsunaga, M., Minato, K., (1998) Physical and mechanical properties required for violin bow materials II: Comparison of the processing properties and durability between pernambuco and substitutable wood species. Journal of Wood Science. 44(2):142-146.
- Potter, B.E., Andresen, J.A., (2010) A finite-difference model of temperatures and heat flow within a tree stem. Revue Canadienne de Recherche Forestière. 32(3):548-555.
- Torgovnikov, G., Vinden, P., (2010) Microwave wood modification technology and its applications. Forest Products Journal. 60(2):173.
- Yamauchi, S., Iijima, Y., Doi, S., (2005) Spectrochemical characterization by FT-Raman spectroscopy of wood heat-treated at low temperatures: Japanese larch and beech. Journal of Wood Science. 51(5):498-506.

Anna DUPLEIX – PhD Candidate anna.dupleix@ensam.eu