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Abstract

The babassu palm tree (Attalea speciosa Mart. ex Spreng.) is an endemic species

of Amazon forests, and has social and economical impact/utility. Deforestation

highlights this palm tree in anthropogenic open areas (pastures and cultivated

fields). Simultaneously, knowledge concerning the sustainable functioning of

the species within these manmade environments is sorely lacking: its life cycle

is not well known, and its population dynamics remains unstudied. In this

study, our objective was to generate a model of the population dynamics of the

babassu palm tree, validated by in situ analysis, to understand how babassu,

a forest species, adapts to pastureland and, under certain conditions, becomes

invasive. We propose a random matrix model with aggregated variables based

on the biological stages of the species as the input. The probabilities of the

between-stage transition matrix were modelled using a Dirichlet-multinomial

model with a hierarchy taking geographical organization, i.e. transect level,

into account. The integration of prior information was formulated through

a Bayesian approach. This Bayesian hierarchical matrix model enabled us to

demonstrate a bottleneck in the population dynamics and a high year-dependent

mortality rate at an early stage.
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1. Introduction

The primary threat to primary forests, long before climate change, is hu-

man action, Jha (2010). The majority of plant species that grow in tropical

rainforests do not resist land use change at the time of cultivation, Fearnside

(2005); Barlow et al. (2016). Some other tree and palm species are resilient,

Anthelme et al. (2011); Norden et al. (2009). The babassu palm tree (Attalea

speciosa Mart. ex Spreng.) which can reach 30 m height, is endemic to the

South American Amazonian forest. It is sometimes present in agrosystems in-

stalled following clearing of the primary forest, while many other woody species

have disappeared, Mitja et al. (2018); dos Santos and Mitja (2011). It persists

years later in secondary forests resulting from the abandonment of crops and

pastures, and it can even become invasive and hinder the development of culti-

vated species. While a portion of the population wants to eliminate it, another

part wants to maintain it because of its multiple uses, Araújo and Lopes (2012).

Some plot-scale work has demonstrated higher densities of adult babassu

in pastures than in the original forest, Anderson (1983); Campos et al. (2017),

while other work has shown the opposite, Barot et al. (2005). A territory-wide

study of the PA-Benfica smallholder farming community revealed this variabil-

ity in the density of babassu cauliflower palms in primary forests as well as in

pastures and secondary forests. In these environments, the few plots with very

high densities are only observed in pastures or secondary forests, Mitja et al.

(2018). In contrast, because the number of plots without cauliflower babassu

is higher in pastures, the average babassu density in the study area is lower

in pastures than in secondary or primary forests, Mitja et al. (2018). Thus,

babassu has the potential to invade agrosystems even if this does not occur

systematically. In fact, there is a high variability of the palm density in pas-

tures potentially that is related to the initial density in the forest, depending on

the cultivation practices of farmers (who can conserve or eliminate palm trees),

Mitja et al. (2018). In pastures, babassu are influenced by factors such as sun

exposure, Mitja and Ferraz (2001); Anderson et al. (1991), burning, chemical
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or manual cleaning of plots, competition with forage grasses, burial of fruit in

the soil and clear-cutting. These factors sometimes act in a contradictory way

on fruits, seedlings and young individuals and adults and can counteract the

high resilience of this species at certain stages, Mitja et al. (2018). In our study

context, the studied pastures did not undergo significant anthropogenic actions

such as chemical cleaning or clear-cutting.

To explain this ability of babassu to remain on pasture after forest clear-

ing, the possibility of natural biological diversity within babassus (diversity of

genetic, epigenetic origins or more generally due to genetic interaction with

the environment) cannot be excluded, Bräutigam et al. (2013); Richards et al.

(2017), although we do not currently have data to support these assumptions.

Previous works, focusing on all babassu individuals from seedlings to adults,

have examined the life cycle divided into ontogenic stages: three stages for Cam-

pos et al. (2017); four stages for Anderson (1983); five stages for Barot et al.

(2005); six stages for dos Santos et al. (2017). In the latter case, which con-

cerns our field of study, the life cycle was divided into a seedling stage, four

stages of young individuals and an adult stage. Stages 1, 2 and 3 are character-

ized by a rosette configuration and a buried terminal bud. Stage 4 corresponds

to the presence of the terminal bud on the soil surface, protected by the leaf

sheaths. Stage 5 (last young stage) corresponds to individuals with a terminal

bud above ground that is very often still protected by the leaf sheath. Stage 6 is

the adult stage, most often ascertained by a free stipe. Considering the stages,

some authors have studied the population structure using a single ”one shot”

measure, Barot et al. (2005); Campos et al. (2017). Barot et al. (2005) obtained

an inverted J-shaped curve for the primary tropical forest, characteristics of

natural unharvested populations, Hall and Bawa (1993), while in pastures this

structure was found to be different with a lower seedling density. These latter

results have not been verified by studies by Campos et al. (2017) and Anderson

(1983), who showed an ”inverted J” curve not only for primary forest but also

for pastures. However, the accepted interpretation that species with inverted J

population structures are in equilibrium, while those with a small number of
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young stages would correspond to declining populations, has been questioned.

Indeed, the survival of the plant population would depend more on the growth

rate of individuals in the various stages, Condit et al. (1998), which, if rapid,

can maintain a sufficient density of adults. To determine whether the babassu

will persist in this newly set-up farmland in the long term, it will be neces-

sary to assess the growth rate and thus monitor the evolution of the population

over time, Johnson et al. (1994) by studying the population dynamics through

periodic measurements over the long term.

Recently, individual-based models have received great interest and have been

used to predict population dynamics and the effects of management strategies

Buckley et al. (2003). Following the ideas of Uchmaski and Grimm (1996) and

Lomnicki (1999), the interest in individual-based models is to take the individual

interactions (competition) and the resource dynamics explicitly into account. In

our case, pastureland is a stable and non limited resource environment where

competition between trees is negligible. An individual-based model could be in-

teresting to ascertain the time spent at each stage of development and to define

trajectories, but as the data are from a three-year experiment, the results may

not be sufficiently extensive to be reliable. Because of the very low transition

rates often observed between some stages, a longer observation period would be

necessary to be of use. The population dynamics models appear to offer a sim-

pler and better adapted framework for our study Zuidema and Zagt (2000). Two

components must be taken into account when modelling: the ecological process

and the observation process. In our context, the ecological process describes

variation in abundance over transects and time (two periods of measurement).

Demographic models represent a standard approach for abundance data that

provides insight into population growth Caswell (1989). Deterministic matrix

models have been used for trees in the following articles: Bullock (1980), Pinero

et al. (1984), Enright and Watson (1992), Pinard (1993), Olmsted and Alvarez-

Buylla (1995), Barot et al. (2000), Holm et al. (2008), and also Guaŕın and del

Valle (2014). Demographic models include a deterministic part but stochastic el-

ements can be added to accommodate any sources of variability (transects, time,
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individuals) that affect the observations. To take into account the geographical

structure of our data, palm trees are observed on different transects; thus defin-

ing the hierarchical model. This approach was advocated by Clark (2003) who

insists that variability associated with space, time, and among individuals who

are not accommodated by demographic models can make parameter estimates

and growth rate predictions unrealistic. Stochastic models can be defined in

different ways. In the method defined by Tuljapurkar and Caswell (1997), the

stochastic matrix involves elasticity and stochasticity of the vital rate. In our

case, we did not focus on one parameter only but on a global approach that

allows one to deal with broader issues and topics from different fields (econ-

omy, social impact, biology, technical aspect of the management and so on).

IPM (integrated population models) is another possible approach, which is also

known as hierarchical or state-space models Eacker et al. (2017), Schaub and

Abadi (2011). More generally than IPM, the Bayesian hierarchical model is

well adapted and sufficiently flexible to incorporate hierarchical data and ex-

pert knowledge, Hobbs and Hooten (2015). It can be adjusted over successive

years of observation and updated over time, posterior estimation is used from

the first year as prior information for the second year estimation, and so on, as

suggested by Parent and Rivot (2012).

To understand how babassu, which is a forest species, adapts to grazing

and under certain conditions becomes invasive, this study proposes to develop a

population dynamics model that does not currently exist for this species. This

model will be a hierarchical stochastic matrix population model in the Bayesian

framework. Beyond the knowledge produced, this model can be used in future

species management projects to make forecasts.

This article covers the following topics:

1. ”Materials” provides a description of the biology of the babassu, as well

as a description of the study site and of the sampling.

2. ”Model” provides a comprehensive description of all aspects of the mod-

elling (matrix model, hierarchy and Bayesian framework).

6



3. ”Results-Discussion” provides comments on the model validation and on

population dynamics and the existence of a bottleneck. These sections are

followed by a global conclusion.

2. Materials

2.1. Biology of babassu in pastures

The babassu life cycle can be organized in biological stages of development.

Six stages have been defined varying from the seedling to the adult palm tree

(Fig. 1, see Mitja et al. (2019) for more details). In addition, the reproduc-

tive stage and fructification of the babassu has been studied by Barot et al.

(2005) and Anderson et al. (1991) providing knowledge for understanding the

reproductive process and recruitment in our modelling.

2.2. Study site

Our data was collected over three years of field monitoring (from 2013 to

2015). This monitoring was carried out on the Benfica Agriculture Installation

Project (Projeto de Assentamento) site which is located in the Brazilian State

of Pará (Fig. 2).

This territory is located within the Amazonian rain forest on the territory

of the Itupiranga municipality and covers 10,026 ha. The shape of Benfica

is irregular and lies within a quadrilateral space formed by the straight line

connection at the coordinates 05◦12’20” south latitude, 05◦20’40” south latitude

and 49◦48’00” west longitude, 49◦56’40” west longitude.

The particularity of this site is that it includes man-made spaces that,

since 1989, have been progressively colonized by one thousand people, Sam-

paio (2008).

2.3. Field sampling

The fieldwork protocol was developed in early 2012. Seven surface areas

of pastureland were designated for this research project. Within each piece
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Fig. 1: Stage definition from Mitja et al. (2019)

Stage 1 : Seedling
root 
undivided entire(s) leafs
buried bud

Stage 2 : Young_1 
root
at least one leaf divided 
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petiole (Length < 50cm)
buried bud

 [duration  t1]

Stage 3 : Young_2
root 
leaf limb divided
petiole (Length >=50cm)
buried bud
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root 
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Stage 5 : Young_4
root
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reproductive organs
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root 
presence or traces of 
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Death
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Key
Comment

of land, two to three transects (linear paths) were defined and visibly marked

out on the ground dos Santos et al. (2017). We obtained the total number of

seventeen transects from which we collected data regarding growth, sprouting

and fruiting processes. In addition, we also used seven supplementary transects

to obtain more data about the growth process, especially for stages 5 and 6
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Fig. 2: PA Benfica in Brazil. Magnification of the localization of transects within the farmer’s

piece of land. The localization of some transects (green circle) are superimposed.

(Table 1).

Table 1: Design of the field sampling

Biological Stages Nb of

process transects

Growth
1 to 4 17

5 and 6 17 + 7

Sprouting new stage 1 17

Fruiting 6 17

The counting and marking of all individuals at all six stages of development

was performed within these transects. In 2013, 2,987 palm trees of all stages

were identified. In 2014 and 2015, we surveyed the same palm trees, to which we

respectively , added 471 and 482 newly recruited individuals of stage 1 (Table 2).

3. Model

The modelling was constructed based on three distinct experimental data

sets (see flowchart Fig. 3) that were observed during two observation periods
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Table 2: Empirical probabilities and sample size for babassu in pastures

Stage 2013-2014 2014-2015

1

death 0.08 0.21

idle 0.66 0.66

transition 0.26 0.13

Sample size 736 956

2

death 0.04 0.03

idle 0.78 0.87

transition 0.18 0.1

Sample size 1737 1548

3

death 0.006 0

idle 0.988 0.98

transition 0.006 0.02

Sample size 340 638

4

death 0 0

idle 0.79 0.76

transition 0.21 0.24

Sample size 19 21

5

death 0 0

idle 0.83 0.87

transition 0.17 0.13

Sample size 52 47

6

death 0.01 0.01

idle 0.99 0.99

Sample size 103 111

(one in 2013-2014 and one in 2014-2015) on 17 or 24 transects.

We decided to infer three independent models based on three different ob-

servational units for the following reasons:

• The transition-survival model was our main concern for answering demo-

graphic questions such as the existence of a bottleneck or a reverse J-shape

curve. The survey was constructed for that purpose. The sample land was

chosen to be representative of the different ages of pasture in Para. The

24 transects were chosen in order to sample a sufficient number of babassu
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Fig. 3: Flowchart of the whole process
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palm trees in different stages for the transition survival study, including 7

very specific transects focusing on old babassu palm trees (stage 5 and 6).

• The fruiting and sprouting processes were less precisely observed and only

on the 17 transects. We wanted to avoid error propagation of the measure-

ment or modelling approximations to the transition-survival modelling.

Therefore, we decided to construct independent fruiting and sprouting

models. Moreover, estimation of these models on the 17 transects might

not be adapted to the 7 specific transects of older palm trees. However,

even if the three models were independently estimated, they could be

combined to simulate a life cycle.

• The survey did not focus on the seed dispersal (even if it exists, see Mitja

and Ferraz (2001) for more detailed) or the germination. No information
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was collected on the germination of fruits or seedlings. No information

was available for outside the transects, (linear paths). Without this infor-

mation, it was not possible to fit and use seed dispersal models such as

the one proposed by Clark et al. (1999). Localization of adult palm trees

around or adjacent to the transect would be necessary to achieve such

modelling, and the new recruits were considered to be of unknown origin.

Brief description of the three independent models

• A demographic model with two levels (transect - studied area in Benfica)

was defined. The observation were performed at an individual level, but

the palm trees were considered to be independent, and the observations

were pooled at the transect level for each stage. Demographic stochas-

ticity was modelled with hierarchical Dirichlet (prior) and multinomial

(likelihood) laws.

• The annual number of fruits from a palm tree was modelled with a log-

Normal distribution to restrict them to positive values and to maintain

flexibility in the meantime. A non-conjugated hierarchical model is used to

model the annual mean number of fruits per palm tree across the studied

area level (Normal prior) in addition to the observation/individual level

(logNormal likelihood). This model is conditional on the probability that

a palm tree can have fruits. This probability is modelled with a classical

conjugate Beta-Binomial distribution.

• We used a classical conjugate Beta-Binomial distribution to model the

probability of sprouting across the studied area. Recall that the sprouting

process was observed at the transect level, from a number of pooled ob-

served fruits (including contribution from Babassu palm trees besides/along

and outside the transect).

3.1. Hierarchy

The ecological process was observed on transects belonging to the designated

area of land. Only two levels were considered for the transition survival process:
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the transect and the whole studied area in Benfica. Moreover, our estimation

concerning the probability of transition between stages (see Fig. 4) did not

exhibit any structure at the level of the farmer’s piece of land (each piece of

land is separated by a red line). No spatial structure was observed, except for

the transition from stage 2 to stage 3 where a link with spatial coordinates

might be possible (see appendix and discussion) but it was difficult to estimate

or ensure with our dataset. Therefore, we preferred to employ a multilevel model

using the level of the transects and of the whole studied area in Benfica.

Fig. 4: Estimation of the probabilities of transition from one stage to the next per transect

(transects are grouped by farmer’s pieces of land, with each separated by an underlying red

line)

3.2. Observation process and definition of the observed variables

Survival-transition process

13



Observations were performed on 17 (+7 for stages 5 and 6) transects (see

Table 1). For transect l, we observed the total number of plants in stage i

at year t − 1, ni,t−1,l. We also observed the number of survivors at year t in

stage i, ni,t,l. This number was the sum of the observed number of survivors

that remained in this stage, denoted as si→i,t,l and of the observed number

of survivors from stage i − 1 who had moved to stage i, denoted as si−1→i,t,l,

ni,t,l = si→i,t,l +si−1→i,t,l. Moreover, in a given transect l at time t, the number

of deaths among those in stage i was the total number of plants in stage i from

the previous year minus the number of survivors from the previous year that

remained in stage i minus the survivors from the previous year that changed

stages, deadi,t,l = ni,t−1,l−si→i,t,l−si→i+1,t,l. From these observations, we could

infer proportions for each transect l. We assumed that the expected proportions

remained constant over time and denoted πi→i,l as the expected proportion of

plants that remained at the same stage i, πi→i+1,l as the expected proportion

moving from stage i to the next stage i + 1 and 1 − πi→i,l − πi→i+1,l as the

expected mortality proportion in stage i. These three parameters allowed us to

define a categorical distribution for each transect l:

πi,l = (πi→i,l, πi→i+1,l, 1− πi→i,l − πi→i+1,l)

We also defined a categorical distribution at the level of the whole studied

area:

πi = (πi→i, πi→i+1, 1− πi→i − πi→i+1)

No observations performed at this level, therefore πi→i and πi→i+1 are latent

variables.

Fruiting and sprouting processes.

Fruiting First, the fruit production per palm tree was observed on the 17 transects

for each palm tree in stage 6. The reproduction process begins with the

definition of the sexual state (no inflorescence, male or female inflorescence

or both inflorescences). The babassu palm tree has a complex reproductive
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process that is not well understood and has not been well measured. The

female and male inflorescences change over undefined periods of time.

Therefore the reproductive process has been simplified and resumed with

the observed reproductive state variable uj,t,l, which indicates the presence

of fruits at year t on palm tree j from transect l. This variable was coded

as 1 when fruits were present and 0 if they were not. We assumed that

the expected proportion φ of palm trees of stage 6 in a reproductive state

1 was constant over time and was common to all transects.

When a palm tree j of year t−1 was in a reproductive state 1, its number

of fruits, denoted Fruitsj,t−1,l, was the sum of the observed number of

fruits on the palm tree and on the ground immediately under the palm

tree. This observation was performed directly in the field but also vali-

dated later by using photography of the palm tree. We approximated fruit

observations using a normal distribution with a mean parameter µ and a

variance parameter σ2.

Sprouting Next, the seedlings were not observed outside the transect, but only the

number of recruited seedlings in stage one per transect l and per year t

was measured in the field. We denoted this variable rt,l, but the origin

of these new palm trees was unknown. They could represent fruit from

an adult palm tree (stage 6) adjacent to the transect. Therefore, the

total number of fruits on transect l, year t − 1 was counted (regardless

of their origin), and we denoted this variable TotalFt−1,l. We assumed

that the recruitment occurred only in the first stage and that the expected

proportion of fruit providing a new palm tree in one year was constant

over time and was common to all transects. We denoted this parameter

λ.

Remark: All variables were directly measured/observed on the ground by

expert biologists. We assumed that there were no errors and our observation

process was identity.
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3.3. Lefkovitch Matrices for the ecological process

Six growth stages have been defined for babassu Mitja et al. (2019). Vector

nt,l = (n1,t,l, . . . , n6,t,l)
′ is the state vector, where ni,t,l is the number of indi-

viduals in stage i at year t in transect l. The ecological process is modelled with

a Markovian process:

E


n1,t,l
...

n6,t,l

∣∣∣∣∣∣∣∣∣
n1,t−1,l
...

n6,t−1,l

 =



π1→1,l 0 0 0 0 0

π1→2,l π22,l 0 0 0 0

0 π2→3,l π3→3,l 0 0 0

0 0 π3→4,l π4→4,l 0 0

0 0 0 π4→5,l π5→5,l 0

0 0 0 0 π5→6,l π6→6,l




n1,t−1,l
...

n6,t−1,l

+ E


rt,l
...

0

(1)

The projection of the population was modelled at the transect level with a

Survival-Transition matrix following Caswell (2001).

The model must take into account the demographic stochasticity and hi-

erarchy. Integration of different kinds/sources of variability was performed in

a Bayesian framework. In this framework, all parameters except σ2 were con-

sidered as random variables (see the DAG-Directed Acyclic Graph, Fig. 5, for

details). This parameter was fixed in the observation in an empirical Bayes ap-

proach to ensure MCMC converged because we omitted the observation process

error (lack of measurements allowing estimation of the observation error apart

from the variability in the number of fruits) and also due to the very small

sample size. Three independent Bayesian sub models were defined:

Survival-Transition for the six stages

According to Buckland et al. (2007), demographic stochasticity is modelled with

multinomial laws (extension of the binomial law to a context with more than

two possibilities).
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Fig. 5: Representation of the hierarchy and dependences between variables with a Directed

Acyclic Graph constructed for stage i and transect l. Three processes, fruiting, recruitment

and survival-transition are represented from left to right. Observed variables are represented

in grey.
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• Evolution from year t− 1 to year t of the six stages of transect l:

(si→i,t,l, si→i+1,t,l, deadi,t,l) | πi,l, ni,t−1 ∼Mult(ni,t−1,l, πi,l), i = 1, . . . , 5

(s6→6,t,l, dead6,t,l) | π6,l, n6,t−1,l ∼Mult(n6,t−1,l, π6,l) (2)

To add to the hierarchy for each stage of the preceding model, we adapted

a hierarchical Dirichlet distribution from Cowans (2004). Cowans proposed

a hierarchical Dirichlet document model where each document (transect for

us) is modelled using a multinomial distribution whose parameters are given a

Dirichlet prior. The mean value of the Dirichlet prior is itself assumed to be

random and given a Dirichlet hyperprior. This kind of modelling with Dirichlet

priors and Dirichlet hyperpriors is used for topic models Wallach et al. (2009)

or information retrieval from documents Haffari and Teh (2009).

• Hierarchical Dirichlet distribution to add to the hierarchy for each stage i

πi,l | πi, ηi ∼ Dirichlet(ηi × πi), i = 1, . . . , 6

πi ∼ Dirichlet(Weights i), i = 1, . . . , 6 (3)

ηi ∼ Uniform(u1, u2), i = 1, . . . , 6

The shared mean parameter by stage i induces sharing of information across

transects. Weightsi of the Dirichlet hyperprior were calibrated with both ob-

served proportions (as in an empirical Bayes approach) and uniform distribution

(following Cowans (2004) idea) to test the sensitivity of the model to this hy-

perprior. The latent variable ηi could be considered to be a size effect which

indicated the level of confidence in the realization of the latent vector πi.

Fruiting and number of fruits.

The annual number of fruits of a palm tree in stage 6 is conditioned by its

reproductive status uj,t−1,l: Fruitsj,t−1,l | uj,t−1,l = 1 ∼ logNormal(µ, σ2)

Fruitsj,t−1,l | uj,t−1,l = 0 ∼ δ0
(4)
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where δ0 indicates the Dirac mass at 0. The logNormal distribution was

preferred to the usual Poisson or negative binomial distributions to increase the

flexibility of the modelling to address over dispersion and add explicitly to the

population latent variable µ (the mean annual number of fruits inferred at the

level of the studied area). The logNormal distribution provided the best fit our

data (see supplementary materials, Fig. 10). Next, we assumed that the palm

trees in stage 6 shared the same parameter of fruiting φ.

uj,t−1,l ∼ Bernoulli(φ) (5)

To add to the hierarchy allowing the sharing of information across palm trees

(and transects), we defined:

φ ∼ Beta(a, b)

µ ∼ N(m,V )
(6)

Sprouting (or recruitment in the first stage).

Recruitment in the first stage rt,l was stochastic and was defined Conditional

on the total number of fruits present on a transect l, year t− 1 :

rt,l | TotalFl,t−1 ∼ Binomial(TotalFl,t−1, λ) (7)

To add to the hierarchy allowing the sharing of information across palm trees

(and transects), we defined:

λ ∼ Beta(c, d) (8)

3.4. Hyperparameters

Two sets of hyperparameters were used, with one per year of estimation.

For the first year, the prior was less informative as no expert knowledge was

available. For the second year, we used the marginal posterior mean value and

variance of the variables (φ, λ, πi) to calibrate the hyperparameters. For both
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years the hyperparameters m, V and σ2 were calibrated from observed field

data.

The values are presented in Table 3.

Weights 1 2 3 4 5 6

Non info (1/3,1/3,1/3) . . . . . . (1/3,1/3,1/3) (1/2,1/2)

Info (.11,.63,.28) (.04,.79,.17) (.01,.98,.01) (0,.79,.21) (0,.83,.17) (.01,.99)

φ :(a,b) λ :(c,d) µ :(m, V) σ2 ηi : (u1, u2)

Non Info (1.5,1.5) (1.5,1.5) (313,4975) 59703 (1,200)

Info (13.5,12.5) (472,3284) (313,4975) 59703 (1,200)

Table 3: Hyperparameter values for non-informative and informative priors (informative:

hyperparameters were calibrated with the results of the first year posterior estimation)

3.5. Bayesian inference and model validation

In Bayesian frameworks, estimation of the variables of interest is performed

for the posterior distribution. In our case, the variables of interest were for

transition-survival θ1 = ((π1,l, . . . , π6,l)l=1,...,24, π1, . . . , π6, η1, . . . , η6), recruit-

ment in the first stage θ2 = λ and fruiting θ3 = (φ, µ). Whether the prior distri-

bution of each θp is conditional/depends on the hyperparameter values. The vec-

tors of those hyperparameters are param1 = (Weights 1, . . . ,Weights6, u1, u2,nt−1),

param2 = (c, d, TotalFt−1,1, . . . , T otalFt−1,17) and param3 = (a, b,m, V, σ2).

Each vector is considered fixed, and its values are given in Table 3. Summaries

for (nt−1,l)l=1,...,24 and the histogram for (TotalFt−1,l)l=1,...,17, are given in Ta-

ble 2 and Supplementary Material, Fig. 10, respectively. Observations or data

respectively are the realization of the following variables:

data1 = (s1→1,t,l, s1→2,t,l, . . . , s6→6,t,l)l=1,...,24, data2 = (rt,l)l=1,...,17 and data3 =

(uj,t−1,l, F ruitst−1,l)j∈transectl,l=1,...,17.

Based on those definitions, from Bayes’ rule, the posterior distribution is pro-

portional to

p(θp | datap, paramp) ∝ p(datap | θp, paramp) p(θp | paramp) (9)
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To simplify the notation, we will omit the dependence on param in the following

equations. Of course, we are clearly aware that posterior estimation is condi-

tional on param and therefore sensitive to the values of the hyperparameters,

and this point will be discussed and studied later.

Using the DAG (Fig. 5) and conditional dependencies, Equation (9) can be

decomposed into a product, depending on the type of observation: Transition-

Survival, Fruiting and Sprouting:

p(θ1 | data1) ∝

p(Survival data | (π1,l, . . . , π6,l)l=1,...,24, π1, . . . , π6, η1, . . . , η6)×

p((π1,l, . . . , π6,l)l=1,...,24, π1, . . . , π6, n1, . . . , n6) =

ΠiΠl p(sii,t,l, si i+1,t,l, deadi,t,l | πi,l) p(πi,l | πi, ηi) p(πi) p(ηi)

p(θ2 | data2) ∝

p(Sprouting data | λ)× p(λ) =

Πl p(rt,l | λ) p(λ)

p(θ3 | data3) ∝

p(Fruiting data | µ, φ)× p(µ, φ) =

ΠlΠj∈transectl p(Fruitsj,t−1,l | µ, uj,t−1,l) p(uj,t−1 | φ) p(φ) p(µ)

Sensitivity to Informative versus Non-Informative priors in a learning

approach

Estimation based on the first year of observation was performed according

to Helser et al. (2012) since no study to date has provided prior information

on babassu growth or reproduction processes in the babassu environment. We

endorsed the approach of Smith and Wakefield (1994), who suggest that priors

should be non-informative to ensure that the likelihood dominates the prior.

The hyperparameters characterizing the distribution of πi, ηi, φ, λ and µ were

chosen to provide a prior that was as flat and non-informative as possible. Then,

in a learning approach, the value of the hyperparameters Weights i was set to

the posterior estimates of πi. We compared the estimation based on the second
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year of observation obtained with each set of hyperparameters. This comparison

allowed us to study the sensitivity of the model and its stability over the years.

Model Validation

The predictive posterior distribution can be used to check whether the model

is consistent with the observed data Gelman et al. (1996) measurement, yobs is

the observed value and yrep is a replicate sampled from the predictive posterior∫
p(yrep | θ) p(θ | data) dθ Steinbakk and Storvik (2009). Posterior p-values of

approximately 0.5 indicate that the distributions of replicated and actual data

are close, while values near zero or one indicate a discrepancy between them.

Moreover, validation was possible by leaving out 25% of the transects for the

second year of observation 2014-2015. The posterior population estimate πi was

then used to predict the total expected number of survivors (si→i, si→i+1, deadi)

of the omitted transects. The total number per stage of the omitted transects

was considered to be consistent with a prediction at the level of the studied

area.

Computation with R and JAGS

JAGS which uses the dialect of BUGS Lunn et al. (2000), Plummer (2003),

Lunn et al. (2013) was used to fit the model to the data with the package rjags.

The estimates of parameters were evaluated based on 200,000 samples after

50,000 burn-in samples, thinning to one draw for each sample, by MCMC sim-

ulation of the joint posterior distribution. The MCMC inference samples anal-

ysis was processed with the coda package Plummer et al. (2006). Convergence

diagnostics consisted of visuals (traces and autocorrelations) and statistical cal-

culations using the test of Gelman et al. (2003) based on Gelman and Rubin

(1999). For all variables in the model, the Gelman criteria of between-chain

variance over within-chain variance converged into one. More information on

the convergence diagnosis and on the script of the model are available in the

supplementary materials.
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4. Results and Discussion

4.1. Model validation

We focused the validation analysis on the Survival-Transition matrix at the

level of the studied area. The validation concerned the second year of observa-

tion 2014-2015 with the informative prior.

First, we computed the posterior predictive p-value for estimation of the

survival-transition probabilities obtained for the second year of observation

(2014-2015) and with the informative prior (see Table 4). When the ppp-value

was much smaller than 0.5 (e.g., 0 or 0.1), then the probability simulated with

the model was less variable than the observed probability, and the model failed

to reproduce the variability of the data. Thus, the model underestimated the

data variability. We imputed this phenomenon as a higher variability observed

in the data during 2014-2015 than during 2013-2014, which may indicate a year

effect. A longer time series of observation may well be needed to define an

informative prior, as suggested by Bierzychudek (1999).

ppp-values

Stage i 1− πi→i − πi→i+1 πi→i πi→i+1

1 0 0.5 0.22

2 0.62 0.1 0.04

3 0.39 0.14 0.24

4 0.15 0.64 0.76

5 0.14 0.43 0.57

6 0.71 0.36 -

Table 4: Posterior predictive p-values of the survival-transition probabilities (πi, i = 1, . . . , 6)

obtained for the second year of observation 2014-2015 and with the informative prior

Next, we checked the adequacy of the model with the cross-validation ap-

proach (see Table 5) for the second year of observation 2014-2015 and with

the informative prior. The young stages (namely one and two) showed a poor
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prediction, as the observed values were not in the 95% credible interval of the

prediction for all variables. Again, this mismatch for the young stages was a

result of the extreme variability observed in the field for the dynamics of the

young during the two periods of observation (2013-2014 and 2014-2015).

deadi,2015 si→i,2015 si→i+1,2015

Stage i obs. pred. obs. pred. obs. pred.

1 46 27[25,40] 75 81[65,96] 19 32[20,46]

2 33 31[16,51] 481 443[410,471] 39 79[74,107]

3 0 0[0,2] 83 82[79,83] 0 1[0,3]

4 0 0[0,1] 3 4[2,5] 2 1[0,3]

5 0 0[0,1] 8 9[6,10] 2 1[0,4]

6 1 1[0,3] 58 58[56,58] - -

Table 5: Cross-validation for the year 2015 and for each stage i = 1, . . . , 6, the observed

(obs.) and predicted (pred.) numbers of palm trees that died (deadi,2015), survived in the

same stage (si→i,2015) and survived and evolved toward the upper stage (si→i+1,2015). The

credible interval at a 95% level was computed for each prediction.

Eventually, the learning approach of using the posterior of the first period

2013-2014 to calibrate the prior of the second period 2014-2015 was not satis-

factory for the young stage (namely 1 and 2).

4.2. Survival and transition between states: identification of a bottleneck

Table 6 summarizes the estimates of the survival-transition probabilities for

both periods (2013-2014 and 2014-2015). The dynamic can be divided into two

parts. Before compared with after stage 3, mortality was significantly elevated

(5% to 27%). The first stage exhibited a high year variability, as underlined

in the model validation section. This competition disappeared at a later stage

of palm tree growth. The death probability for the first stage was estimated

at 12% for the first period and 27% for the second period. These values were

both lower than the estimate of 38% published by Anderson (1983) and Ander-

son and Balick (1988) concerning another experiment in Brazil. After stage 3,
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the estimates were not sensitive to the prior or the year effect. The mortality

rates were lower and difficult to estimate with small sample sizes. Except for

the transition between stage 3 and stage 4 (lower than 1%), the probability of

transitions were significant (10% to 28%). Hence, these results showed a clear

bottleneck at stage 3. Due to its extremely low probability, the transition be-

tween stage 3 and 4 had a large impact on the ”needed” time for a babassu

to reach the adult stage 6. Thus, a supplementary sampling effort should be

performed for stages 3 and 4 to better estimate and understand this transition.

Stage 3 is critical in the biology of the babassu because the palm terminal bud

rises from the ground during this stage.

Table 6: Sensitivity analysis of the prior. The given estimates are posterior mean values for

the transition-survival probabilities.

Probabilities 2014 non info. 2015 non info. 2015 info.

π1,t

Death 0.12 0.27 0.21

Idle 0.6 0.52 0.57

Transition 0.28 0.21 0.22

π2,t

Death 0.05 0.07 0.06

Idle 0.79 0.83 0.81

Transition 0.16 0.10 0.13

π3,t

Death 0.005 0.001 0.005

Idle 0.993 0.994 0.989

Transition 0.002 0.005 0.006

π4,t

Death 0.02 0.02 0.01

Idle 0.77 0.75 0.77

Transition 0.21 0.23 0.22

π5,t

Death 0.01 0.01 0

Idle 0.85 0.87 0.85

Transition 0.14 0.12 0.15

π6,t
Death 0.01 0.01 0.01

Idle 0.99 0.99 0.99
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4.3. Link between the bottleneck and population structure

Finally, we observed a bottleneck at the end of stage 3 in pastures. This

bottleneck was observed in a primary forest by Barot et al. (2005). Moreover,

a comparison of our bar plot of densities by stage (see Fig. 6) revealed a shape

similar to Barot et al. (2005) for stages 1 to 3 (corresponding to ELS, SLS and

Juv1, respectively, in their article); however in the next stage situated after the

bottleneck, the densities are collapsed toward zero in our case.

Fig. 6: Mean and standard error of the transect densities by stage and by year of observation.

0

10

20

30

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

D
en

si
ty

Year

2013

2014

2015

We expected, a priori, high densities in all young stages for this palm specie,s

which is considered to be an invasive plant species in pastures, Barot et al.

(2005). A pasture is an open field/environment with less competition for light

or with other species. In open areas, the number of germinations per fruit is

lower but growth in stage 1 is more rapid, Mitja and Ferraz (2001).

Fig. 6 shows an increase in density in stage 3 over the time. In addition, the

mortality rates for stages 3 to 6 were very low during this period. Therefore,

we may assume that the observed bottleneck was due to the low transition rate
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from stage 3 to stage 4. Multiple causes could have contributed or explained

this low transition.

First, competition for light and nutrients with fodder plants or introduced

grasses might not be negligible in the younger stages. As stated in the article

by Sankaran et al. (2004), ”tree grass coexistence in savannas”, competition-

based models or demographic-bottleneck models, or a mixture of the two, could

explain the population structure of babassu in the pasture.

Second, the management of the pasture, with human intervention, has an

impact on what is believed to be an appropriate density of babassu palm trees

for cattle shelter. Runk (1998) observed this kind of human intervention in the

regulation of Ivory palm tree, where ”the lack of juveniles to the sub adult stage

appears to be a population bottleneck in managed stands, limiting the number

of adults”. However, during the period of our study, management was limited

to an annual clearing to respect our research on the population dynamics and

estimation of the natural mortality. Annual clearing of pasture plots by cutting

leaves from stages 2 to 4 and sometimes even stage 5 can delay the transition

between stages because the palm tree must reinvest in the production of new

leaves, Mitja et al. (2018).

Third, the impact of cattle (for example, trampling, grazing) might provide

an explanation for a demographic bottleneck model. The terminal meristem of

the plant is below ground until stage 3, and the plant can regenerate even if the

aerial part is damaged (grazed, etc.).These non-lethal actions (as we estimated

a very low mortality in stage 3) might delay the transition and thus create a

bottleneck for the transition from stage 3 to stage 4.

Fourth, none of these suggestions explain why this bottleneck or at least a

reverse J-shaped curve (with a lower density in stage 4) was observed in pri-

mary rain forests. In addition to the competition for light with other trees (or

babassus), the population structure could be due to different times of residence

in the different stages. The prolonged juvenile phase of trees is obviously a cen-

tral component of their life strategy. Brunner and Ove (2004) have suggested a

different mechanism (mainly related to chromatin-based repression) to explain

27



this prolongation. One hypothesis is that epigenetic mechanisms play a central

role in the regulation of the tree phases. Bräutigam et al. (2013) have explored

the epigenetic variation and adaptive capacity of plant species, including forest

trees. Considered in this way, the prolonged juvenile phase might be a contrib-

utory strategy to the babassu’s ability to colonize or persist in pastures.

4.4. Other biological information: fruiting and sprouting

The fruiting and sprouting parts of the model were simplifications of the

complex reality. Nevertheless, rate estimation of fruit production (55%) and

sprouting (12%) exhibited good statistical properties, and these estimations

were enriched by the Bayesian learning period. We suggest that these pro-

cesses (fruiting and sprouting) remained unchanged during the two periods of

observation.

Fruiting

The mean estimate values ± the standard error of the fruiting rate (φ)

were 0.52 ± 0.10 for 2013 and 0.54 ± 0.07 for 2014. The estimation for 2014

was performed with an informative prior using a Bayesian learning approach

(the posterior of the first period was used as the prior for the second period).

Biologically speaking, these values indicate that a little more than fifty percent

of the adult palm trees contribute annually to the fruiting process.

The mean estimate values ± the standard error of the number of fruits per

palm tree (µ) respectively were 313 ± 50 for 2013 and 317 ± 48 for 2014.

Sprouting

The mean value estimates for the sprouting probability λ were approximately

≈ 0.12 for both periods, with standard error of 0.005 for the first period 2013-

2014 and 0.004 for the second period 2014-2015. λ represents the probability

that a fruit produced in year t becomes a seedling (stage 1) in the next year

t+ 1.
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4.5. Bayesian Learning

Fruiting/sprouting

The estimation for the first period 2013-2014 was performed with a non-

informative prior. A flat distribution was used as illustrated in blue, for the

fruiting rate (φ ∼ Beta(a = b = 1.5)), Fig. 7a. The distribution obtained a

posteriori (in red) was concentrated on the estimated mean value of 54%. This

figure illustrated the Bayesian learning approach with the evolution between the

flat distribution (non-informative prior) to the conditional distribution (knowl-

edge of the information provided by the data). This informative distribution (in

red, Fig. 7a) obtained during the first period of observation was then used as the

prior (in blue, Fig. 7b) for estimation of the fruiting rate during the second pe-

riod of observation, 2014-2015. Again, the distribution obtained a posteriori (in

red) exhibited a concentration around the same mean estimated value. Bayesian

learning helped to increase the precision of the estimation for the fruiting rate.

We observed similar figures for the sprouting rate and the number of fruits per

palm tree. Concerning transition-survival probabilities, this learning approach

was not so fruitful, because of important variability-fluctuation between the two

periods of observation mainly during the early stages (1 and 2).

5. Conclusion and perspectives

To better understand the babassu population dynamics in pastures, we used

a Bayesian hierarchical matrix model. This model with two levels of hierarchy

(studied area in Benfica and transect) allowed a more reliable estimation of

the population dynamics because information is shared between transects to

improve the estimation at the level of the studied area and then retrospectively

at the transect level. This is a significant improvement over direct empirical

estimations using small sample sizes, with missing data and an unbalanced

design, Fontez and Cavalli (2014). In our case, the observed stages in transects

were unbalanced, as shown in Fig. 4. The model did not reveal unobserved

empirical facts but provided a direct and reliable estimation at the level of the
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Fig. 7: Estimation of the fruiting rate. Prior and posterior for both periods.
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studied area. This model enabled us to demonstrate a bottleneck at stage 3

in the population dynamics. The origin of this bottleneck is not known but

was not due to mortality (low values). The bottleneck between stages 3 and 4

has significant consequences for the population dynamics of babassu, but in the

present state of knowledge provided by the model, it is difficult to specify the

exact consequences of this bottleneck. In fact, two extreme cases can occur: 1.

all the palms have an equal probability of passing from stage 3 to stage 4 each

year; 2. only a portion of the palm trees are able to undergo this transition.

• In the first case, all the palm trees are impacted by the bottleneck and a

rough estimation of the period in stage 3 with a geometrical model could

be π3→4/(1 − π3→3)2 = 0.005/(1 − 0.99)2 ≈ 50 years. This bottleneck

dramatically raised the age at which a palm tree becomes an adult. This

result contradicts information from experiments (some palm trees became

adults only after 10-12 years).

• In the second case, a fraction of individuals f can successfully transit

and a fraction 1 − f will never transit. Therefore, π3→4 is a compromise

(a mean value) between those two kinds of palm trees. The very low
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value estimated for π3→4 could be due to this fraction 1 − f that never

transited. According to Barot et al. (2005) fraction f that transits is

probably composed of ”juvenile with a high survival and growth rate to

be quickly recruited into the adult stage and hence representative of a

small percentage of the population”. For this kind of juvenile, using a

geometrical model, we deduced the expected time spent in the stages that

are above soil and observable (4-6). Using estimates presented in Table 6

we obtained (3.68 to 4.16) for stage 4 and (6.22 to 7.1) for stage 5 for

a total sum of these stages of 9.9 to 11.3 years. In the field, the people

interviewed suggested 10 to 12 years. If we consider the stages that are

above the soil and observable (4-6), the predictions are coherent with our

model estimations.

The reality is undoubtedly between these two extreme cases. To arbitrate

between these two hypotheses, follow-up sequences should be available in the

future, which will soon be possible as new surveys are underway.

Concerning the second case, one possible explanation could be the high ge-

netic variability of the babassu, which is a wild plant. Thus, important genetic-

environment interactions may be involved. A genetic difference for the f fraction

of successful babassu is coherent with the observed increase in density in stage

3 over the years. At the population level, clearing of the forest and the use of

fire to clear brush have resulted in a population bottleneck. Following Rapp and

Wendel (2005), these anthropic actions may have created genomic stress lead-

ing to the induction of epigenetic phenomena. From an epigenetic perspective, a

population bottleneck leads to a decrease in genetic diversity but an increase in

phenotypic variability. In fact, we observed a great density variability between

pieces of land, which could be due to phenotypic variability (see, for example,

the probability of transition from stage 2 to 3 in the supplementary material).

Based on our study of very local and limited points of observation in Pará, it is

impossible to comment further without additional research.

Another explanation could be the past history of each plant. New sequences
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would make it possible to determine for an individual whether the past history

of the passages from stage 1 to stage 2 and stage 2 to stage 3 affected the

probability of passage from stage 3 to stage 4.

In open environments (such as pastureland), the number of seedlings per

fruit is lower for babassu, Mitja and Ferraz (2001). In the present work, we

highlighted a high and year-dependant mortality rate at stage 1 and a bot-

tleneck at stage 3. These three points highlight a new perspective maybe in

contradiction with the common idea that the babassu is an invasive species,

Barot et al. (2005). These three points in conjunction with harvesting might

explain the negative evolution of density in pastures, observed in Mitja et al.

(2018), and the need for reliable preventive scientific information to help manage

babassu population dynamics in pastures.

Our model could be extended to a larger scale (region, country) by incor-

porating palm density information from high spatial resolution satellite images

dos Santos et al. (2017). However, to achieve the sustainable management of

the species, a more comprehensive study of the mechanisms underlying the low

transition rate between stage 3 to 4 is needed. Some factors, such as competition

for light and nutrients with fodder plants as well as information on the genetic

diversity (or a potential epigenetic mechanism) should first be adressed.
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Brazil. PALMS 45, 138–147.

Mitja, D., Sirakov, N., dos Santos, A.M., González-Pérez, S.E., Macedo, J.D.,
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Tatché, M., Durka, W., Engelhardt, J., Gaspar, B., Gogol-Döring, A., Grosse,
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Fig. 8: Example of convergence for π1 2 (2014-2015).
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Fig. 9: Example of the obtained Gelman test for π1 2 (2014-2015).

50000 100000 150000 200000 250000

1.
00

1.
05

1.
10

1.
15

Stade1 pass

Point est. / Upper C.I. 
 1 / 1

sh
rin

k 
fa

ct
or

median
97.5%

42



Table 7: Posterior densities of the transition survival probabilities at the level of the whole

studied area, respectively, over 2013-2014 on the left and over 2014-2015 on the right: death

is shown in red, transition in green, and idle in blue.

Stage 1

Stage 2
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Table 8: Posterior densities of the transition survival probabilities at the level of the whole

studied area, respectively, over 2013-2014 on the left and over 2014-2015 on the right: death

is shown in red, transition in green, and idle in blue.

Stage 3

Stage 4
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Table 9: Posterior densities of the transition survival probabilities at the level of the whole

studied area, respectively, over 2013-2014 on the left and over 2014-2015 on the right: death

is shown in red, transition in green, and idle in blue.

Stage 5

Stage 6
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Fig. 10: Adjustment of the distribution of the number of fruits per palm tree.
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Fig. 11: Estimation of the probability of transition from stage 2 to stage 3 according to the

coordinates of the pieces of land.
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