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Abstract

In a recent paper, the authors proposed a general methodology for probabilistic learning on man-
ifolds. The method was used to generate numerical samples that are statistically consistent with
an existing dataset construed as a realization from a non-Gaussian random vector. The mani-
fold structure is learned using diffusion manifolds and the statistical sample generation is ac-
complished using a projected Itô stochastic differential equation. This probabilistic learning
approach has been extended to polynomial chaos representation of databases on manifolds and
to probabilistic nonconvex constrained optimization with a fixed budget of function evaluations.
The methodology introduces an isotropic-diffusion kernel with hyperparameter ε. Currently, ε
is more or less arbitrarily chosen. In this paper, we propose a selection criterion for identifying
an optimal value of ε, based on a maximum entropy argument. The result is a comprehensive,
closed, probabilistic model for characterizing data sets with hidden constraints. This entropy
argument ensures that out of all possible models, this is the one that is the most uncertain beyond
any specified constraints, which is selected. Applications are presented for several databases.
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Notation

δkk′ = Kronecker’s symbol
E = mathematical expectation
[In] = identity matrix in Mn

Mn = set of all the square (n × n) real matrices
Mn,N = set of all the (n × N) real matrices
N = set of all the integers 0, 1, . . .
R = set of all the real numbers
Rn = Euclidean space of dimension n
[x]T = transpose of the real matrix [x]
‖ [x] ‖F = Frobenius norm (Hilbert Schmidt norm) of matrix [x]

A lower case letter such as x or η is a real deterministic variable.
A boldface lower case letter such as x or η is a real deterministic vector.
An upper case letter such as X or H is a real random variable.
A boldface upper case letter such as X or H is a real random vector.
A lower case letter between brackets such as [x] or [η] is a real deterministic matrix.
A boldface upper case letter between brackets such as [X] or [H] is a real random matrix.

1. Introduction

Objective and novelty of the paper. This work is a continuation and final installment for pre-
vious work [1, 2] devoted to a methodology for probabilistic learning on manifolds. Starting with
a specific dataset, the algorithm constructs a statistical model of the data, together with a numeri-
cal generator to sample additional statistically consistent realizations. Specifically, the procedure
involves three steps consisting of (1) identifying the non-Gaussian probability distribution of a
random vector for which the solely available information consists of a database made up of inde-
pendent samples (generated by experiments and/or by numerical simulations), (2) delineating an
intrinsic manifold in the data and, (3) constructing a Markov Chain Monte Carlo (MCMC) gen-
erator of realizations on the manifold with the non-Gaussian distribution as its invariant measure.
This approach introduces two hyperparameters. The first one, ε, is related to the parameteriza-
tion of the isotropic-diffusion kernel related to the transition matrix of the diffusion maps used to
discover the manifold. The second one, L, is a cut-off threshold for determining the dimension
m of the diffusion maps basis used for constructing the MCMC generator. This probabilistic
learning algorithm (that depends on ε and L) facilitates the detection and the construction of the
intrinsic underlying probability distribution from which the database has been generated. The
parameter L is associated with scale separation and a reasonable universal value for it has been
deduced from considerations of a large number of datasets from a variety of disciplines. The
novelty of the present paper is to propose a selection criterion for ε, resulting in a data-driven
model that is algebraically closed.

Role played by statistical learning in computational physics and engineering sciences. Sta-
tistical and probabilistic learning methods have been extensively developed (see for instance,
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) and play an increasingly important role in computational physics
and engineering science [13], in particular for design optimization with underlying stochastic
operators and constraints using large scale computational model, and more generally in artifi-
cial intelligence for extracting information from big data. In this framework, statistical learning
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methods have been developed in the form of surrogate models from which approximations of the
expensive functions can easily be evaluated [14, 15, 16, 17]. Although Gaussian process models
are most commonly used in this context [18], alternative approaches based on Bayesian methods
have been proposed [14, 19, 20]. For the evaluations of expensive stochastic functions in the
presence of uncertainties, current computational challenges remain significant enough to require
some degree of probabilistic approximation [21, 16, 22, 23].

A classical example of the use of the probabilistic learning on manifolds is the following.
We consider an expensive large-scale stochastic computational model that discretizes a complex
system modeled by a boundary value problem. The vector-valued random response is written
as Q = f(W,U) in which W is a non-Gaussian vector-valued random parameter controlling the
system, U is a non-Gaussian vector-valued random parameter representing uncertainties, and
f is a deterministic nonlinear mapping representing the computational model. For instance U
corresponds to the spatial discretization of a non-Gaussian tensor-valued random field that is a
coefficient of a partial differential operator of the boundary value problem on which the com-
putational model is based. The only available information is a given initial dataset (training
set) of length N, which is constructed as the set of N points {x j

d = (q j
d,w

j
d), j = 1, . . . ,N} in

which q j
d = f(w j

d,U(θ j)) are N independent realizations of Q (calculated with the expensive
computational model) where w j

d and U(θ j) are N independent realizations of W and U. Con-
sequently, {x j

d, j = 1, . . . ,N} are N independent realizations of the non-Gaussian random vector
X = (Q,W). Knowing only this initial dataset, the objective is, for instance, to construct, for
any given w in its admissible set, an estimate h(N)(w) of h(w) that is defined, for instance, by
h(w) = E{H(Q)|W = w} in which E is the conditional mathematical expectation given W = w
and where H is a given deterministic mapping (for instance, h(w) could be the objective function
of an optimization problem for which w would be the design parameter). If each evaluation q j

d
is expensive in CPU time, then N will be, generally, not sufficiently large for obtaining a good
convergence of h(N)(w) towards h(w). The probabilistic learning on manifolds allows for gener-
ating νsim � N additional independent realizations {x1

ar, . . . , x
νsim
ar } of random vector X, without

using the expensive computational model, which allows for deducing νsim additional realizations
(q`ar,w`

ar), ` = 1, . . . , νsim} such that (q`ar,w`
ar) = x`ar. We can then construct a better estimate

of the conditional expectation that is required for computing h(N)(w). We are then considering
a probabilistic machine learning for the small-data challenge (N small) in computational science.

Brief description of probabilistic learning under consideration and definition of the problem
to be solved. As explained above, the authors have proposed a general probabilistic learning
on manifold [1] for generating additional realizations of an Rn-valued random variable X =

(X1, ..., Xn) for which the available information is only made up of a given set of N � n points
{x1, . . . , xN} that are N independent realizations in Rn of random vector X. This method is
based (1) on the use of nonparametric statistics for estimating the probability density function
x 7→ pX(x) with respect to the Lebesgue measure dx on Rn of random vector X and then for
deducing the probability density function [x] 7→ p[X]([x]) with respect to the volume element
d[x] on Mn,N of the random matrix [X] = [X1, . . . ,XN] with values in Mn,N in which X1, . . . ,XN

are N independent copies of X, (2) on the construction of nonlinear Itô stochastic differential
equation (ISDE) on Mn,N , formulated for a dissipative Hamiltonian dynamical system for which
p[X]([x]) d[x] is the invariant measure, (3) on the use of diffusion maps for discovering the ge-
ometrical structure of the given set of points, and (4) on the construction of a reduced ISDE on
Mn,m obtained by projecting the original ISDE on a subspace of dimension m � N spanned by
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a subset of the diffusion-maps basis and allowing additional realizations of X to be generated.
This approach introduces two hyperparameters. The first one is the isotropic-diffusion kernel hy-
perparameter ε allowing the transition matrix of the diffusion-maps approach to be constructed
from the given set of points. The second one is dimension m of the projection. Concerning
hyperparameter ε related to the isotropic diffusion kernel, the authors did not find any proposed
robust method in the open literature for estimating it on the basis of a quantitative criterion inde-
pendent of the application under consideration. In addition, in the framework of the probabilistic
learning on manifolds proposed in [1], dimension m is deduced from ε once a scale separation
threshold, L, has been set. In this paper, we propose a selection model of ε based on the use of
an entropy principle using only the given set of points. The algebraic basis constructed through
the diffusion manifold approach is critical to the projected Itô equation developed in the pro-
posed probabilistic learning method. Other manifold detection procedures, such as kernel PCA
[3], that are endowed with such algebraic constructs could be used as substitutes for the mani-
fold detection and characterization step. The probabilistic learning method proposed in [1] has
been extended to polynomial chaos representation of databases on manifolds [2] and to prob-
abilistic nonconvex constrained optimization with a fixed number of function evaluations [24].
Recently, the robustness of this approach has been tested with success on different problems such
as the optimal well-placement [25, 26], the prediction of maximum daily precipitation with data
generated from large scale climate models, the Continental United States (CONUS) Regionally-
Refined Model (RRM) [27] of Energy Exascale Earth System Model (E3SM) V0 [28], and the
enhancing of the predictability of a two-dimensional (2D) computational model for a scramjet
[29].

Organization of the paper. The objectives and the organization of the paper are as follows.
Despite the fact that the reader can find the details of the considered probabilistic learning algo-
rithm on manifolds in [1], and taking into account that the objective of the paper is to propose
a selection model for its hyperparameters, ε and m, it seems reasonable to start by summarizing
this algorithm. Consequently, Section 2 presents such a summary of the probabilistic learning
on manifolds that underscores the role played by hyperparameters ε and m. Section 3 is devoted
to a selection model for calculating an optimal value εopt of hyperparameter ε using an entropy
principle and a method for computing an adapted dimension mL(ε) of hyperparameter m(ε) as
a function of ε and consequently, deducing the optimal value mopt of m(ε) associated with εopt.
Section 4 deals with a reanalysis of Application 2 presented in [1] (random 3D-data around a
helix) using the proposed selection model. In Section 5, a validation of the proposed selection
model of the hyperparameters is presented for several databases: Scramjet-d8 and ScramJet-
d16 that correspond to simulations of a ScramJet performed by Sandia National Laboratories
in Livermore with two large scale complex computational models [29], and Climate-LS-21-34
and Climate-LS-21-50 that correspond to the maxima of daily precipitations, which have been
predicted by Lawrence Livermore National Laboratory with a climate computational model [30].
Section 6 presents an analysis of the results obtained.

2. Summary of the probabilistic learning on manifolds

The probabilistic learning on manifold proposed in [1] uses only a given set of N points
{x1

d, . . . , xN
d } in Rn, which are assumed to be N independent realizations of a random vector X

with values in Rn. The probability distribution of X is unknown and is assumed to be concen-
trated in a neighborhood of a subset of Rn (a manifold) that is also unknown and that has to
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be discovered. We introduce the matrix [xd] = [x1
d . . . xN

d ] ∈ Mn,N that is one realization of the
random matrix [X] = [X1, . . . ,XN] with values in Mn,N in which X1, . . . ,XN are N independent
copies of X. For the dataset that will be used in this paper, vector X will consist of the parameters
of a computational model as well as the quantities of interest that are obtained as output of the
computational model. The objective of the probabilistic learning on manifold is to construct a
probabilistic model using only the given dataset represented by [xd]. This model is then used
to generate additional independent realizations {x1

ar, . . . , x
νsim
ar } in Rn of random vector X. The

proposed method preserves the concentration of the additional realizations around the manifold.
For the applications described subsequently in the paper, a very large number, νsim � N, of
additional realizations can then be generated for the quantities of interest, which then allow for
estimating the probability density functions of various quantities of interest (QoI), including ex-
treme values statistics. The main steps of the probabilistic learning algorithm on manifold are
summarized in Section 2.1. Section 2.2 deals with the important issue concerning the conver-
gence analysis with respect to hyperparameter m for a given value of ε and the non-adaptation
of such a convergence analysis to the objective of the probabilistic learning method. Section 2.3
deals with the mathematical formulation of an efficient method for calculating dimension m as a
function of ε.

2.1. Probabilistic learning algorithm on manifold
The 8 steps of the probabilistic learning algorithm used in this paper are summarized next.

1) The initial given dataset is made up of unscaled data represented by matrix [x uns
d ] in Mn,N .

The matrix [xd] in Mn,N of the scaled given dataset (simply called the given dataset) is
constructed such that [xd]k j = ([x uns

d ]k j − min j′ [x uns
d ]k j′ )/(max j′ [x uns

d ]k j′ − min j′ [x uns
d ]k j′ )

for all k = 1, . . . , n and j = 1, . . . ,N. This step is generally required to avoid numerical
problems in the second step introduced below.

2) Let [c] ∈ Mn be the empirical estimate of the covariance matrix of X. We consider the
eigenvalue problem [c]ϕk = µk ϕ

k. Let ν ≤ n be the number of positive eigenvalues
{µk}

ν
k=1 with 0 < µ1 ≤ µ2 ≤ . . . ≤ µν and let [ϕ] be the (n × ν) matrix such [ϕ]T [ϕ] =

[Iν], whose columns are the associated orthonormal eigenvectors ϕ1, . . . ,ϕν. A principal
component analysis [X] = [x] + [ϕ] [µ]1/2 [H] of random matrix [X] is carried out in
order to normalize/reduce the dataset in which [x] ∈ Mn,N is the empirical estimate of the
mean value of [X] and where [µ] is the positive diagonal (ν × ν) real matrix such that
[µ]kk′ = δkk′µk. The columns H1, . . . ,HN of random matrix [H] with values in Mν,N are
independent random vectors with values in Rν. This normalized/reduced representation
allows for computing a new normalized dataset of N points {η1

d, . . . , η
N
d } in Rν, represented

by the matrix [ηd] = [η1
d . . . η

N
d ] in Mν,N that is computed by [ηd] = [µ]−1/2[ϕ]T ([xd]− [x]).

If ν is chosen as the rank of matrix [c], then the constructed representation of [X] induces
no error and corresponds to a pure normalization. If ν is chosen less that the rank of
[c] in order to construct a reduced-order representation of [X], then ν can be selected
for obtaining a given tolerance of the relative mean-square error defined by errorpca(ν) =

‖ [xd] − [x(ν)
d ] ‖F/‖ [xd] ‖F where [x(ν)

d ] = [x] + [ϕ] [µ]1/2 [ηd].
3) A modification [31] of the classical multidimensional Gaussian kernel-density estimation

method [32, 33] is then used to construct an estimate of the probability density function
[η] 7→ p[H]([η]) with respect to the volume element d[η] on Mν,N of random matrix [H].

4) An MCMC generator for random matrix [H] is constructed using the approach proposed
in [34, 31] belonging to the class of Hamiltonian Monte Carlo methods [34, 35, 36], which
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is an MCMC algorithm [37]. The realizations of random matrix [H] could be obtained by
solving a (ν×N) matrix-valued ISDE that corresponds to a stochastic nonlinear dissipative
Hamiltonian dynamical system, for which p[H]([η]) d[η] is the unique invariant measure
(in fact, we will not need to generate realizations of [H] using this ISDE).

5) The diffusion-maps approach [38, 39] is then used to discover and characterize the geo-
metrical structure of the normalized dataset [ηd] thus defining a manifold embedded in RN .
The transition matrix of a Markov chain relative to the geometrical structure of the given
normalized dataset [ηd] is constructed thanks to the introduction of the isotropic diffusion
kernel, kε(η, η′) = exp(− 1

4ε ‖η − η
′‖2), defined on Rν × Rν in which ε > 0 is a hyperpa-

rameter of the model. Let [K] be the symmetric matrix in MN with positive entries such
that [K]i j = kε(ηi

d, η
j
d) for i and j in {1, . . . ,N}. Let [b] be the positive-definite diagonal

real matrix in MN such that [b]i j = δi j
∑N

j′=1[K]i j′ and let [P] be the matrix in MN such
that [P] = [b]−1 [K]. Matrix [P] that has positive entries satisfying

∑N
j=1[P]i j = 1 for

all i = 1, . . . ,N, can be viewed as the transition matrix of a Markov chain that yields the
probability of transition in one step. We consider the first m̂ largest eigenvalues of the gen-
eralized eigenvalue problem [K] [ψ] = [b] [ψ] [Λ] such that [ψ]T [b] [ψ] = [Im̂], where [Im̂]
is the identity matrix in Mm̂ and where [ψ]T [K] [ψ] = [Λ]. The diagonal matrix [Λ] in Mm̂
is made up of the eigenvalues λ1, . . . , λm̂ that are such that 1 = λ1 > λ2 ≥ . . . ≥ λm̂. The
corresponding eigenvectors ψ1, . . . ,ψm̂ in RN are such that [ψ] = [ψ1 . . . ,ψm̂] ∈ MN . The
diffusion-maps basis of dimension m̂ is then defined by the m̂ vectors g1, . . . , gm̂ in RN such
that gα = λαψ

α. We introduce the (N × m) matrix [g] = [g2 . . . gm̂] with m = m̂ − 1, which
will be used below for performing the projection of random matrix [H]. In general, m can
be selected such that m � N (see Section 2.2). Note that g1 is always a vector whose
components are all equal. Since the random matrix [H] is centered, this vector can be
removed from matrix [g] used for performing the projection of [H]. Finally, since eigen-
values λ2, . . . , λm̂ and matrix [g] depend on ε, we will rewrite them as λ2(ε), . . . , λm̂(ε) and
[gε,m].

6) As proposed in [1], a reduced-order representation [Hε,m] of [H] is introduced such that
[Hε,m] = [Zε,m] [gε,m]T is constructed on the manifold in which [Zε,m] is a random matrix
with values in Mν,m for which m � N and a Mν,m-valued reduced-ISDE is obtained by
projecting the Mν,N-valued ISDE onto the diffusion manifold by using the reduced-order
basis represented by matrix [gε,m]T . It should be noted that such a projection corresponds
to a reduction of the dataset dimension and not to a reduction of the physical compo-
nents of random vector H` (this latter reduction already results from a statistical reduction
introduced in step 2). Such a projection preserves the concentration of the generated real-
izations around the manifold.

7) The constructed reduced ISDE is then used for generating nMC additional realizations
[z1

ar], . . . , [z
nMC
ar ] of random matrix [Zε,m], and therefore, for deducing the additional re-

alizations [η1
ar], . . . , [η

nMC
ar ] of random matrix [Hε,m]. Using step 2 yields nMC additional

realizations [x1
ar], . . . , [xnMC

ar ] of [Xε,m] such that [x`ar] = [x] + [ϕ] [µ]1/2 [η`ar]. The algorithm
for generating these additional realizations is given in Appendix A.

8) Reshaping these nMC matrices yields the νsim = N × nMC � N additional realizations
{x1

ar, . . . , x
νsim
ar } in Rn of random vector Xε,m.
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2.2. Remark concerning the convergence analysis with respect to hyperparameter m for a given
value of ε and its non-adaptation to the objective of the probabilistic learning method

For a given application for which the value of hyperparameter ε is fixed, the correspond-
ing probability density function [x] 7→ p[Xε,m]([x]; ε,m), with respect to d[x], of random matrix
[Xε,m] corresponds to a better construction than the one used for the probability density function
[x] 7→ p[X]([xd]), with respect to d[x], of random matrix [X], which would be estimated by us-
ing only the Gaussian kernel-density estimation method from the given dataset represented by
[xd], because p[Xε,m]([x]; ε,m) also uses a second source of information relative to the geometrical
structure of the given dataset. An interpretation of the difference between p[Xε,m]([x]; ε,m) and
p[X]([xd]) is necessary and is presented next.

It should be noted that for m̂ = N, the family of vectors {g1, g2, . . . , gN} constitutes a vector
basis of RN . An estimation of m̂ could be constructed with a convergence analysis aimed at
reducing the relative mean-square error defined by errorpro j(m̂) = ‖ [xd] − [x(ν,m̂)

d ] ‖F/‖ [xd] ‖F in
which [x(ν,m̂)

d ] = [x] + [ϕ] [µ]1/2 [zd] [g]T with [zd] = [yd] [g] ([g]T [g])−1. As this error goes to
zero, m̂ goes to N and the

probability measure p[Xε,m]([x]; ε,N) d[x] approaches the probability measure p[X]([x]) d[x].
In such a limit, the concentration of data around the manifold would not be leveraged, and there
would be no gain achieved using the proposed probabilistic learning algorithm [1]. Thus, the
L2 convergence analysis described above is not consistent with the objectives of the proposed
probabilistic learning methodology. As already explained, the main objective of this proba-
bilistic learning method is to take into account the geometrical structure of the given dataset
in order to enrich the construction of the probability measure p[X]([x]) d[x] substituting it by
p[Xε,m]([x]; ε,m) d[x] that preserves the concentration of the additional realizations computed with
steps 7 and 8 of the algorithm presented in Section 2.1. Thus, rather than pursuing a convergence
analysis by increasing m, an optimal value of m is selected for each value of ε. In several of
the numerical examples presented in Section 5, probability density estimates have also been
constructed for extreme values statistics of random QoIs. The foregoing discussion has the im-
plication that the convergence of these extreme values statistics with respect to m should not
be of concern, as m is selected with the criterion of sufficient scale separation. The model is
completely specified by selecting numerical values for m and ε. Consequently, these statistics
correspond to the extreme values statistics of the QoI that are defined relative to this selected
model.

2.3. Method for calculating an adapted dimension mL(ε) as a function of ε

As explained in Section 1, for a given application, the value of hyperparameter ε is currently
selected arbitrarily, following a trial and error procedure with no quantitative criteria.

A plausible framework for separating scales in a given dataset would first involve evaluating,
for different values of ε, a graph of the eigenvalues α 7→ λα(ε) for α ≥ 0, similar to the ones
displayed in Fig. 1. It is clear that different values of ε result in different decays in the eigenval-
ues, and a different value of an optimal m corresponding to the rank of the eigenvalue at which
significant drop in the spectrum is observed. It is also clear from these graphs that the lagest
eigenvalue is always equal to 1 and its eigenvector is constant, an artifact of the normalization
of the Laplacian of the data (ie the matrix obtained from discretizing the diffusion kernel). In
all subsequent calculations, this largest “unit” eigenvalue is therefore ignored when comparing
spectral content of different models. A method for identifying ε objectively is presented in Sec-
tion 3. In the rest of this section, we present a procedure for evaluating the optimal value of m
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for a fixed value of ε. The model proposed for calculating the adapted value m̂L(ε) of m̂(ε) as a
function of ε can be written as,

m̂L(ε) = −1 + arg min
α |α≥3

{
λα(ε)
λ2(ε)

< L
}
, (1)

and then the corresponding adapted dimension mL(ε) of dimension m is such that

mL(ε) = m̂L(ε) − 1 . (2)

Parameter L is independent of ε and is chosen for separating the existing scales in any given
dataset. Following our proposed procedure for estimating ε, L will be the only remaining free
parameter in our data-driven model, although its significance as a scale separation threshold
is obvious form context. All the numerical applications performed by the authors for dataset
coming from different fields show that L = 0.1 is, generally, a good value and this choice cor-
responds to one order of magnitude for a scale separation. The analyses that will be performed
in the future for other datasets will allow this choice of the value of L to be confirmed or im-
proved. For the case illustrated in Fig. 1(a), we have m̂L(ε) = 20 and mL(ε) = 19 because
λ21(ε)/λ2(ε) = 0.0028/0.0316 < 0.1 while λ20(ε)/λ2(ε) = 0.0065/0.0316 > 0.1. As an illustra-
tion, Fig. 1(b) displays the distributions of eigenvalues {λα(ε)}α for ε ∈ {10, 15, 20, 40} for a given
database (Scramjet-d16 database) and allows for highlighting the construction defined by Eq. (1).

The criterion defined by Eq. (1), is based on the idea that, for a fixed value of ε, the smallest
dimension m(ε) has to be chosen for obtaining a scale separation and for preserving the concen-
tration of the additional realizations generated by the probabilistic learning method that has been
proposed [1]. In this paper, we propose a selection model for calculating an optimal value εopt

of ε and then, deducing the corresponding optimal value mopt = mL(εopt) of dimension m. This
model is based on the use of an entropy principle and is presented in Section 3.

(a) (b)

Figure 1: (a): choice of ε yielding a strong decreasing of the eigenvalues λα(ε) for which the ranks are greater than 18.
The graph shows that λ2(ε) = 0.0316, λ18(ε) = 0.0231, λ20(ε) = 0.0065, and λ21(ε) = 0.0028. In the present case, for
the criterion defined by Eq. (1), we have m̂L(ε) = 20 and mL(ε) = 19. (b): illustration of the distributions of eigenvalues
{λα(ε)}α for ε = 10 (blue circle), = 15 (red diamond), = 20 (green cross), and = 40 (black star) for a given database
(Scramjet-d16 database).
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3. Selection model for calculating an optimal value εopt of hyperparameter ε

For given ε and m, let [η] 7→ p[Hε,m]([η] ; ε,m) be the probability density function of random
matrix [Hε,m] with respect to the volume element d[η] on Mν,N , for which the additional realiza-
tions [η1

ar], . . . , [η
nMC
ar ] are computed as explained in step 7 of Section 2.1. Note that ν and N of

random matrix [Hε,m] are independent of ε and m.

3.1. Principles for selecting the optimal value of hyperparameter ε
The principles that are proposed for selecting the optimal value εopt of hyperparameter ε and

the corresponding optimal value mopt of hyperparameter m are the following:

1) An admissible finite set A = {ε1 < ε2 < . . . < εnε } of nε ordered values of ε is defined.
The optimal value εopt of ε will be searched for inA. Consequently, for a given database,
setAmust be chosen to contain a sufficiently large number of possible values of ε, but the
selection model that is proposed does not directly depend on this choice.

2) For each value of ε inA, the adapted value m̂L(ε) of m̂(ε) is computed with Eq. (1) for the
reasons given in Section 2.3. The corresponding adapted dimension mL(ε) of hyperparam-
eter m is then computed using Eq. (2).

3) The mapping ε 7→ m̂L(ε) fromA into N being known, we define the subset E0 ofA, made
up of all the values of ε that minimize mL(ε) onA,

E0 = {ε ∈ A | ε = arg min
ε′∈A

m̂L(ε′)} , (3)

In general, the number of elements in set E0 is greater than 1 (but is less or equal to nε).
This is one of the reasons why εopt cannot simply be constructed as the value of ε that
minimizes m̂L(ε).

4) We now construct the subset E ⊂ A of the values of ε such that

E =
{
ε ∈ A | m̂min

L ≤ m̂L(ε) ≤ m̂max
L

}
, (4)

in which the lower bound m̂min
L is the minimum value of m̂L(ε) for ε ∈ A,

m̂min
L = min

ε∈A
m̂L(ε) , (5)

and where m̂max
L is the upper bound defined by

m̂max
L = b(1 + χ) m̂min

L c , (6)

with brc denotes the floor integer part of r (for instance, b2.3c = 2), and where χ is a small
real number such that 0 ≤ χ < 1. It can be seen that

E0 j E j A . (7)

The optimal value εopt of ε will be searched into E and not in E0 in order to construct a
subset of A, the subset E, which is more robust than E0 with respect to the small fluc-
tuations effects that can occur with Eq. (1). Based on our experience of the analysis of
data sets from a range of applications, for the value L = 0.1 recommended in Section 2.3,
the value χ = 0.2 is a good associated value. It should be noted that χ is not a hyperpa-
rameter of the probabilistic learning approach as is parameter ε whose value depends on
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the database and for which a procedure is proposed for calculating it, but χ is a parameter
whose value is independent of the database and for which a fixed value is proposed result-
ing from the analyses of several databases (may be this value of χ could be improved with
future experimentations).

5) Subset E being known, the optimal value εopt is sought as the value of ε in E, which
maximizes the uncertainty of the family of random matrices {[Hε,mL(ε)], ε ∈ E}. This is
equivalent [40, 41, 42, 13, 43] to maximizing the Shannon entropy [44] with respect to ε
for the probability density function of random matrix [Hε,mL(ε)]. This entropy S (ε) is then
written as

S (ε) = −

∫
Mν,N

p([η] ; ε) log(p([η] ; ε)) d[η] , (8)

in which we have introduced the following simplified notation,

p([η]; ε) = p[H ε ,mL(ε)]([η] ; ε,mL(ε)) . (9)

Consequently, the use of the maximum entropy principle allows the optimal value εopt of
ε to be selected in E, solving the optimization problem,

εopt = max
ε ∈E

S (ε) . (10)

6) The corresponding optimal value mopt of hyperparameter m is then written as,

mopt = mL(εopt) . (11)

Remarks.

1) An alternative selection model would consist of replacing principles 4 and 5 above by
one consisting in maximizing the entropy over A, that is to say εopt = maxε ∈A S (ε).
However, such a principle would favor the selection of epsilon with respect to the criterion
of minimizing mopt subject to scale separation.

2) The number of random variables in random matrix [Zε,m] is ν × m. Consequently, for ε
fixed, random matrix [Hε,m] = [Zε,m] [gε,m]T , whose dimension (ν × N) is independent
of m, depends on ν × m random variables. Consequently, the entropy S (ε) should ”grow
on average” with m = mL(ε). This phenomenon has been observed for all the databases
analyzed (see Figs. 5, 7, 9, and 11) except for the simple database associated with a 3D
helix (see Fig. 3) for which that is not true for the two small values 0.5 and 1 of ε, but what
is true for ε ≥ 2. This growth of entropy with m is consistent with the observation that as
m increases, less structure is delineated in the data (less localization), resulting in greater
uncertainty about mechanisms underlying the fluctuations.

3.2. Computational aspects

The computational aspects concern the numerical calculation of S (ε) for ε given in A, the
solution of the optimization problem, and the convergence analysis with respect to the number
nMC of the number of realizations.
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3.2.1. Numerical calculation of the entropy
The entropy defined by Eq. (4) is classically rewritten as,

S (ε) = −E{log(p([Hε,mL(ε)] ; ε))} , (12)

For ε fixed in A and for m = mL(ε), the additional realizations of random matrix [Hε,m], which
are computed as explained in step 7 of Section 2.1, are denoted by [η1

ar(ε)], . . . , [ηnMC
ar (ε)]. For

nMC sufficiently large, the classical estimate of the right-hand-side of Eq. (12) is written as

S (ε) ' −
1

nMC

nMC∑
`=1

log(p(nMC)([η`ar(ε)] ; ε)) , (13)

in which the estimation, p(nMC)([η] ; ε), of p([η]; ε) is performed using the modification [31] of
the classical multidimensional Gaussian kernel-density estimation method [32, 33] and using
additional realizations [η1

ar(ε)], . . . , [ηnMC
ar (ε)].

3.2.2. Solution of the optimization problem.
The mapping ε 7→ S (ε) is generally not convex on E. Since E is a finite subset of A, the

optimization problem defined by Eq. (10) is solved using an exhaustive search over E.

3.2.3. Convergence with respect to the number of additional realizations
As the entropy is estimated using nMC samples, the optimal values εopt and m̂opt (or mopt =

m̂opt−1) depend of the number nMC of additional realizations generated with step 7 of Section 2.1.
The convergence of the optimal values can be analyzed studying the simple convergence in R of
the sequences of real numbers {εopt(nMC)}nMC and {m̂opt(nMC)}nMC .

4. Analysis of a simple example: 3D-data around a helix (spiral)

For this simple example (similar to application 2 presented in [1]), the initial given dataset is
constituted of N = 400 independent realizations of random vector X = (X1, X2, X3) in dimension
n = 3 and is represented by matrix [xd] in Mn,N . These given data points are concentrated in
the neighborhood of a helix as shown in Fig. 2. The principal component analysis (step 2)
yields ν = 3 for which errorpca(ν) = 1.46 × 10−16. The additional realizations are computed
(step 7) with nMC = 100 yielding νsim = 40,000. The admissible finite set A of the values
of ε is chosen to be {0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The graphs of functions ε 7→ m̂L(ε) and
ε 7→ S (ε) defined on A are displayed in Fig. 3 (left and right). We have m̂min

L = m̂max
L = 4 and

E0 = E = {5, 6, 7, 8, 9, 10} ⊂ A. The entropy-based selection yields εopt = 6 and consequently,
m̂opt = 4, mopt = 3. The relative mean-square error is errorpro j(m̂opt) = 3.41 × 10−3. For
ε = εopt, Fig. 4(a) shows function α 7→ λα for which λ2 = 8.25 × 10−2, λ4 = 8.06 × 10−2,
and λ5 = 6.88 × 10−3. As an example of additional realizations generated by the probabilistic
learning algorithm, Fig. 4(b) displays 40,000 additional realizations of X = (X1, X2, X3). These
realizations stay concentrated in the neighborhood of the helix (the concentration is effectively
preserved).
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Figure 2: Helix database: initial given dataset constituted of N = 400 data points for random vector X = (X1, X2, X3)
concentrated in the neighborhood of a helix.

(a) (b)

Figure 3: Helix database: graphs of functions ε 7→ m̂L(ε) (left figure) and ε 7→ S (ε) (right figure), defined onA. On the
two figures, (i) E ⊂ A. is the set of the values of ε such that m̂min

L ≤ m̂L(ε) ≤ m̂max
L , (ii) the values of m̂L(ε) surrounded

by circle symbols correspond to the values of ε that minimize mL(ε) and that define the set E0 = E, and (iii) the square
symbol localizes the optimal value εopt of ε.

5. Applications to several databases

In this section, we present the application of the selection model proposed for several databases:
Scramjet-d8 and ScramJet-d16 that correspond to simulations of a ScramJet performed by San-
dia National Laboratories in Livermore with two large scale complex computational models [29],
and Climate-LS-21-34 and Climate-LS-21-50 that correspond to the maxima of daily precipita-
tions, which have been predicted by Lawrence Livermore National Laboratory with a climate
computational model [30]. Section 5.1 deals with the ScramJet database, Section 5.2 is devoted
to the climate database, Section 5.3 deals with the convergence analysis with respect to the num-
ber nMC of additional realizations, and finally, in Section 6, we present an analysis of the results
that have been obtained.

The applications presented below are devoted to the identification of mopt and εopt and not to
other important analyses such as the convergence of the probability distribution of the additional

12



(a) (b)

Figure 4: Helix database: For ε = εopt, graph of function α 7→ λα (left figure) and νsim = 40,000 additional realizations
of X = (X1, X2, X3).

realizations constructed with probabilistic learning. Such analysis has been made in details in
[1, 2].

5.1. Scramjet database
The database corresponds to two different numerical simulations referenced as Scramjet-

d8 and Scramjet-d16. For these two cases, random vector X has dimension n = 18, which is
constituted of mw = 11 random parameters, w1, . . . ,w11, of the computational model and of
nq = 7 quantities of interest (QoI), q = (q1, . . . , q7), related to outputs of the computational
model.

5.1.1. Scramjet-d8

(a) (b)

Figure 5: Scramjet-d8 database: graphs of functions ε 7→ m̂L(ε) (left figure) and ε 7→ S (ε) (right figure), defined on A.
On the two figures, (i) E = A is the set of the values of ε such that m̂min

L ≤ m̂L(ε) ≤ m̂max
L , (ii) the values of m̂L(ε)

surrounded by circle symbols correspond to the values of ε that minimize mL(ε) and that define the set E0 ⊂ E = A, and
(iii) the square symbol localizes the optimal value εopt of ε.

For Scramjet-d8, there are N = 256 independent realizations in the database. The principal
component analysis (step 2) yields ν = 17 for which errorpca(ν) = 6.37 × 10−8. The additional
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(a) (b)

Figure 6: Scramjet-d8 database: For ε = εopt, graph of function α 7→ λα (left figure) and νsim = 38,400 additional
realizations of a QoI, q2, as function of parameters w1 and w3.

realizations are computed (step 7) with nMC = 150 yielding νsim = 38,400. The admissible
finite set A of the values of ε is chosen to be {5, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The
graphs of functions ε 7→ m̂L(ε) and ε 7→ S (ε) defined on A are displayed in Fig. 5 (left and
right). We have m̂min

L = 18, m̂max
L = 21, and E0 = {5, 6, 90, 100} ⊂ E = A. The entropy-

based selection yields εopt = 30 and consequently, m̂opt = 20, mopt = 19. The relative mean-
square error is errorpro j(m̂opt) = 9.13 × 10−3. For ε = εopt, Fig. 6(a) shows function α 7→ λα
for which λ2 = 1.73 × 10−2, λ20 = 2.83 × 10−3, and λ21 = 1.22 × 10−3. As an example of
additional realizations generated by the probabilistic learning algorithm, Fig. 6(b) displays the
38,400 additional realizations of the QoI, q2, as function of two parameters w1 and w3 that have
been chosen for this illustration.

5.1.2. Scramjet-d16
For Scramjet-d16, there are N = 172 independent realizations in the database, ν = 17, and

errorpca(ν) = 1.57 × 10−7. The additional realizations are computed with nMC = 150 yielding
νsim = 25,800. Figures 7 (left and right) display the graphs of functions ε 7→ m̂L(ε) and ε 7→ S (ε)
defined onA = {10, 12, 15, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We have m̂min

L = 18, m̂max
L = 21,

E0 = {60, 70, 80, 90, 100} ⊂ E = {20, 30, 40, 50, 60, 70, 80, 90, 100} ⊂ A. The entropy-based
selection yields εopt = 20 and consequently, m̂opt = 21, mopt = 20, and errorpro j(m̂opt) = 1.67 ×
10−2. For ε = εopt, Fig. 8(a) shows function α 7→ λα for which λ2 = 2.62×10−2, λ21 = 3.53×10−3,
and λ22 = 2.48 × 10−3. Similarly to the ScramJet-d8, Fig. 8(b) displays the 25,800 additional
realizations of the QoI, q2, as function of w1 and w3.

5.2. Climate database
The climate database is made up of N = 130 realizations of the precipitation magnitudes

for each hour (24 hours per day) of 149 consecutive days, which have been performed with a
climate computational model. The specific model used is the E3SM, formerly known as Accel-
erated Climate Modeling for Energy (ACME) [30]. Consequently, 130 realizations are available
for 3, 576 consecutive hours. Two sets of data are extracted from this climate database, denoted
by Climate-LS-21-34 and Climate-LS-21-50,which correspond to the maximum of daily precip-
itations for 14 consecutive days (from 21st day to 34th day) and for 30 consecutive days (from
21st day to 50th day), respectively.
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(a) (b)

Figure 7: Scramjet-d16 database: graphs of functions ε 7→ m̂L(ε) (left figure) and ε 7→ S (ε) (right figure), defined onA.
On the two figures, (i) E ⊂ A is the subset of the values of ε such that m̂min

L ≤ m̂L(ε) ≤ m̂max
L , (ii) the values of m̂L(ε)

surrounded by circle symbols correspond to the values of ε that minimize mL(ε) and that define the set E0 ⊂ E ⊂ A, and
(iii) the square symbol localizes the optimal value εopt of ε.

(a) (b)

Figure 8: Scramjet-d16 database: For ε = εopt, graph of function α 7→ λα (left figure) and νsim = 25,800 additional
realizations of a QoI, q2, as function of parameters w1 and w3.

5.2.1. Climate-LS-21-34
For each one (indexed by `) of the 14 consecutive days from the 21st day to the 34th day,

the maximum p` of the precipitation is identified as well as the time t` at which this maximum
occurs. Random vector X has dimension n = 33 and is constituted of mw = 5 random parameters
w1, . . . ,w5 of the computational model and nq = 28 quantities of interest, q = (q1, . . . , q28),
made up of t1, . . . , t14 and p1, . . . , p14. The principal component analysis (step 2) yields ν = 33
for which errorpca(ν) = 6.45 × 10−16. The additional realizations are computed (step 7) with
nMC = 150 yielding νsim = 19,500. The admissible finite set A of the values of ε is chosen to be
{20, 30, 40, 50, 60, 70, 80, 100, 120, 140, 160, 180, 200}. The graphs of functions ε 7→ m̂L(ε) and
ε 7→ S (ε) defined onA are displayed in Fig. 9 (left and right). We have m̂min

L = 34, m̂max
L = 40, and

E0 = {70, 80, 100, 120, 140, 160, 180, 200} ⊂ E = {40, 50, 60, 70, 80, 100, 120, 140, 160, 180, 200}
⊂ A. The entropy-based selection yields εopt = 40 and consequently, m̂opt = 39, mopt = 38,
and errorpro j(m̂opt) = 1.53 × 10−2. For ε = εopt, Fig. 10(a) shows function α 7→ λα for which
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(a) (b)

Figure 9: Climate-LS-21-34 database: graphs of functions ε 7→ m̂L(ε) (left figure) and ε 7→ S (ε) (right figure), defined
on A. On the two figures, (i) E ⊂ A is the subset of the values of ε such that m̂min

L ≤ m̂L(ε) ≤ m̂max
L , (ii) the values of

m̂L(ε) surrounded by circle symbols correspond to the values of ε that minimize mL(ε) and that define the set E0 ⊂ E ⊂ A,
and (iii) the square symbol localizes the optimal value εopt of ε.

(a) (b)

Figure 10: Climate-LS-21-34: For ε = εopt, graph of function α 7→ λα (left figure) and νsim = 19,500 additional
realizations of a QoI q32 as function of parameters w2 and w4 (right figure).

λ2 = 1.46 × 10−2, λ39 = 1.47 × 10−3, and λ40 = 1.43 × 10−3. Fig. 10(b) displays the cloud of the
19,500 additional realizations of QoI, q32, as function of parameters w2 and w4.

5.2.2. Climate-LS-21-50
For each one (indexed by `) of the 30 consecutive days from the 21st day to the 50th

day, the maximum p` of the precipitation is identified as well as the time t` at which this
maximum occurs. Random vector X has dimension n = 65 and is constituted of mw = 5
random parameters w1, . . . ,w5 of the computational model and nq = 60 quantities of inter-
est, q = (q1, . . . , q60), made up of t1, . . . , t30 and p1, . . . , p30, and ν = 65 with errorpca(ν) =

7.12 × 10−16. The additional realizations are computed with nMC = 150 yielding νsim = 19,500.
Figures 11 (left and right) display the graphs of functions ε 7→ m̂L(ε) and ε 7→ S (ε) de-
fined on A = {60, 80, 85, 90, 95, 100, 110, 120, 140, 160, 170, 180, 190, 200, 210, 220, 250}. We
have m̂min

L = 66, m̂max
L = 79, and E0 = {140, 160, 170, 180, 190, 200, 210, 220, 250} ⊂ E =
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(a) (b)

Figure 11: Climate-LS-21-50 database: graphs of functions ε 7→ m̂L(ε) (left figure) and ε 7→ S (ε) (right figure), defined
on A. On the two figures, (i) E ⊂ A is the subset of the values of ε such that m̂min

L ≤ m̂L(ε) ≤ m̂max
L , (ii) the values of

m̂L(ε) surrounded by circle symbols correspond to the values of ε that minimize mL(ε) and that define the set E0 ⊂ E ⊂ A,
and (iii) the square symbol localizes the optimal value εopt of ε.

(a) (b)

Figure 12: Climate-LS-21-50: For ε = εopt, graph of function α 7→ λα (left figure) and νsim = 19,500 additional
realizations of a QoI q36 as function of parameters w2 and w4 (right figure).

{90, 95, 100, 110, 120, 140, 160, 170, 180, 190, 200, 210, 220, 250} ⊂ A. The entropy-based se-
lection yields εopt = 95 and consequently, m̂opt = 75, mopt = 74. The relative mean-square error
is errorpro j(m̂opt) = 7.04 × 10−4. For ε = εopt, Fig. 12(a) shows function α 7→ λα for which
λ2 = 6.13 × 10−3, λ75 = 6.01 × 10−4, and λ76 = 1.43 × 10−3. Fig. 12(b) displays the cloud of the
19,500 additional realizations of QoI, q36, as function of parameters w2 and w4.

5.3. Convergence analysis with respect to the number νsim = N × nMC of additional realizations
The convergence of the optimal values is analyzed (see Section 3.2.3) studying the simple

convergence in R of the sequences of real numbers {εopt(nMC)}nMC and {m̂opt(nMC)}nMC . Such a
convergence analysis can also be presented as a function of the number νsim = N × nMC of addi-
tional realizations. We present the convergence analysis for the ScramJet-d8 database for which
N = 256. The results are similar for the other three databases. Fig. 13(a) displays the graphs
of functions νsim 7→ m̂opt(νsim) and νsim 7→ εopt(νsim). Fig. 13(b) displays the graph of function
νsim 7→ S opt(νsim) in which S opt(νsim) = S (εopt(νsim); νsim) (note that the entropy S depends not
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(a) (b)

Figure 13: ScramJet-d8 database: convergence analysis of the optimal solution as a function of the number νsim = N×nMC

of additional realizations. (a): graphs of functions νsim 7→ m̂opt(νsim) (black thin line) and νsim 7→ εopt(νsim) (blue thick
line). (b): graph of the entropy function νsim 7→ S opt(νsim) for the optimal value εopt(νsim) of ε.

only on ε but also of the number of realizations, νsim). It can be seen that the convergence is
obtained for νsim = 38,400, that is to say for nMC = 150.

Remark. Figs. 6(b) and 8(b) (graph of (w1,w3) 7→ q2(w1,w3)) and 10(b), and 12(b) (graph of
(w2,w4) 7→ q2(w2,w4)) are merely given as illustration. These graphs suggest the existence of
an intrinsic data structure and the ability to generate realizations according to this structure (the
generated data clouds exhibit clustering).

6. Analysis of the results

Figs. 4, 6, 8, 10, and 12 (left figures), which display the graphs of α 7→ λα(ε) for the five
databases, show that value 0.1 proposed for parameter L (in the criterion defined by Eq. (1)) is
well chosen. Figs. 3, 5, 7, 9, and 11 show that the variations of functions ε 7→ m̂L(ε) (left figures)
and ε 7→ S (ε) (right figures) are relatively different from a database to another one. In particular,
the entropy function ε 7→ S (ε) is not monotonic and Fig. 5(b) is not similar, for instance, to
Fig. 11(b). Figures 3, 5, 7, 9, and 11 (right figures) also show that the value 0.2 that is proposed
for parameter χ in Eq. (6) is well adapted in order to obtain a sufficiently robust algorithm for the
five databases that have been analyzed). Following the second remark introduced in Section 3.1,
these figures show that the entropy S (ε) effectively ”grows on average” with m = mL(ε). Finally,
as examples, Figs. 4, 6,8, 10, and 9 (right figures) display the clouds of the additional realizations
generated by the probabilistic learning algorithm. These figures show the complexity of the
discovered geometry of the subset around which the probability measure is concentrated. In
addition, the additional realizations stay concentrated around the geometry of the clouds made
up of the initial data points. Using the optimal values εopt and mopt of ε and m, the MCMC
generator proposed does not induce scattering.

7. Conclusions

In this paper, we have presented a selection model of the isotropic-diffusion kernel hyperpa-
rameter of the diffusion maps that is used in a probabilistic learning model on manifold recently
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proposed by the authors. The selection model has been tested on several databases and seems
to be independent of the databases used. The probabilistic learning on manifold that has been
proposed is algebraically closed with respect to its hyperparameters and which can be applied
for some databases. However, this robustness that has been found must be still confirmed using
another databases.
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Appendix A. Appendix A

In this appendix, we summarize the algorithm used in Step 7 for generating nMC additional re-
alizations [z1

ar], . . . , [z
nMC
ar ] of random matrix [Zε,m], using the reduced ISDE for which the details

can be found in [1]. Let M = nMC × M0 be the positive integer in which M0 is a positive integer
greater or equal to 1. The reduced-order ISDE is solved on the finite interval R = [0 ,M ∆r],
in which ∆r is the sampling step of the continuous index parameter r. The integration scheme
is the Störmer-Verlet scheme for which M + 1 sampling points {r`, ` = 0, . . . ,M} are used with
r` = `∆r. For ` = 0, . . . ,M − 1, the algorithm is written as

[Zε,m
`+ 1

2
] = [Zε,m

` ] +
∆r
2

[Yε,m
` ] , (A.1)

[Yε,m
`+1] =

1 − β
1 + β

[Yε,m
` ] +

∆r
1 + β

[L`+ 1
2
] +

√
f0

1 + β
[∆W`+1] , (A.2)

[Zε,m
`+1] = [Zε,m

`+ 1
2
] +

∆r
2

[Yε,m
`+1] . (A.3)

The quantities in these equations are defined as follows.

(i) For ` = 0, a given realization of the random matrix [Zε,m
0 ] is known and is denoted by [ηd].

The matrix [Yε,m
0 ] is written as [Yε,m

0 ] = [N ] [a] in which [a] = [g] ([g]T [g])−1 ∈ MN,m and
where [N ] is a random matrix with values in Mν,N for which its columns are N independent
copies of a normalized Gaussian vector with values in Rν.

(ii) For ` = 0, . . . ,M − 1, we have [∆W`+1] = [∆W`+1] [a], in which [∆W1], . . . , [∆WM] are
M independent random matrices with values in Mν,N and where, for all k = 1, . . . , ν and
j = 1, . . . ,N, the real-valued random variables {[∆W`+1]k j}k j are independent, Gaussian,
second-order, and centered such that E{[∆W`+1]k j[∆W`+1]k′ j′ } = ∆r δkk′ δ j j′ .
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(iii) We have β = f0 ∆r /4 and [L`+ 1
2
] is the Mν,m-valued random variable such that

[L`+ 1
2
] = [L([Zε,m

`+ 1
2
])] = [L([Zε,m

`+ 1
2
] [g]T )] [a] . (A.4)

For all [u] = [u1 . . . uN] in Mν,N with u` = (u`1, . . . , u
`
ν) in Rν, the matrix [L([u])] in Mν,N is

defined, for all k = 1, . . . , ν and for all ` = 1, . . . ,N, by

[L([u])]k` =
1

p(u`)
{∇u` p(u`)}k , (A.5)

p(u`) =
1
N

N∑
j=1

exp{−
1

2ŝ 2
ν

‖
ŝν
sν
η j − u`‖2} , (A.6)

∇u` p(u`) =
1
ŝ 2
ν

1
N

N∑
j=1

(
ŝν
sν
η j − u`) exp{−

1
2ŝ 2

ν

‖
ŝν
sν
η j − u`‖2} , (A.7)

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2
ν + N−1

N

. (A.8)

Introducing ρ = M0 ∆r, the nMC additional realizations [z1
ar], . . . , [z

nMC
ar ] of random matrix [Zε,m]

are given by
[z`ar] = [Zε,m

`× ρ(θ)] , ` = 1, . . . , nMC , (A.9)

in which [Zε,m
`× ρ(θ)] denotes the deterministic solution of any realization θ of Eqs. (A.1) to (A.3).

• If M0 = 1, then ρ = ∆r and the nMC additional realizations are dependent, but the ergodic
property of {[Zε,m

` ]}` can be invoked for ensuring the convergence of statistics constructed
using [z1

ar], . . . , [z
nMC
ar ] for random matrix [Zε,m] .

• If integer M0 is chosen sufficiently large (such that ρ is much larger than the relaxation time
of the dissipative Hamiltonian dynamical system), then [z1

ar], . . . , [z
nMC
ar ] can approximately

be considered as independent realizations of random matrix [Zε,m].
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