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ABSTRACT

This paper presents a novel method for the state health monitoring of high-speed
train suspensions from in-line acceleration measurements by embedded sensors, for
maintenance purposes. We propose a model-based method relying on a multibody
simulation code. It performs the simultaneous identification of several suspension
mechanical parameters. It is adapted to the introduction of uncertainties in the sys-
tem and to the exploitation of numerous high-dimensional measurements. The novel
method consists in a Bayesian calibration approach using a Gaussian process surro-
gate model of the likelihood function. The method has been validated on numerical
experiments. We demonstrate its ability to detect evolutions of the health state of
suspension elements. It has then been tested on actual acceleration measurements
to study the time evolution of the suspension parameters.
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1. Introduction

Trains dynamic behaviour strongly relies on suspensions that ensure the train stability
and thus the ride safety. The suspensions also filter most of the vibrations for pas-
sengers comfort. In this paper, we focus on the case of passive suspensions that are
used on the type of train considered in this study. Because the suspensions undergo
deterioration throughout their lifetime, regular maintenance is required. Maintenance
is however performed without having access to the real state of the suspensions, espe-
cially its (potentially degraded) mechanical properties. Presently, it mostly relies on
visual inspection and age or mileage criteria. A monitoring solution providing the ac-
tual suspensions health state would allow for implementing maintenance rules closer
to the real needs. An overwiew of modern techniques for railway vehicles on-board
monitoring systems can be found for instance in [1]. The work presented here is part
of a project developing a health state monitoring method for high-speed train suspen-
sions using on-track measurements of the train dynamic response performed thanks
to embedded accelerometers.

Relying solely on measurements of the train dynamic response is not sufficient, be-
cause of its strong sensitivity to the track geometry irregularities. The latter constitute
the main excitation source of a rolling train and, consequently, have a major influence
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Figure 1. Influence of the track geometry. The three curves represent the mean value of the amplitude of
the Fourier transform of a bogie vertical acceleration signal, obtained from simulation using geometry records
measured at three different years.

on its dynamic behaviour (see [2–5]). Track geometry is also subject to deterioration
caused by railway traffic (see [6,7]): it is gradually degraded and regularly maintained.
A large quantity of data is used for the suspension monitoring, which implies that
measurements performed over track geometries of various age after maintenance are
available. One could expect that with a sufficiently large amount of data, the averag-
ing effect would remove the influence of the track geometry degradation. We observed
that it is not the case. We performed train dynamics simulations along the whole
line considered for this work, with the exact same conditions (identical train model,
same constant speed), but using track irregularities measurements performed at dif-
ferent years. As shown on Figure 1, the simulation revealed significant variations in
the average train dynamic response from one year to another. This highlights the need
of taking into account the actual track irregularities in order to perform a correct
monitoring of the suspensions state. Train dynamics simulation is thus necessary to
include the excitation source in the analysis. It also has the advantage to explicitly
accounts for the various suspension elements through the input parameters describing
their mechanical characteristics.

The proposed monitoring strategy consists of the inverse identification of the param-
eters of a simulation-based model. The experimental data used for the identification
consists of joint measurements of the track geometry irregularities and of the train
dynamic response over an entire line. This large amount of data allows for a good
robustness of the identification results. In addition, the various uncertainties of the
system must be accounted for to perform a robust monitoring, which results in the
manipulation of random quantities of interest. Consequently, a Bayesian approach is
adopted: the parameter identification problem is solved thanks to a Bayesian calibra-
tion procedure.

Relying on simulation raises a numerical cost issue that we address thanks to Gaus-
sian process surrogate models. However, we are considering a system with functional
output (the train dynamic response), which rules out the classical surrogate mod-
elling of the simulation output. This leads us to the proposition of a novel Bayesian
calibration method based on a surrogate model of the likelihood function.

In this paper, the focus is set on the industrial problem and on the results obtained
with the proposed suspension health state monitoring method. The mathematical
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aspects of the method are not detailed. To this end, we refer to [8,9]. A short review of
the existing method for train suspension monitoring using acceleration measurements
is proposed in Section 2. Details about the train and the suspension elements of interest
are given in Section 3. Section 4 presents the Bayesian calibration while Section 5
presents the main aspect of the proposed novel method. Finally, results are analysed
in Section 6.

2. State of the art

During the last decades, various methods have been proposed for the health state
monitoring of train suspensions. They rely on the measurements provided by embedded
accelerometers. The literature focuses on the mathematical processing of the dynamic
response signals, which allows for extracting information about the train suspension
elements.

The preliminary tests presented in [10] demonstrate the potential of accelerometers
for this purpose. Because the suspension elements affect the dynamic behaviour of
the rolling train, it is assumed that, reciprocally, observing this behaviour can provide
information about the state of these suspensions. In [10], the authors underline the
interest of the analysis of the acceleration signals in both time and frequency domains.

Some important distinctions can be made between the methods listed in the follow-
ing sections. The first distinction concerns the monitoring objective: the detection of a
sudden fault in one of the suspension elements or the study of their gradual degrada-
tion or wear, if they are subject to the latter. Fault detection usually considers bigger
changes in the suspensions mechanical characteristics. The fault detection methods
work on short time scales to allow for a quick action after the fault happens. On the
contrary, the monitoring of wear is performed on a longer time-scale but may look
for smaller evolution of the suspensions health state. The literature (see the following
references) focuses mostly on sudden fault detection, even though it can be argued
that a fault detection method may be applied to the study of suspensions wear.

The second distinction to be made is between fault detection, fault isolation, and
fault magnitude quantification. Fault detection is a first step that consists in observing
a change in the train behaviour that is considered to be the consequence of a fault
happening. Fault isolation is the subsequent step that consists in identifying the faulty
suspension element. Fault magnitude quantification consists in estimating the value of
the faulty suspension mechanical characteristics to determine the damage level. Most
solutions dealing with sudden suspension fault focus on fault detection and isolation,
often with no clear separation between these two steps.

The third distinction concerns the need of a railway dynamics model. They can
provide precious insight about the relationship between the suspensions state and the
train dynamic behaviour. They require the construction of an accurate vehicle model,
in which the suspension elements are explicitly represented and associated with me-
chanical parameters. Most health state monitoring methods developed lately rely on
simulation at some point. Therefore, the quality and representativity of railway dynam-
ics models is of high importance for monitoring purposes. Three different categories
of methods can be considered:

• the methods that rely only on the measured data and do not require any model.
Because they are appropriate for fault detection only, such methods are not
considered in the present paper. Refer for instance to [11];
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• the fault identification methods that do not need a train model for the monitoring
procedure itself, but require a prior training. The latter is usually achieved thanks
to simulation results, but ideally measured data should be used. These methods
are designated as data-driven methods and developed in Section 2.1.

• the fault identification methods where the dynamic model is at the core of the
monitoring procedure, often through the use of Kalman filters. These methods
are designated as model-based methods and developed in Section 2.2.

2.1. Data-driven methods in the context of train suspension monitoring

In [12], the authors propose a fault detection method relying on the analysis of the
cross-correlation function between different body motions. For vehicles with symmet-
rical design, they show that the coupling between the different motions is small. A
faulty element alters the symmetry, which results in a coupling between motions that
can be observed in the cross-correlation function. Focusing on the vertical primary
suspension elements, they highlighted the impact of a faulty damper on the cross-
correlations between the bounce, pitch and roll acceleration signals. In the studied
case, fault isolation seems possible but requires that each type of fault be associated
with its effect on the cross-correlation signals.

In [13], the authors perform a experimental modal identification of the train be-
haviour from the acceleration measurements. The frequency and damping ratio of
several modes are identified. Thanks to simulation results using the multi-body code
Vampire R©, regression models are identified between the frequency, the damping ra-
tio and the value of the parameter describing the suspension state, for several modes
and various degradation configurations. The regression can then be used in inverse to
determine the suspension state from frequencies and damping ratio estimated from
experimental modal identification.

The method proposed in [14] is also based on a frequency analysis of the acceleration
signal. The Random Decrement Technique (RDT) provides an approximation of the
signal auto-correlation. The decomposition in Prony series then allows for estimating
the natural frequencies and damping ratios of the vehicle free oscillations. The mean
and standard deviation of the first natural frequency and damping ratio on various
acceleration samples are then used to determine the fault type and a level of magnitude
thanks to a k-NN (k Nearest Neighbours) categorization method. The k-NN initial
training is achieved thanks to simulation results generated using a multi-body software.

In [15], a baseline Autoregressive with exogenous excitation (ARX) model is identi-
fied from experimental data. It represents the relation between the system input (the
track excitation) and response (the accelerations) as an IIR filter with a white noise
residual. On this baseline model structure a functional ARX (FARX) model is identi-
fied. It represents a faulty train, with coefficients depending on the fault magnitude.
Only one type of suspension fault can be represented by a given FARX model. The
FARX identification is performed thanks to simulation results. The fault detection and
identification procedure works as follows: the measured accelerations are injected in
the FARX model; the magnitude of the fault is determined by minimizing the FARX
residual variance. When this fault magnitude is above a threshold, the fault type is
validated if the residual is sufficiently uncorrelated.
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2.2. Model-based methods in the context of train suspension monitoring

Most model-based method rely on Kalman filters to perform a state health monitoring
of train suspensions. The purpose of linear Kalman filtering is to follow the time-
evolution of a dynamic system using a linear model describing the system behaviour
while taking into account the information provided by regular measurements of some
observable quantities. A basic linear Kalman filter can be described thanks to two
equations:

Xk+1 = [A]Xk +U , (1)

Yk = [H]Xk +V , (2)

where Xk and Yk are the state-space vector and the observation vector at step k,
[A] the state-transition matrix, [H] the observation matrix, U and V are independent
centred Gaussian vectors representing the process noise and the observation noise. At
each time step k, the state-space vector is updated using Eq. (1) and then conditioned
by the available experimental observation using Eq. (2). In the case of railway dynam-
ics, state-space vector Xk usually gathers the degrees of freedom of the various masses
constituting the vehicle and their derivatives, while observation vector Yk consists of
the accelerations measured in different locations. The suspensions mechanical parame-
ters are used to compute matrices [A] and [H]. A Kalman filter is designed to estimate
the time-evolution of the state-space variables. On the contrary, the parameters are
supposed to be fixed and given. Adaptations are thus required in order to perform
Kalman-based condition monitoring.

A first approach described in [16] is to consider the parameters of interest as state-
space variables. An evolution equation must be defined for the parameters. Moreover,
using an augmented state-space vector makes the system non-linear, which is solved by
using an Extended Kalman Filter (EKF). EKF uses the Jacobian matrix of the system
to perform a linearisation around the current value of the state-space vector. However,
the simulataneous estimation of several parameters using EKF appears to achieve bad
results. Consequently, in [16] they propose to use multiple EKF in parallel, each one
of them performing the identification of a single suspension parameter. A modification
of the train response can lead to changes in the estimated value of several parameters.
The most probable faulty suspension is then identified from a likelihood estimation of
the measurements with respect to the various faulty models.

Several other papers propose to use multiple Kalman filters in parallel. In [17],
multiple Kalman filters are run in parallel, each one modelling a fault type, with
fixed magnitude. It means that the state-transition and the observation matrices are
modified for each filter to take into account the degraded suspensions parameters. The
fault identification is once again performed from a likelihood estimation (averaged over
several time-steps) of the measurements with respect to the different models.

The IMM (Interacting Multiple Models) algorithm presented in [18] is similar but
additionally includes mode mixing. The parallel Kalman filters are no longer isolated
but interact with one another. The input state-space vector at each time step for a
given filter is a combination of the output state-space vector of all filters at the previous
time step. This combination is based on the modes likelihood and on given transition
probabilities between modes. In a subsequent paper [19], the authors propose a model
updating procedure to adapt the baseline model as a fault is detected and to allow for
the identification of simultaneous faults. The idea is to work with several groups of
Kalman filters in parallel, each one focusing on one type of suspension. The algorithm
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allows a modification in the suspensions parameters detected by one group to update
the models of the other groups.

The method proposed in [20,21], although relying on multiple Kalman filters, differs
from the previous ones because the associated models are not chosen in advance to
represent fixed fault types and magnitudes. In a similar fashion to EKF-based param-
eter estimation, the aim is to estimate the probability distribution of an augmented
state-space vector gathering the initial state-space variables (the degrees of freedom
of the multi-body model) and the suspension parameters. The authors then propose
to separate the estimation of the probability distributions of the state-space variables
and of the parameters thanks to marginalization. A Rao-Blackwellised particle filter is
used to represent the probability distribution of the parameters by a weighted sample,
while linear Kalman filters are used to estimate the state-space variables.

The fault identification method proposed in [22] relies on a single EKF, for the case
when the various degrees of freedom are decoupled. More precisely, the degrees of free-
dom associated with one suspension of interest must not be linked to other suspension
elements. The use of EKF allows for considering dampers with non-linear properties.
The fault identification procedure focuses on the Kalman filter innovation. Its norm
is minimized by adding an error to the degrees of freedom associated with a suspen-
sion of interest. The magnitude of this error determines whether the corresponding
suspension must be considered as faulty.

In [23], the authors also focus on the Kalman filter innovation. A fault is detected
when the weighted sum squared residual (averaged over several time steps), equivalent
to the log-likelihood of the observations, crosses a given threshold. A possible fault
identification procedure is then suggested, which consists in the analysis of the norm
or the power spectral density of the different component of the Kalman innovation.

In [24], no Kalman filter is used, but instead a closely related time-domain filter
known as Recursive Least Squares (RLS). RLS is an algorithm able to identify the
parameters of an input-output linear system by filtering the error signal between the
measured and modelled outputs. It requires measurements of both the input and the
output signals. In this paper, the acceleration of the wheelsets is used as input, so the
track irregularities do not need to be measured and included in the model.

Most of the cited articles rely on Kalman filters to propose a fault detection and iso-
lation method for abrupt changes in the suspensions characteristics. This is underlined
by the magnitudes of the fault that are considered (often 50% or 100%). Considering
that this type of failures represent a risk for the ride safety, these methods mostly focus
on a quick detection and exploit acceleration signals measured over a few seconds.

In the present paper, we are interested in the long-time degradation of the suspen-
sion elements. We exploit large measurements data-bases, corresponding to rides along
several hundreds of kilometres of track, to ensure the robustness of the monitoring re-
sults.

In the cited articles, the train models usually consist of a single trailer, and consider
only certain degree of freedom and the associated suspension elements, for which in
general, the non-linearities are not taken into account. On the contrary, the model-
based approach used in this paper includes the full representation of an entire train,
including non-linearities for wheel-rail contact and in suspension mechanical charac-
teristics. It allows for the simultaneous monitoring of several suspensions elements,
with or without strong couplings. This requires simulations using a commercial non-
linear multibody code, Vampire R©. The modelling is thus more physical and allows
for finer identifications.

In the cited articles, the inclusion of the various uncertainties of the system is often
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Side view Top view

Figure 2. Location of the two accelerometers on the train carbody and bogie, and axes directions in which
the accelerations are measured.

lacking. Even though Kalman filters naturally take measurement noise into account, no
model error is considered in general. The necessity to include the various uncertainties
of the system motivates our choice to rely on a Bayesian approach. Many papers model
the track geometry irregularities as a simple coloured random noise. As explained in the
introduction, we are convinced of the importance of using the real geometry whenever
possible. For this work, actual measurements of the track geometry irregularities are
used instead of considering them as a basic random input.

Finally, certain of the proposed method are tested on numerical experiments but
rarely on actual acceleration measurements. In this paper, we presents the results of
the application of the method on several sets of measurements.

3. Studied system

In this paper, the studied vehicle is a French TGV Réseau, an articulated one-level
high-speed train with passive suspensions. Articulated means that the bogies are
shared between two carbodies, except for the two motor cars at each end of the train.

3.1. Available data

Two carbody junctions are studied: the first between the two first trailers, the second
between the two last trailers. For each junction, one sensor is located on a carbody, and
one on the bogie (see Figure 2). They measure both vertical and lateral accelerations.
Since the sensors location do not coincide with the centres of mass, the measured
accelerations correspond to a combination of the different body motions. In addition
to these eight acceleration signals, the location of the train along the track as well as
its speed are recorded.

Measurements of the track geometry irregularities corresponding to each circulation
are available. They consist of four signals representing the vertical, lateral, cross-level,
and gauge irregularities. The track curvature has a strong impact on both the train
dynamic behaviour and the irregularities. Consequently, the track has been divided
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Figure 3. Picture of the train primary suspension. The location of the elastomeric stiffness is sketched as a
white cylinder.

into various stretches depending on the curvature in order to gather more statistically
coherent datasets.

3.2. Suspension elements of interest

The suspension elements of interest are: the elastomeric stiffness (primary suspension),
the airspring (secondary suspension), the vertical primary damper, the yaw damper,
and the upper inter-trailer damper. This selection has been determined based on the
needs expressed by the maintenance workshops: we focused on the elements involved
in the train safety, requiring frequent inspection or inducing high maintenance costs.
Moreover, we ruled out those whose influence on the accelerations measured by the
sensors is to small (based on simulation results). It should be noted that another
sensors configuration may be more sensitive to the degradation of these elements.
From the initial sensitivity analysis, we also figured out that with the given sensors
configuration, we were not able to locate a fault on a specific element among a set
of elements of the same type. Consequently, for each junction, we choose to make all
the elements of a same type depend on common parameters. Reducing the number of
parameters also decreases the problem dimension.

The admissible set for each parameter is defined from the specifications detailed
in the vehicle blueprints, as an interval centred around the nominal value. Since the
objective is to monitor potentially degraded suspensions, the interval width is set to
stretched specification margins.

3.2.1. Elastomeric stiffness

On the studied bogie, the motion of the wheelset with respect to the bogie frame is
constrained by trailing arms, as shown in Figure 3. The connection between these arms
and the bogie frame is ensured by an axial joint containing an elastomeric stiffness.
This stiffness works in torsion and is linked to the vertical motion of the wheelset. It
comes in addition to the primary vertical coil spring (which are not considered in the
parameter identification).

Elastomers are hyperelastic viscoelastic materials with a complex mechanical be-
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Figure 4. Rheological model for the elastomeric stiffness.

haviour. The stiffness usually depends on the strain, the solicitation frequency, the
temperature, etc. In order to keep a simple train model and a light parametrization,
the elastomeric stiffness is modelled by a linear rheological model (similar to a Zener
model) consisting of a spring in parallel with a branch made of a damper and a spring
in series, as represented in Figure 4. This model allows for representing, in a simplified
way, the softening of the material at low frequencies. Stiffness K0 is considered as
the parameter to identify, while K1 and C1 are determined from K0 according to the
recommendations given for the use of Vampire R©.

3.2.2. Airspring

Airsprings are nowadays a very common secondary suspension type for passenger
trains. Their ability to filter vibrations plays an important role in the ride comfort.
Basically, an airspring consists of an elastomeric membrane under pressure supporting
the vertical load of the carbody, linked by a surge pipe to a reservoir. They are mainly
involved in the vertical motion (and consequently in the roll and pitch motions) of the
carbody through pneumatic effect. They also affect the lateral motion of the carbody
through the shear strain of the elastomeric membranes.

Various rheological models of airsprings can be found in the literature (see for in-
stance [25]). They usually require tuning numerous parameters in order to reproduce
the complete behaviour of this type of suspension. We have chosen to rely on a much
simpler model that represents the airspring as constant stiffnesses and dampers in
parallel for the six degrees of freedom between the carbody and the bogie. Only the
vertical damping coefficient and stiffness are considered for the parameter identifica-
tion, all the others being fixed.

3.2.3. Dampers

Train suspension systems are equipped with numerous dampers. In this study, we fo-
cus on the vertical primary dampers, the yaw dampers, and the upper inter-trailer
dampers. For railway systems, dampers usually have a non-linear mechanical be-
haviour, with a damping rate decreasing with velocity. Figure 5 provides an example
of a damper non-linear characteristic. The latter is often approximated by a bilinear
curve.

In order to limit the number of parameters to identify, the parameter for each type
of damper is defined as a multiplicative factor applied to the given nominal non-linear
characteristics.
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Figure 5. Example of non-linear damper characteristic

4. Computational model-based monitoring in a Bayesian framework

The parameter identification method chosen in the paper is Bayesian calibration. The
principle is to confront a model of the system response to experimental data in order to
provide information about the system parameters. The Bayesian framework allows for
taking into account the system uncertainties, detailed in Section 4.1. The calibration
procedure is then explained is Section 4.2. All the quantities represented by function
or stochastic process depending on time, or frequency, or space, are discretised and
are then represented by vectors.

4.1. System uncertainties

Various sources of uncertainties must be considered to perform the parameter identi-
fication.

First, the values of parameters of interest that must be identified are uncertain
by definition. Each parameter is thus represented by a random variable associated.
Its prior probability density function (PDF) represents the initial knowledge available
about this random variable, which may be deduced from specifications, tests or ex-
perts judgements. In the present case, because of the lack of initial knowledge about
the parameters, the prior PDFs are chosen as uniform distributions on the param-
eters admissible intervals. It is assumed that the random variables that model the
parameters are independent for the prior model and will be a priori dependent for
the posterior one. The goal of Bayesian calibration is to update the prior PDF to
determine the posterior PDF that takes into account the information provided by the
experimental data. The parameters of interest are gathered in the random vector W.
The prior and posterior PDF of W are respectively denoted as p

prior
W and p

post
W . The

support of ppriorW is the set CW that is the set product of the parameters admissible
intervals.

The measurements may also be subject to uncertainties. The measured response
Ymes is written as

Ymes = Yreal + ε
mes , (3)

where Yreal is the ’real’ physical response and ε
mes is a random quantity representing

the measurement uncertainties.
No model can perfectly represent a physical system. It may be affected by various

errors, such as: uncertainties on model parameters, simplification errors introduced
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Figure 6. Diagram of the Bayesian calibration method

in the construction of the model, discretisation errors, etc. They are globally taken
into account thanks to a random model error that represents the distance between the
model response and the ’real’ physical response:

Ysim = Yreal + ε
sim , (4)

where Ysim is the model response and ε
sim is the model error. Because we are not

able to isolate the measurement uncertainties and the model error, they are taken
into account globally thanks to an output predictive error B representing the distance
between the measured and the model response. We define the stochastic model of the
system response as

Y = Ysim − ε
sim + ε

mes = Ysim +B . (5)

By construction, random variable Y is assumed to model measured response Ymes.
In fact, the Bayesian calibration procedure consists in ’fitting’ Y to Ymes that is only
known through a set of realisations. Error B is identified as a Gaussian vector from
measurements performed at a reference date, defined as the date for which the values of
the parameters of interest are known. In the present case, the reference date is chosen
as the date immediately following a major maintenance operation. At the reference
date, the parameters are thus supposed to be nominal.

4.2. Bayesian calibration principle

The procedure is sketched in Figure 6. A model-based parameter identification is
performed. The procedure is thus built around the train dynamics simulation code
Vampire R©. It is a deterministic multibody non-linear dynamics simulation code,
working in the time domain.

The input excitation of the system consists of the track geometry irregularities
represented by the stochastic process X. They can be modeled by the non-stationary
stochastic process, presented in [26]. Since the track irregularities are simultaneously
measured with the train dynamic responses, we choose to consider these measurements
on various track stretch as a set of realisations of this stochastic process.

The simulation output consists of acceleration signals in the time domain corre-
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sponding to those measured by the embedded accelerometers. In order to avoid sys-
tematic phase shift between the measured and simulated signals, they are transformed
into the frequency domain. The model response Ysim then consists in the amplitude
(in dB) of the Fourier transform of the acceleration signals. As explained in the pre-
vious section, an output predictive error B is then added to the model response Ysim

in order to obtain the stochastic model of the train dynamic response Y. Error B is
supposed to be independent from input X and parameters W.

Using the stochastic model and the experimental data, the Bayesian calibration ob-
jective is to update the PDF of the parameters of interest. It consists in estimating the
posterior PDF of the parameters by conditioning the prior PDF by the measurements.
We first consider the case of a single measurement. For w in admissible set CW, using
the Bayes formula, the posterior PDF is written as

p
post
W (w) = pW |X,Y(w |xmes,ymes) (6)

∝ pY |W,X(y
mes |w,xmes) pW |X(w |xmes) (7)

∝ L(w) ppriorW (w) , (8)

in which (xmes,ymes) is the joint measurement of the track geometry irregularities
and of the corresponding train dynamic response on a given track stretch, where
p
prior
W (w) = pW |X(w |xmes) because the prior model of W is independent of X, and

where the likelihood function L is such that

L :
CW → R

+

w 7→ pY |W,X(y
mes |w,xmes) .

(9)

In fact, the probability distribution of the parameters is conditioned by several
independent couples

{

(xmes,i,ymes,i)
}

1≤i≤ν
corresponding to measurements performed

on ν ≥ 1 track stretches. For w ∈ CW the likelihood function is then equal to the
product

L(w) =

ν
∏

i=1

pY |W,X(y
mes,i |w,xmes,i) . (10)

Assuming that the likelihood function L(w) can be computed for any w ∈ CW, the
following step is to apply Markov chain Monte Carlo (MCMC) to sample values of W
whose PDF p

post
W is defined by Eq. (8). From this sample, the moments of ppostW can be

estimated. It could also be represented using kernel-density estimation methods [27].
To conclude, the critical point of the Bayesian calibration procedure lies in the

computation of the likelihood function. In general, it depends on the nature of the
stochastic model Y. In the present case, the computational can be represented by the
deterministic mapping h such that

Ysim = h(X;W) (11)

{Y |W = w,X = x} = h(x;w) +B . (12)

In the right-handside of Eq. (12), only B is random, the expression of the likelihood
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function defined by Eq. (10) can then be rewritten as

L(w) =

ν
∏

i=1

pB(y
mes,i − h(xmes,i;w)) ,w ∈ CW. (13)

Error B is identified as a Gaussian vector, which makes its PDF pB easy to represent.
However, Eq. (13) shows that ν calls to the computational model represented by
mapping h are required to compute the value of the likelihood L for one value of w.
The simulation being expensive makes each call to the likelihood function expensive. In
addition, MCMC usually requires numerous calls to the likelihood function to generate
a representative sample of the posterior PDF.

A solution to circumvent such numerical cost issue is to resort to surrogate mod-
els. Bayesian calibration using GP surrogate models has already been studied when
the system response is scalar. In that case, the classical method is to build a surro-
gate model of the simulation output. The uncertainties induced by the introduction
of a surrogate model can then be directly taken into account in the calculation of the
likelihood function. However, in the present case, we are dealing with functional out-
puts: the amplitude of the Fourier transform of the acceleration signals. The surrogate
model of a functional quantity is much more difficult to build. Numerous calls to such
a surrogate model are also necessary to aggregate the value of likelihood function,
which may affect the method efficiency. It remains a subject of current research. In
this paper, we do not use the classical approach consisting in constructing a surrogate
model of mapping h but a novel approach consisting in constructing a surrogate model
of the likelihood function to perform the Bayesian calibration.

5. Novel Bayesian calibration method using a surrogate model of the

likelihood function

The estimation of the posterior PDF of W requires numerous calls to the likelihood
function. Each call requires a call to the computational model. The proposed strategy
is to compute the likelihood values on an initial training set, and to use this information
to build a surrogate model approximating efficiently the likelihood function anywhere
in its definition set. In fact, we make the common choice of working with the log-
likelihood function denoted as L instead of the likelihood function L.

Gaussian process surrogate modelling consists in identifying a Gaussian process
indexed on the admissible set CW approximating the log-likelihood function. The
real unknown log-likelihood function is supposed to be a particular realisation of this
stochastic process. The GP surrogate model of L(.) is denoted as L(.; Θ) in which Θ is
a random variable modeling the uncertainty induced by the introduction of the surro-
gate model. At any point w ∈ CW, the Kriging predictor is denoted as the expectation
EΘ{L(w; Θ)} and constitutes the best approximation of L(w) in the mean-square
sense. The variance VarΘ{L(w; Θ)} quantifies the approximation error of the Kriging
predictor. If θ is a realisation of Θ, then L(.; θ) represents a deterministic trajectory
of the GP model.

MCMC can be applied to a likelihood function (a conditional PDF). The GP surro-
gate model being random, it cannot directly be used as such. To perform a sampling
of the posterior PDF with MCMC, the most straightforward solution is to use the
Kriging predictor EΘ{L(.; Θ)} instead of L(.). We refer to this approach as the KP
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(for ’Kriging predictor’) method. Once the GP model is built, this solution is easy to
implement. It can provide useful results, especially if only the most probable values or
the mean values of the system parameters are needed (see the results in Section 6.2).

However, this solution does completely ignore the uncertainty introduced by the
use of a surrogate model, which represents the approximation error intrinsic in such
modelling. The uncertainty on the calibrated parameters would then only be due to
the uncertainties of the system represented by random vector B. We thus propose a
method that takes into account the uncertainty of the GP surrogate model in order
to estimate more correctly the calibration error. We refer to this new approach as the
MCT (for ’Monte Carlo on the trajectories’) method that is defined hereinafter.

If the deterministic log-likelihood function L(.) is replaced by the random surrogate
model L(.; Θ), the corresponding posterior PDF becomes random as well. The random
posterior PDF corresponding to L(.; Θ) can be expressed using the conditioning by Θ
as

w 7→ pW |X,Y,Θ(w |xmes,ymes,Θ) . (14)

However, the quantity we are looking for remains unchanged: the conditional PDF of
parameters W knowing (X,Y). The rule of conditional probabilities states that it is
equal to the expectation with respect to Θ of the previous PDF:

p
post
W (w) = pW |X,Y(w |xmes,ymes) (15)

= EΘ

{

pW |X,Y,Θ(w |xmes,ymes,Θ)
}

(16)

≈
1

N

N
∑

j=1

pW |X,Y,Θ(w |xmes,ymes, θj). (17)

Equation (17) corresponds to the empirical estimate of the expectation using N

independent realisations {θj}1≤j≤N of random variable Θ. This Monte Carlo approach
requires the sampling of N PDFs pW |X,Y,Θ(w |xmes,ymes, θj) by MCMC using N

deterministic trajectories L(.; θj) of surrogate model L(.; Θ). In practice, for each j,
the MCMC algorithm provides a sample of W |Θ = θj that is subset of CW, which
is distributed as pW |X,Y,Θ(w |xmes,ymes, θj). The simple concatenation of these N

samples corresponds to a sample distributed as p
post
W . More details can be found in

[8,9].

6. Results of the monitoring method

In the context of train maintenance, the MCT method is used to simultaneously iden-
tify the six suspension parameters of interest using all the available data. A single
likelihood function is thus computed from the measurements of the four acceleration
signals, on all the available track stretches. This likelihood function takes as argument
the six-dimensional vector of parameters. The MCT method is tested on different cases.
Section 6.1 explains how numerical experiments are used to validate the method. Sec-
tion 6.2 compares the KP and MCT methods on both numerical experiments and
real measurements. Section 6.3 studies the long-term evolution of the suspension me-
chanical parameter by applying the MCT method on real measurements obtained at
several different dates. They are denoted (Tk)k with k = −5 . . . 4 and chronologically
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ordered. The time steps between dates are of several months. Date T0 corresponds to
the reference date, used to identify error B, for which the parameters are supposed to
be nominal. A major maintenance operation took place between T−1 and T0, during
which all the considered suspension elements have been replaced.

For each date, measurements of the track geometry and of the train dynamic be-
haviour on an entire TGV line are used. In addition, we considered measurements with
the equipped train traveling in both orientations, that is to say with the equipped bogie
located at the head and at the rear of the train. This adds up to around 800 kilometers
of measurements, which represent around 100 individual Vampire simulations taking
a few minutes each (but that have been performed using parallel computing).

In order to build the surrogate model of the likelihood function, these Vampire
simulations have been performed 500 times with different values of the suspension
parameters. The latter are scattered evenly in the six-dimensional admissible set of
the parameters that consists of the set product of the admissible intervals of each
parameters. For a given parameter, the admissible interval encloses the expected
possible values of the parameter for a degraded suspension element. The interval is
centered on the nominal parameter value. Its width has been determined using the
train building specifications. No statistics were actually available to better characterize
these admissible intervals, coming from bench tests of discarded suspension elements
for instance.

Remark. For a complete validation of the proposed suspension monitoring method,
field tests would be necessary. They would consist in different steps:

• bench-test degraded suspension elements in order to characterize their mechan-
ical parameters;

• equip them on a train and measure the in-line dynamic behaviour of the train
thanks to the accelerometers layout described in Section 3;

• perform the identification using these measurements;
• compare the identified parameters values to the values obtained from the bench

tests.

For cost and complexity reasons, such a test campaign has not been carried out yet
(note that for a contribution on this topic, the reader can be referred, for instance, to
[28])

6.1. Method validation with numerical experiments

In the present case, a numerical experiment consists of simulated train responses that
are used as if they were experimental data. They are generated using actual mea-
surements of the track geometry irregularities on several track stretches and known
degraded suspension parameters. Moreover, an independent realisation of the error B
is added to the response signal on each track stretch in order to generate a quantity
as close as possible to an actual measurement. The numerical experiments allows for
validating the calibration procedure: the procedure is applied on the virtual train re-
sponse, the calibration results can then be compared to the reference parameters used
to generate the response.

We suppose that a set of ν1 track irregularities measurements {xmes,i}1≤i≤ν1
is

available. The validation procedure from a numerical experiment can then be summed
up as follows.
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(1) Choose vector w1 of parameters;
(2) Run the simulation on the ν1 track stretches with w1;
(3) Generate ν1 independent realisations {bi}1≤i≤ν1

of B ;
(4) Add these realisations to the simulated response to obtain realisations of the

train dynamic response

ynum,i = h(xmes,i;w1) + bi , 1 ≤ i ≤ ν1 ; (18)

(5) Perform the calibration using input data

{(xmes,i,ynum,i)}1≤i≤ν1
(19)

to obtain the calibrated random vector Wpost
1 ;

(6) Compare the samples of Wpost
1 to w1.

Figure 7 sums up the calibration results in three cases. For the first one, the chosen
parameters are set to the nominal, w1 = w0. For the other two, their are arbitrarily
chosen in the admissible set CW. For each case a good correspondence is obtained
between the calibrated mean value E{Wpost

1 } and the chosen parameter w1. The
error is always below 5% of the size of the admissible interval for each parameter. The
standard deviations of the calibrated parameters are small, which indicates a high
confidence in the identified parameter values. This confidence results from the large
quantity of data that is used to perform the identification. They may vary from one
parameter to another one. The first explanation is the sensitivity of the train response
to the different parameters. Since the results are scaled, these differences also depend
on the initial choice for the admissible interval size.

6.2. Comparison of the KP and MCT method

Figure 8 compares the KP and MCT methods, on a numerical experiments and using
actual acceleration measurements (at date T1). Concerning the calibrated mean values,
no difference is observable between the two methods. However, the calibrated standard
deviations are significantly smaller with the KP method. This is coherent with the fact
that it does not take into account the surrogate model uncertainty. We can conclude
that the KP method tends to overestimate the confidence in the identified values of
the parameters. It can be assumed that the level of confidence obtained with the KP
method is comparable to the one that would be obtained if no surrogate model was
used.

It should also be noted that the standard deviations are larger for the parameter
identification performed on the real measurements than on the numerical experiments.
This result seems to indicate that the output predictive error B does not perfectly
represent the distance between the measured and simulated train responses. Two main
reasons can explain that: the Gaussian assumption for error B, and the limited number
of realisations used to identify B compared to its dimension.

6.3. Study of the parameter evolution from experimental data

Figures 9 and 10 present the time evolution of the six suspension parameters of inter-
est as identified using the MCT method from the measurements performed at the ten
dates (Tk)k. It has to be noted that for the dates before maintenance (T−5, . . . T−1), it
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Figure 7. Numerical experiments results (using the MCT method). The left graphs compare calibrated mean
values E{Wpost

1 } (blue dots) to the chosen parameters w1 (black triangles). The scale is normalized, meaning
that the admissible interval has been shrunk to [0, 1] for each parameter (0.5 is then the nominal value). The
right graphs present the standard deviations of Wpost

1 , on the same normalized scale. In case (a), the parameter
values are set to the nominal. They are arbitrarily chosen for case (b) and (c).
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Figure 8. Comparison of the KP and MCT method. The left graphs compare the calibrated mean values of
the parameters using the KP (red diamonds) and the MCT (orange dots) methods. The axes layout is identical
to Figure 7. The right graphs compare the calibrated standard deviations of the parameters using the KP (red
or dark gray) and the MCT (orange or light gray) methods. Case (a) corresponds to the numerical experiment
with parameter values set to the nominal, while case (b) corresponds to a parameter identification using the
real measurements at date T1.
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Figure 9. Parameter identification at ten dates Tk for three mechanical parameters: (a) Airspring stiffness, (b)
Airspring damping coefficient, (c) Primary elastomeric stiffness. The left graphs present the time evolution of
calibrated mean value of the parameter, surrounded by the 98% confidence interval. The red diamonds indicate
the dates before maintenance (represented by the vertical line), the blue dots the dates after. The scale is
normalized, meaning that the (initial) admissible interval has been shrunk to [0, 1] for each parameter (0.5 is
then the nominal value). The right graphs present the time evolution of the calibrated standard deviation, on
the same normalized scale.
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Figure 10. Parameter identification at ten dates Tk for three mechanical parameters: (d) Primary vertical
damper, (e) Yaw damper, (f) Upper inter-trailer damper. The axes layout is identical to Figure 9.
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was necessary to enlarge certain parameters admissible intervals, or else the identified
parameters would remain stuck on the boundaries. However, in the graphs, the normal-
isation remains unchanged: the interval [0, 1] still corresponds to the initial admissible
intervals.

We can first observe that the calibrated parameters at reference date T0 (first blue
dot) are close to the nominal values. This is in accordance to the assumption made to
identify the output predictive error B, and constitutes a second type of validation of
the method.

Important difference can be noted between the results before and after the main-
tenance. The identified parameters are further from the nominal before maintenance,
except for the yaw and inter-trailer dampers, for which the values are similar before and
after maintenance. It corresponds to the fact that the suspension elements are more
degraded before the maintenance operation. The confidence intervals (whose size is
proportional to the identified parameter standard deviation) are much wider before
maintenance. An explanation is the fact that the error B represents better the distance
between the measured and simulated responses when the parameters are close to their
nominal values. We can observe that the time evolution of the parameters identified
by the MCT method is generally non-monotonic, which is unexpected.

The values identified for the primary vertical dampers, on graph (d), seem unrealistic
before maintenance. When degraded, the dampers usually witness a decrease of their
mechanical characteristics, while the identification results show a large increase with
respect to the nominal. The analysis of the measured train dynamic response suggests
that non-linearities affect the primary suspension, but are not accounted for in the
train model. The identified parameter values for the primary vertical dampers may
result from an attempt of the calibration procedure to compensate an evolution of
these non-linearities.

7. Conclusion and perspectives

In this paper, we have proposed a novel model-based monitoring method for high-speed
train passive suspensions. The main advantages are its ability to achieve a simultaneous
identification of the suspension parameters to cope with possible couplings, to take into
account the system uncertainties to perform a robust calibration, and to exploit a large
number of complex measurements consisting of acceleration signals in the bogies and
carbodies. The problem consists in an inverse parameter identification problem with
uncertainties that we chose to solve in a Bayesian framework. Because the method relies
on an expensive simulation code, we face a numerical cost issue that is addressed thanks
to a Gaussian process surrogate model. The latter is used to efficiently approximate
the likelihood function that is at the core of Bayesian approaches. However, using a
surrogate model introduces a new type of uncertainty in the identification procedure.
We propose a solution to take the latter into account thanks to a Monte Carlo sampling
of trajectories of the likelihood surrogate model.

The method is validated on numerical experiments with a virtual train. The results
show that the proposed novel approach is efficient. They also highlight the importance
of taking into account the surrogate model uncertainty to correctly estimate the con-
fidence intervals. The method is eventually applied on the measurements performed
at several dates (with a time step of several months) in order to study the degrada-
tion over time of the suspension mechanical parameters. Although a clear effect of
the maintenance can be observed, the evolution of the identified parameters appears
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non-monotonic. Consequently, the method has shown its ability to detect evolutions
of the health state of suspension elements. These last results also suggest that further
work on the train model is necessary: certain non-linearities are not accounted for and
improvements of the suspension parametrisation are needed. More complex degrada-
tion patterns could also provide more accurate results. These last considerations are
driving our current research.

Acknowledgments

This research has been supported by SNCF, the French National Railway Company.

References

[1] Li C, Luo S, Cole C, et al. An overview: modern techniques for railway vehicle on-board
health monitoring systems. Vehicle System Dynamics. 2017;55(7):1045–1070.

[2] Perrin G, Duhamel D, Soize C, et al. Quantification of the influence of the track geom-
etry variability on the train dynamics. Mechanical Systems and Signal Processing. 2015;
60:945–957.

[3] Lestoille N, Soize C, Funfschilling C. Sensitivity of train stochastic dynamics to long-time
evolution of track irregularities. Vehicle System Dynamics. 2016;54(5):545–567.

[4] Lestoille N, Soize C, Funfschilling C. Stochastic prediction of high-speed train dynamics
to long-term evolution of track irregularities. Mechanics Research Communications. 2016;
75:29–39.

[5] Hung CF, Hsu WL. Influence of the long-wavelength track irregularities on the motion of
a high-speed train. Vehicle System Dynamics. 2018;56:95–112.

[6] Bing AJ, Gross A. Development of railroad track degradation models. Transportation
research record. 1983;939:27–31.

[7] Weston P, Roberts C, Yeo G, et al. Perspectives on railway track geometry condition
monitoring from in-service railway vehicles. Vehicle System Dynamics. 2015;53(7):1063–
1091.

[8] Lebel D, Soize C, Funfschilling C, et al. Statistical inverse identification for nonlinear
train dynamics using a surrogate model in a bayesian framework. Journal of Sound and
Vibration. Submitted June 2018;.

[9] Lebel D. Statistical inverse problem in nonlinear high-speed train dynamics [dissertation].
Université Paris-Est, Marne-la-Vallée; 2018.

[10] Sunder R, Kolbasseff A, Kieninger K, et al. Operational Experiences with Onboard Di-
agnosis System for High Speed Trains. In: Proceedings of the World Congress on Rail
Research; 2001.

[11] Wei X, Jia L, Liu H. A comparative study on fault detection methods of rail vehicle
suspension systems based on acceleration measurements. Vehicle System Dynamics. 2013;
51(5):700–720.

[12] Mei TX, Ding XJ. Condition monitoring of rail vehicle suspensions based on changes in
system dynamic interactions. Vehicle System Dynamics. 2009;47(9):1167–1181.

[13] Martinod RM, Betancur GR, Heredia LFC. Identification of the technical state of sus-
pension elements in railway systems. Vehicle System Dynamics. 2012;50(7):1121–1135.

[14] Gasparetto L, Alfi S, Bruni S. Data-driven condition-based monitoring of high-speed
railway bogies. International Journal of Rail Transportation. 2013;1(1-2):42–56.

[15] Sakellariou JS, Petsounis Ka, Fassois SD. On board fault detection and identification
in railway vehicle suspensions via a functional model based method. In: Proc. of ISMA,
Leuven, Belgium; 2002.

[16] Alfi S, Bionda S, Bruni S, et al. Condition monitoring of suspension components in railway

22



bogies. In: 5th IET Conference on Railway Condition Monitoring and Non-Destructive
Testing (RCM 2011); 2011.

[17] Jesussek M, Ellermann K. Fault detection and isolation for a full-scale railway vehicle
suspension with multiple Kalman filters. Vehicle System Dynamics. 2014;52(12):1695–
1715.

[18] Hayashi Y, Tsunashima H, Marumo Y. Fault Detection of Railway Vehicle Suspension
Systems Using Multiple-Model Approach. Journal of Mechanical Systems for Transporta-
tion and Logistics. 2008;1(1):88–99.

[19] Mori H, Tsunashima H. Condition Monitoring of Railway Vehicle Suspension Using Mul-
tiple Model Approach. Journal of Mechanical Systems for Transportation and Logistics.
2010;3(1):243–258.

[20] Li P, Goodall R, Kadirkamanathan V. Estimation of parameters in a linear state space
model using a Rao-Blackwellised particle filter. In: IEE Proceedings-control theory and
applications; Vol. 151; 2004. p. 727–738.

[21] Li P, Goodall R, Weston P, et al. Estimation of railway vehicle suspension parameters for
condition monitoring. Control Engineering Practice. 2007;15:43–55.

[22] Jesussek M, Ellermann K. Fault detection and isolation for a nonlinear railway vehi-
cle suspension with a hybrid extended kalman filter. Vehicle System Dynamics. 2013;
51(10):1489–1501.

[23] Li P, Goodall R. Model-Based Condition Monitoring for Railway Vehicle Systems. In:
Control 2004; 2004. September.

[24] Liu XY, Alfi S, Bruni S. An efficient recursive least square-based condition monitoring
approach for a rail vehicle suspension system. Vehicle System Dynamics. 2016;54(6):814–
830.

[25] Kraft S. Parameter identification for a TGV model [dissertation]. Ecole Centrale Paris;
2012.

[26] Perrin G, Soize C, Duhamel D, et al. Track irregularities stochastic modeling. Probabilistic
Engineering Mechanics. 2013;34:123–130.

[27] Perrin G, Soize C, Ouhbi N. Data-driven kernel representations for sampling with an un-
known block dependence structure under correlation constraints. Computational Statistics
and Data Analysis. 2018;119:139–154.
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