Igor Walukiewicz

LambdaY-Calculus With Priorities 1

The lambdaY-calculus with priorities is a variant of the simplytyped lambda calculus designed for higher-order model-checking. The higher-order model-checking problem asks if a given parity tree automaton accepts the Böhm tree of a given term of the simply-typed lambda calculus with recursion. We show that this problem can be reduced to the same question but for terms of lambdaY-calculus with priorities and visibly parity automata; a subclass of parity automata. The latter question can be answered by evaluating terms in a simple powerset model with least and greatest fixpoints. We prove that the recognizing power of powerset models and visibly parity automata are the same. So, up to conversion to the lambdaY-calculus with priorities, powerset models with least and greatest fixpoints are indeed the right semantic framework for the model-checking problem. The reduction to lambdaY-calculus with priorities is also efficient algorithmically: it gives an algorithm of the same complexity as direct approaches to the higher-order model-checking problem. This indicates that the task of calculating the value of a term in a powerset model is a central algorithmic problem for higher-order model-checking.

Introduction

Higher-order model-checking has become a successful foundation for verification of higher-order programs. While at first it was restricted to call-by-name purely functional programs, in recent years its scope has been substantially enlarged [START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Tsukada | Untyped recursion schemes and infinite intersection types[END_REF][START_REF] Murase | Temporal verification of higher-order functional programs[END_REF][START_REF] Nanjo | A fixpoint logic and dependent effects for temporal property verification[END_REF][START_REF] Unno | Relatively complete refinement type system for verification of higher-order non-deterministic programs[END_REF].

Technically, the model-checking problem can be stated as follows: given a term of a simply typed λ-calculus with fixpoints, and a parity tree automaton, decide if the Böhm tree of the term is accepted by the automaton. The Böhm tree of the term is a generalization of the notion of the result of a computation to potentially non-terminating computations. Decidability of the higher-order model-checking problem was proved by Ong [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF]. Since then it has been has been reproved using several different methods [START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF][START_REF] Kobayashi | A type system equivalent to modal mucalculus model checking of recursion schemes[END_REF][START_REF] Salvati | Krivine machines and higher-order schemes[END_REF][START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over böhm trees[END_REF][START_REF] Grellois | Finitary semantics of linear logic and higher-order model-checking[END_REF][START_REF] Salvati | A Model for Behavioural Properties of Higher-order Programs[END_REF]. Among them, a model-based approach is the most relevant for this paper.

The idea of the model-based approach is to construct a finite model recognizing a given property [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF]. A model recognizes a property if the value of a term in the model determines if the Böhm tree of the term satisfies the property. This is analogous to a fundamental concept of recognizability by semigroups in formal language theory. The model-based approach allows to deduce in an elegant way many results about higher-order model checking [START_REF] Salvati | Evaluation is MSOL-compatible[END_REF][START_REF]Using models to model-check recursive schemes[END_REF]. Unfortunately, the model constructions we know of are quite complicated. More seriously, it is not clear what is a suitable class of models that plays the same role as semigroups in the case of languages of finite words. It is even not known what kinds of fixpoints are need to construct models recognizing properties given by parity automata.

In this paper we show that the simplest possible class of models, namely that of models based on a finite powerset lattice and monotone functions with least and greatest fixpoints, corresponds exactly to, a certain refinement of, the higher-order model-checking problem. The refinement consist of a finer typing system that we call λY -calculus with priorities, and a restriction of parity automata to what we call visibly parity automata.

Our result extends the one for automata with trivial acceptance conditions 1 . Aehlig [START_REF] Aehlig | A finite semantics of simply-typed lambda terms for infinite runs of automata[END_REF] has shown that properties defined by such automata can be recognized by powerset models with recursion interpreted as the greatest fixpoint. Such models are also called Scott models in the literature, although most often they are considered over arbitrary directed complete partial-orders, and not necessarily finite distributive lattices. Actually, recognizing power of automata with trivial acceptance conditions, and finitary powerset models with greatest fixpoint interpretation is the same [START_REF]Using models to model-check recursive schemes[END_REF]. Thus to go beyond automata with trivial acceptance conditions we need to enlarge the class of interpretations.

Since complete lattices have both least and greatest fixpoints, it is tempting to use both in the semantics. As we have only one recursion operator in the calculus, it is not clear which fixpoint to use where. Observe that using just least fixpoints would give dual models, and would not give more recognizing power than using just greatest fixpoints.

In this paper we propose the λY -calculus with priorities, a calculus where every recursion operator, and every constant is indexed with a priority. Recursion operators with even priorities are interpreted as the greatest fix points, and those with odd priorities as the least fix points. The main point is to relate this semantics to acceptance by automata. Having constants indexed by priorities leads to a notion of visibly parity automata where the priorities are not associated to states but to letters read by the automaton.

Our main result, Theorem 16, states that there is a perfect match between models and automata: recognizing power of powerset models under such interpretation is equivalent to that of visibly parity automata.

Extending the comonadic translation of Melliès [START_REF] Melliès | Higher-order verification[END_REF], we show that for every assignment of priorities to constants: every term of the λY -calculus can be translated to a term of the λY -calculus with priorities such that the two terms have the same Böhm trees. This allows to reduce the higher-order model-checking problem to the model-checking problem for λY -calculus with priorities and visibly parity automata. In consequence, the higherorder model-checking problem can be solved by evaluation in simple powerset models. Moreover, this reduction can be done in polynomial time, and the resulting algorithm has the same complexity as other known approaches [START_REF] Salvati | Krivine machines and higher-order schemes[END_REF][START_REF] Kobayashi | Complexity of model checking recursion schemes for fragments of the modal mu-calculus[END_REF] . This confirms the central position of the algorithmic problem of evaluating terms with least and greatest fix points in the powerset model.

To sum up, the main technical contributions of the paper are the following:

• Definition of the λY -calculus with priorities.

• Characterization of its semantics in powerset models in terms of acceptance by visibly parity automata.

• Extension of the co-monadic translation of Melliès to terms with fixpoints.

In this paper we propose a framework for higher-order model-checking with a very simple semantic interpretation. We hope that this is a step towards Eilenberg-like variety theory for λY -calculus. The model-based approach puts a focus on computing fixpoints in finite lattices. The modelchecking of the propositional mu-calculus is the most known instance of this problem, but the higher-order version is no less intriguing.

Related work: This work relies on some important insights to higherorder model-checking. An idea of tracking priorities in a type system was introduced in a seminal paper of Kobayashi and Ong [START_REF] Kobayashi | A type system equivalent to modal mucalculus model checking of recursion schemes[END_REF]. The comonadic nature of priorities and the translation on terms proposed by Melliès [START_REF] Melliès | Higher-order verification[END_REF] is another cornerstone of this work. The paper of Kobayashi, Lozes and Bruse [START_REF] Kobayashi | On the relationship between higher-order recursion schemes and higher-order fixpoint logic[END_REF] was the starting inspiration for this work; it implies that Melliès' translation leads to a reduction of higher-order model-checking to evaluation in powerset models. The present paper belongs to the line of research on models for higher-order model-checking. Apart from the work of Aehlig mentioned above, we can mention approaches of Tsukada and Ong [START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over böhm trees[END_REF], as well as Grellois and Melliès [START_REF] Grellois | Finitary semantics of linear logic and higher-order model-checking[END_REF][START_REF] Grellois | Semantics of linear logic and higher-order model-checking[END_REF]. In both works the fixpoint operator is defined via a parity game and is somehow external to a model. Even closer are the works of Salvati and Walukiewicz culminating in a model construction for all ω-regular properties [START_REF] Salvati | A Model for Behavioural Properties of Higher-order Programs[END_REF]. All these works use models enriched with priorities, inspired by intersection types of Kobayashi and Ong. In the present paper, priorities are in the syntax, and not in the model. This changes many things, but there are also many techniques that can be reused. Bruse [START_REF] Bruse | Alternating parity krivine automata[END_REF] considers Krivine machine interpretation for higherorder fixpoint logic, so he needs to deal with both higher-order and both types of fixpoints. The acceptance condition for his machines reduces to the parity condition for terms typable in our system. A recent paper of Melliès [START_REF] Melliès | Higher-order parity automata[END_REF] introduces a notion of higher-order parity automata. Their behavior is somehow similar to our semantic games (game P SG on page 43). The objectives of op. cit. are quite different from ours, and so are techniques except of Melliès' translation. In a broader context, this paper is a part of continuing effort to understand better the higher-order model-checking problem [START_REF] Suzuki | Streett automata model checking of higher-order recursion schemes[END_REF][START_REF] Hague | Domains for higher-order games[END_REF][START_REF] Hague | Parity to safety in polynomial time for pushdown and collapsible pushdown systems[END_REF].

Structure of the paper: In the next section we recall basic notions behind the higher-order model-checking problem. We describe the correspondence between automata with trivial acceptance conditions, and powerset models with greatest fixpoint interpretation. Section 3 introduces λY -calculus with priorities, and visibly parity automata. It explains how to reduce the modelchecking problem to that for visibly parity automata. Section 4 presents main results of the paper. It also states the main technical theorem whose proof is outlined in Section 5. Section 6 shows how to translate λY -terms to λY -terms with priorities. Section 7 discusses applicability of the results to algorithmics of higher-order model-checking.

The λY -calculus and parity automata

In this section we recall definitions of the λY -calculus, and of parity automata. We also recall the characterization of the recognizing power of parity automata with trivial acceptance conditions in terms of simple models of the λY -calculus where fixpoint operators are interpreted as greatest fixpoints.

λY -calculus

The λY -calculus is simply-typed lambda calculus with a fixpoint operator. The set of simple types is constructed from a unique base type o using a binary operation →. As usual we shall write A 1 → • • • → A k → B for (A 1 → (. . . (A k → B) . . .)). We use Types for the set of all simple types.

An alphabet is a set Σ of typed constants. Every constant b ∈ Σ has an arity ar (b) that is a strictly positive natural number. A constant b of arity ar (b) has a type b :

o → • • • → o → o,
where there are ar (b) arrows. We only allow this shape of types for constants. This is a standard restriction in the context of higher-order model-checking, except maybe for allowing constants of the base type o. We disallow constants of type o for notational convenience.

Terms of the λY -calculus are built from variables and constants in Σ with the help of abstraction, application, and fixpoint operations. We use x, y, . . . and F with subscripts for variables. We assume that variables are typed but we will seldom write their type explicitly. Construction of terms is subject to the standard type discipline. If M is a term of type B and x a variable of type A, then λx.M is a term of type

A → B. If M is a term of type A → B and N is a term of type A then M • N is a term of type B. We will often write M N instead of M • N . Finally, if M is a term of type A,
and F is a variable of type A then Y F.M is a term of type A. So we adopt a syntax where Y is a binder, and not a fixpoint combinator.

The usual operational semantics of the calculus is given by β and δreductions (we omit the standard definition of a substitution):

(λx.M) • N → β M [N/x], and Y F.M → δ M [(Y F.M)/F]. We write → *
βδ for reflexive and transitive closure of the union of the two relations.

Böhm trees of terms

Böhm tress are a kind of normal forms for λY -terms. They may be infinite, since the calculus does not have a strong normalization property.

Let us fix an alphabet Σ as above. Let ⊥ be a special symbol not in Σ. We write Σ ⊥ for (Σ ∪ {⊥}). A, potentially infinite, Σ ⊥ -tree is a partial function t : (N >0) * • → Σ ⊥ . For a node v ∈ (N >0) * and a direction i ∈ N >0 we call vi the i-th successor of v. This successor may not exist if t(vi) is not defined. We require that for every node v ∈ (N >0) * , if the constant b = t(v) has an arity k = ar (b) then v has k successors v1, . . . , vk, and has no other successors. If t(v) = ⊥ then v should have no successors.

Definition 1 (Böhm tree) A Böhm tree of a closed term M of type o, denoted BT (M), is a Σ ⊥ -tree defined recursively:

• if M → * βδ bN 1 . . . N ar (b)
for some constant b ∈ Σ then BT (M) has the root labeled b with subtrees of the root being BT (N 1), . . . , BT (N ar (b));

• otherwise BT (M) = ⊥.
Thanks to subject reduction and confluence of → * βδ , every term has a unique Böhm tree [START_REF] Amadio | Domains and Lambda-Calculi, ser[END_REF]. Because of our assumption on the shape of type of constants in Σ, all terms N i in the first clause of the definition must be closed and of type o. For the same reason, all leaves in BT (M) must be labeled with ⊥. In what follows it is possible to add constants of type o without problems. Constants of higher-order types, like (o → o) → o, would introduce variables and bindings in Böhm trees. In consequence, it would not be clear how to run a tree automaton on such Böhm trees.

Alternating parity automata

We use alternating (max)parity automata to express properties of Böhm trees. The definition is standard except for the case when an automaton reaches a leaf labeled ⊥: it accepts no matter what state it is in. We will discuss this phenomenon below.

A parity automaton is a tuple

A = Q, Σ, {δ b } b∈Σ , Ω : Q → {0, . . . , p} ,
where Q is a finite set of states, Σ is an alphabet,

δ b : Q → {(S 1 , . . . , S ar (b)) : S i ∈ P(Q), i = 1, . . . , ar (b)}
is a transition function, and Ω is an assignment of priorities to states. Priorities are integers between 0 and p. As before, we assume that every b ∈ Σ has its arity ar (b). For readability, we will write δ(q, b) for δ b (q). Parity automata run on Σ ⊥ -trees. An acceptance game for A from q ∈ Q on a Σ ⊥ -tree t : (N >0) * • → Σ ⊥ involves two players called Adam and Eve. Eve starts in (q, ε) namely in the state q and in the root node of t. She looks at the letter b = t(ε) in the root. If b = ⊥ then Eve wins, otherwise Eve needs to choose some (S 1 , . . . , S ar (b)) ∈ δ(q, b). Next, Adam chooses i 1 and q i 1 ∈ S i 1 . The game proceeds to position (q i 1 , i 1), and a new turn starts. If a player cannot make a move, she looses; for example Eve looses if δ(q, b) = ∅, and Adam looses if Eve can choose (∅, . . . , ∅). The winner of an infinite play is decided by looking at the sequence of states q i 1 , q i 1 i 2 , . . . encountered during the play. Eve wins if the maximal priority of a state seen infinitely often is even.

Automaton A accepts a tree t from q if Eve has a winning strategy in the game described above from (q, ε) on t. Over infinite trees without ⊥ the power of our parity automata is the same as that of monadic second-order logic. Our automata are ⊥-blind , meaning that they accept when they reach a leaf labeled ⊥. (In [START_REF]Using models to model-check recursive schemes[END_REF] this property is called Ω-blind, but here we use ⊥ to denote divergence). For example, the language "there is a leaf labeled ⊥" is not recognized by our automata. This strange behavior is quite common in the literature on higher-order model checking [START_REF] Kobayashi | Model checking higher-order programs[END_REF]. As we will see in the next subsection, it is a consequence of the way divergence is handled in models of the simply typed lambda-calculus.

We finish this subsection with a upper closure operation on automata.

Definition 2 (up(A)) For a transition function δ b , its upper closure up(δ b) is defined by: (S 1 , . . . , S k) ∈ up(δ b)(q) if there is (S 1 , . . . , S k) ∈ δ b (q) with

S i ⊆ S i , for i = 1, . . . , k. Automaton up(A) is A with transition functions changed from {δ b } b∈Σ to {up(δ b)} b∈Σ .
From the definition of acceptance it should be clear that a tree is accepted from a state q by up(A) iff it is accepted from q by A. Indeed, it is better for Eve to choose transitions with as small sets as possible. Choosing a bigger set, just gives more possibilities to Adam.

GFP-semantics and automata with trivial acceptance conditions

In this last part of the introductory section we recall a close relation between automata with trivial acceptance conditions, and simple models of λY -calculus where fixpoint operators are interpreted as greatest fixpoints (GFP for short).

Definition 3 (Finitary powerset model

) A finitary powerset model of a signature Σ is a tuple D = {D A } A∈Types , {[[b]] D } b∈Σ
, where D o is the lattice P(Q) for some set Q, and for every type

A → B, lattice D A→B is the set of monotone functions from D A to D B ordered coordinate-wise. An interpretation [[b]] D of a constant b ∈ Σ of a type B is an element of D B .
We need a lattice structure in the model to interpret fixpoint operators.

Later, when we will consider complexity of some decision problems, it will be important that the lattice is distributive. As every finite distributive lattice is isomorphic to a lattice of sets, we prefer for simplicity to start with a powerset lattice immediately.

The GFP-semantics of terms in such a model is standard, but for the fact that all fixpoints are interpreted as the greatest fixpoints. Since every D A is a finite lattice, every monotone function in D A→A has the least and the greatest fixpoint, denoted LFP, and GFP respectively. For now we will use only the greatest fixpoints. We will use both types of fixpoints to interpret λY -calculus with priorities.

We spell out the definition of the semantics of a λY -term M in a valuation ϑ and a model D, in symbols [[M, ϑ]] D GFP . We keep the subscript GFP to remind that we use only greatest fixpoints. On the other hand, we will often omit the superscript D for readability. As usual, a valuation is a function assigning to every variable of type A a value from

D A . The definition of [[M, ϑ]] D GFP is by induction on the size of M . • [[x, ϑ]] GFP = ϑ(x), • [[b, ϑ]] GFP = [[b]] D , • [[λx.M, ϑ]] GFP = λ λ h.[[M, ϑ[h/x]]] GFP , • [[M N, ϑ]] GFP = [[M, ϑ]] GFP ([[N, ϑ]] GFP), • [[Y F.N, ϑ]] GFP = GFP λ λ h.[[N, ϑ[h/F]]] GFP .
It is well-known that the interpretation of a term is always a monotone function, and that this interpretation is sound with respect to β and δ reductions [START_REF] Amadio | Domains and Lambda-Calculi, ser[END_REF]. Models can be constructed from automata as follows. Automata can be constructed from models.

Definition 4 (Model

Definition 5 (Automaton A 0 D) For a finitary powerset model D over the base set P(Q) we define a parity automaton

A 0 D = Q, Σ, {δ b } b∈Σ , Ω : Q → {0} where δ b (q) = {(S 1 , . . . , S ar (b)) : q ∈ [[b]] GFP (S 1 , . . . , S ar (b))}
There is no way to read an assignment of priorities Ω from the model. So in the above definition we just take the trivial one. This choice is justified by Proposition 7 below.

The class of automata we obtain by this construction is important enough to give it a name. We say that an automaton has a trivial acceptance condition if all the states have priority 0, i.e., Ω(q) = 0 for all states q. We will write A 0 when we want to stress that A has a trivial acceptance condition.

The next fact follows directly from the definitions.

Fact 6 Fix an alphabet Σ. For every parity automaton with trivial acceptance condition A 0 over Σ, and every finitary powerset model D over Σ:

A 0 D A 0 is up(A 0), and D A 0 D is D.
This fact is one of the reasons why we have restricted to powerset models. The constructions can be quite easily extended to arbitrary finite lattice models, but the equivalence from the above fact becomes less direct.

A model D can recognize a set of closed terms of type o: the set of terms recognized by a set

F ⊆ D o is {M : [[M]] D GFP ∈ F, M closed term of type o} .
An automaton A also can recognize a set of closed terms of type o: we can choose a state q and consider those terms whose Böhm trees are accepted by A from q.

The main point of the correspondance from Fact 6 is that an automaton and its corresponding model recognize the same sets of terms. (Recall that A and up(A) recognize the same sets of terms.) The proposition below is a reformulation of results form [START_REF]Using models to model-check recursive schemes[END_REF][START_REF] Aehlig | A finite semantics of simply-typed lambda terms for infinite runs of automata[END_REF].

Proposition 7 Fix an alphabet Σ. Let A 0 be an automaton with a trivial acceptance condition over the alphabet Σ, and let D A 0 be the corresponding powerset model. For every closed λY -term M of type o over the signature Σ:

[[M]] D A 0 GFP = {q : A 0 accepts BT (M) from q} . Due to Fact 6, the same equality holds when we start with a model D and consider the automaton A 0 D :

[[M]] D GFP = {q : A 0 D accepts BT (M) from q} .
This shows that the recognizing power of finitary powerset models with GFP-interpretation is the same as that of automata with a trivial acceptance condition.

3 The λY -calculus with priorities

Proposition 7 puts a limit on what can be recognized with finitary powerset models using only greatest fixpoints. But we have also least fixpoints available in powerset models, so one may ask what is the recognizing power of finitary powerset models when we use both types of fixpoints.

To give an answer to this question, we propose a syntax allowing to indicate when Y should be interpreted as the least and when as the greatest fixpoint. The challenge is to do it in a way that still preserves a relation to acceptance by automata.

The λY -calculus with priorities results by adding priorities to the syntax. Priorities appear as superscripts over applications and over fixpoint binders. The simple type discipline of the λY -calculus is also refined to priority types.

Priority types are simple types annotated with priorities:

θ = o | τ → θ where τ = (r, θ) r ∈ N
There is only one base type o. Only types to the left of an arrow have a priority annotation, while the base type is not annotated. To every priority type θ naturally corresponds a simple type A θ obtained by hereditary erasing priority annotations. Priority types are Kobayashi and Ong types [START_REF] Kobayashi | A type system equivalent to modal mucalculus model checking of recursion schemes[END_REF] without conjunction. As we will see later, we avoid the conjunction thanks to an extended Melliès translation from Section 6 and two kinds of typing assertions, (=, τ) and (≤, τ), in typing environments. While Kobayashi and Ong type system works with applicative terms, our typing system admits λ-abstraction and fixpoint operators.

Terms are built from variables and constants, using abstraction, priority application, and priority fixpoint operator. In particular, N • r K is a term when N and K are terms, and r is a priority. Similarly, Y r F.N is a term when r is a priority, F is a variable, and N is a term. The rest of the constructs are standard: a variable, x or F , is a term; a constant b is a term; and an abstraction λx.N is a term, if N is a term. We use two kinds of symbols for variables, x, y, . . . for those bound by λ, and F for those bound by Y . There are no priorities on λ-abstractions.

As for λY -calculus, constants are typed. We write Σ pr for a set of constants with priorities: constant b ∈ Σ pr has not only its arity, ar (b), but also its priority pr (b). The type of a constant b of arity k = ar (b) and

priority r = pr (b) is b : (r, o) → • • • → (r, o) → o,
where there are k arrows. The fact that all arguments have the same priority is not important, it is done only for notational convenience. Terms are subject to a typing discipline presented in Figure 1. It is a refinement of simple types, in a sense that every typable term is typable in simple types obtained by erasing the priority annotation. We still write judgments as Γ M : θ, hoping that types and terms indicate when we mean typing with priority types, and when typing with simple types. Environments appearing to the left of typing judgments are functions from variables to assumptions of the form (=, τ) or (≤, τ), where τ is a pair (r, θ) with r a priority and θ a priority type. We will write environments as lists, for example:

Γ b : θ θ is the type of b Γ, x = (0, θ) x : θ Γ, x ≤ (r, θ) x : θ Γ, x = (r, θ 1) M : θ 2 Γ λx.M : (r, θ 1) → θ 2 Γ M : (r, θ 1) → θ 2 Γ r N : θ 1 Γ M • r N : θ 2 Γ, F = (r, θ) N : θ Γ, ∆ Y r F.N : θ all assumptions in Γ have priorities ≥ r
x = (2, o), y ≤ (1, (3, o) → o). Observe that x = (2, o), x ≤ (3, o)
is not an environment, as x has two priority types.

The operation Γ r used in the application rule is defined by: for all x and θ,

• change x = (r, θ) in Γ to x ≤ (r, θ); and

• remove x = (i, θ) and x ≤ (i, θ), for all i < r.

Example: Consider a constant b of arity 2 and priority 3. Let Γ be the environment x ≤ (6, o), y = (3, o). We have a typing

Γ b : (3, o) → (3, o) → o Γ 3 x : o Γ b • 3 x : (3, o) → o Γ 3 y : o Γ (b • 3 x) • 3 y : o where Γ 3 is x ≤ (6, o), y ≤ (3, o).
Observe that we do not get a typing for Γ of the form x ≤ (6, o), y = (2, o). This is because Γ 3 does not have an assumption on y. Similarly, if we took Γ with y = (5, o) instead then Γ 3 would have y = (5, o) and derivation Γ 3 y : o would be impossible.

Observation: If every constant has priority 0, namely its type is of the form (0, o) → • • • → (0, o) → o then all typing rules can use only applications and fixpoints of priority 0: N • 0 K and Y 0 F.N . In this case the typing rules become just the typing rules of the λY -calculus as all typing environments will use only priority 0. The picture is more complicated if every constant has priority 1. Indeed, to type the term λx.x we need priority 0, as its types have the form (0, θ) → θ.

Subject reduction and Böhm trees

We first show that the typing system behaves well with respect β-and δreductions. We show this in a sequence of lemmas. The first simple technical fact says that x = (r, θ x) is a stronger assumption than x ≤ (r, θ x), except for r = 0, when the two are equivalent.

Lemma 8 If Γ, x = (r, θ x) M : θ then Γ, x ≤ (r, θ x) M : θ. Moreover if Γ, x ≤ (0, θ x) M : θ then Γ, x = (0, θ x) M : θ.
Proof By induction on the length of the derivation. The only point to note is that (Γ, x = (r, θ x)) r changes to (Γ, x ≤ (r, θ x)) r in the application rule. For the second statement we observe that we have a special axiom Γ, x = (0, θ) x : θ. Since we do not have such an axiom for r > 0, the second statement holds only for r = 0. Subject reduction property is a consequence of the following stronger lemma that will be useful later.

Lemma 9 Suppose Γ r N : θ 1 .

• If Γ, x = (r, θ 1) M : θ 2 then Γ M [N/x] : θ 2 . • If Γ r , ∆, x ≤ (r, θ 1) M : θ 2 then Γ r , ∆ M [N/x] : θ 2 .

Proof

The proof is by induction on the size of M . Before we start, observe that if x is not free in M then the two statements hold trivially.

The case of a variable x. If Γ, x = (r, θ 1) x : θ 1 then necessarily r = 0. So Γ N : θ 1 by the previous lemma, and we are done since x[N/x] is N . The second statement is direct as the hypothesis say Γ r , ∆, x ≤ (r, θ 1) x : θ 1 and Γ r N : θ 1

The case of abstraction. If Γ, x = (r, θ 1) λz.K : τ → θ 2 then Γ, x = (r, θ 1), z = τ K : θ 2 (we can assume that x = z). By induction hypothesis from the first statement Γ, z = τ K[N/x] : θ 2 . So we can use abstraction rule to get Γ λz.K[N/x] : τ → θ 2 .

For the second statement suppose Γ r , ∆, x ≤ (r, θ 1) λz.K : τ → θ 2 . We have Γ r , ∆, x ≤ (r, θ 1), z = τ K : θ 2 . The induction hypothesis gives us Γ r , ∆, z = τ K[N/x] : θ 2 , and the abstraction rule Γ r , ∆, λz.K :

τ → θ 2
The case of application. If Γ, x = (r, θ 1) K • s L : θ 2 then by the application rule: Γ, x = (r, θ 1) K : (s, θ 3) → θ 2 and (Γ, x = (r, θ 1)) s L : θ 3

The induction hypothesis applied to the first judgment gives us Γ, K[N/x] : (s, θ 3) → θ 2 . Let us now look at the second judgment, and reason by cases to show that Γ s L[N/x] : θ 3 which would give us desired Γ (K • s L)[N/x] : θ 2 . If s > r then x is not free in L and we are done. If s < r then Γ s , x = (r, θ 1) L : θ 3 so we are done by induction hypothesis. Finally, if s = r then Γ r , x ≤ (r, θ 1) L : θ 3 , and once again the induction hypothesis applies.

To prove the second statement for the application case suppose Γ r , ∆, x ≤ (r, θ 1) K • s L : θ 2 . The application rule gives us:

Γ r , ∆, x ≤ (r, θ 1) K : (s, θ 3) → θ 2 and (Γ r , ∆, x ≤ (r, θ 1)) s L : θ 3
To the first judgment we can apply the induction hypothesis directly, and obtain Γ r , ∆ K[N/x] : (s, θ 3) → θ 2 . We need (Γ r , ∆) s L[N/x] : θ 3 to finish this case, and we will obtain it from the second judgment above. We do a case analysis.

• If s > r then x does not occur in L, and we get the desired judgment immediately.

• If s < r then (Γ r) s , ∆ s , x ≤ (r, θ 1) L : θ 3 . Since (Γ r) s is Γ r , we can use induction hypothesis to obtain Γ r , ∆ s L[N/x] : θ 3 , which is the same as (Γ r , ∆) s L[N/x] : θ 3 .

• If s = r then Γ r , ∆ r , x ≤ (r, θ 1) L : θ 3 , and the induction hypothesis gives us Γ r , ∆ r L[N/x] : θ 3 as desired.

The case of fixpoint.

If Γ, x = (r, θ 1) Y s F.K : θ 2 then Γ, x = (r, θ 1), F = (s, θ 2) K : θ 2
Directly from the first statement of the induction hypothesis we obtain Γ, F = (s, θ 2) K[N/x] : θ 2 . This proves the first statement, namely Γ, Y s F.K[N/x] : θ 2 . Similarly, the second statement follows directly from the induction hypothesis. Now we are ready to give the proof of the subject reduction property.

Lemma 10 (Subject reduction for priority typing

) If Γ (λx.M) • r N : θ then Γ M [N/x] : θ. If Γ Y r F.M : θ then Γ M [Y r F.M/F] : θ.

Proof

For the first statement, it is enough to observe that the assumption gives some θ and two judgments: Γ, x = (r, θ) M : θ and Γ r N : θ

The conclusion follows from Lemma 9.

Consider the second statement. By the typing rule for Y r F.M , context Γ can be split into Γ and ∆, such that all typing assumptions in Γ use ranks ≥ r, and moreover Γ , F = (r, θ) M : θ. This also implies that (Γ) r Y r F.M by Lemma 8. So Lemma 9 then gives Γ M [Y r F.M/x] : θ. This permits to conclude.

We define the Böhm tree of a priority term M , BT (M), in the same way as we have done for λY -terms (Definition 1). To a priority term M corresponds a λY -term M obtained by removing priorities in applications and fixpoint operators. It is easy to verify that M is simply typable and that BT (M) = BT (M).

Semantics

The first gain from introducing priorities in the syntax is that we can now refine the semantics of terms. We evaluate priority λ-terms in finitary lattice models as in Definition 3. The difference with GFP-interpretation is that now we use both the least and the greatest-fixpoints. Recall that to every priority type θ corresponds a simple type A θ obtained by hereditary removing priorities in θ. The meaning of a term of type θ is an element of D A θ . The definition of the semantics is verbatim the same as for GFP-interpretation, but for the meaning of fixpoints:

[[Y r F.N, ϑ]] = LFP λ λ h.[[N, ϑ[h/F]]] if r is odd, and
GFP instead of LFP if r is even.
Observe that priorities do not influence the meaning of the application.

Terms with priorities are priority-homogenous

The main point about terms with priorities is that for every variable, all its occurrences have "the same application priority". This is the crucial property that is behind all the results presented in this paper. Figure 2 gives an example of how to think about application priorities. Consider a tree representation of a term with λx and Y s F having one successor, and the application • r symbol having two successors. The right edge of • r has priority r. The edge from Y s has priority s. The left edge of the application, and all other edges have label 0. In this representation, the application priority between two positions is the maximum priority on the edges of the path between the positions. A formal definition is given below.

M ⌘ • r z Y s F r s 1 M ⌘ • r z Y s F r s 1 M ⌘ • r z Y s F r s 1 M ⌘ • r z Y s F r s 1 M ⌘ • r z Y s F r s 1 M ⌘ • r z Y s F r s x 1 M ⌘ • r z Y s F r s x 1 M ⌘ • r z Y s F r s x 1 M ⌘ • r z Y s F r s x apr (x, M) = {0, r s} 1 Figure 2: Application rank of variable x in term M ≡ (λz.x) • r (Y s F.x).
Definition 11 We define the set of application priorities of variable in a term, apr (x, M), by induction on the structure of M . Below, r ⊕ s stands for the priority max(r, s), and r ⊕ S stands for the set {r ⊕ s : s ∈ S}.

• apr (x, M) = ∅ if x is not free in M ; • apr (x, x) = {0}; • apr (x, λz.N) = apr (x, N) if x = z; • apr (x, Y r F.N) = r ⊕ apr (x, N) if x = F ; • apr (x, N • r K) = apr (x, N) ∪ (r ⊕ apr (x, K)) Definition 12 A term M is priority-homogeneous if
• for every subterm of the form λx.N , the set apr (x, N) is a singleton or the empty set.

• for every subterm Y r F.N , we have apr (F, N) = {r} or apr (F, N) = ∅.

In the next lemma we show that all priority typable terms are priorityhomogeneous. The opposite direction is not true because of the fixpoint rule.

Lemma 13 If Γ M : θ then M is priority-homogeneous and the following properties hold:

• if x = (r, θ x) is in Γ then apr (x, M) = {r} or apr (x, M) = ∅ (in the latter case, x does not appear in M). • if x ≤ (r, θ x) is in Γ then max(apr (x, M)) ≤ r, or apr (x, M) = ∅.

Proof

The proof is by induction on the size of the typing derivation.

For the base case, Γ, x = (0, θ) x : θ, or Γ, x ≤ (r, θ) x : θ, the lemma clearly holds.

For the λ-abstraction, the last rule of the derivation must be

Γ, x r = (r, θ 1) N : θ 2 Γ λx r .N : (r, θ 1) → θ 2
By induction hypothesis N is R-homogeneous, and apr (x, N) = {r} or ∅. This shows that λx.N is R-homogeneous. The statement about Γ follows form the induction hypothesis.

For the fixpoint, the last rule is

Γ, F = (r, θ) N : θ Γ, ∆ Y r F.N : θ
The argument is the same as in the case of λ-abstraction since all assertions in Γ have ranks ≥ r, and no variable from ∆ is free in N .

For the application, the last rule is of the form

Γ M : (r, θ 1) → θ 2 Γ r N : θ 1 Γ M • r N : θ 2
By induction hypothesis, the terms M and N are R-homogeneous, and apr's of free variables are given by Γ and Γ r respectively. We need to verify the condition on free variables for M • r N . If x = (i, θ x) is in Γ then by induction hypothesis apr (x, M) = {i} or apr (x, M) = ∅. If i < r then x does not appear in Γ r , so x is not free in N , and we are done.

If i > r then x = (i, θ x) appears in Γ r so apr (x, N) is {i} or ∅. In consequence, apr (x, M • r N) is {i} or ∅. If i = r then x ≤ (r, θ x) appears in Γ r , so maximum of apr (x, N) is ≤ r and apr (x, M • r N) is {r} or ∅. The reasoning for x ≤ (i, θ x) is similar.
Since every priority typable term is priority homogeneous, we can also put a priority next to λx the same way as we do with the fixpoint Y r F . We could also remove r superscript from Y . Yet we prefer the present, slightly asymmetric, syntax since we will need priorities for Y to define the semantics, but priorities on λ will not be useful.

Example: Not all priority-homogeneous terms are priority typable. The term Y r F.x • r F is priority-homogeneous. This term would be prioritytypable if there were no restriction on Γ in the fixpoint rule, but it is not typable with this restriction. The unfolding of this fixpoint term is x • r (Y r F.x • r F). It is not priority-homogeneous. In this term the application priority of the first occurrence of x is 0 while the second occurrence has application priority r.

Visibly parity automata, and their recognizing power

In Σ pr every constant b ∈ Σ has its priority pr (b). It makes sense to consider parity automata whose priority function depends on letters and not on states.

A visibly parity automaton is

A = Q, Σ pr , {δ b } b∈Σ pr , pr : Σ pr → {0, . . . , p}
where pr is the priority function coming with Σ pr . The notion of accepting a tree from a state is the same as before for parity automata, but pr is used instead of Ω. This means that the priority depends on a letter read and not on the current state.

Of course, visibly parity automata are weaker than parity automata. For example, they cannot express a property "there is a path on which b appears infinitely often". Visibly parity automata look rather trivial from the point of view of automata theory. Yet, they are sufficient for model-checking of transition systems, via the translation we explain below. They also offer a potential advantage because elimination of alternation and Boolean operations are much easier for visibly parity automata than for parity automata.

We argue that in the context of recognizing Böhm trees of terms, visibly parity automata are sufficiently expressive. Indeed, once a maximal priority p is fixed, there is an operation on trees and automata such that exp p (t) is accepted by exp p (A) iff t is accepted by A (cf. Figure 3). Moreover, this operation is easy to implement on terms.

For a fixed rank p, we define the expansion operation exp p on alphabets, trees, terms, and automata. The symbols in exp p (Σ) will be indexed by priorities, and we will add a new symbol "or " of arity p + 1:

exp p (Σ) = {b r : b ∈ Σ, r = 0, . . . , p} ∪ {or } .
The priority of or is 0, and that of b r is r: so pr (or) = 0, and pr (b r) = r.

a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . or 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a t 1 t 2 a 0 a p t 0 1 t 0 2 . . . 2 a 0 a p t 0 1 t 0 2 . . . or 7 ! Y r F • s b 1 Y r F • s b b 0 b p 1 Y r F • s b b 0 b p 1 Figure 3:
The tree expansion operation, exp p (t).

The expansion operation on trees, shown in Figure 3, replaces every node labeled b by a subtree, copying the subtrees of the node:

exp p (b(t 1 , . . . , t ar (b))) = or (b 0 (t 1 , . . . , t ar (b)), . . . , b p (t 1 , . . . , t ar (b)))
where

t i = exp p (t i), for i = 1, . . .

, ar (b).

There is the corresponding operation on terms. The term exp p (M) is obtained from M by replacing every constant b by

λx 1 , . . . , x ar (b) . or(b 0 x 1 . . . x ar (b)) . . . (b p x 1 . . . x ar (b)) .
We have that for every λY -term BT (exp p (M)) = exp p (BT (M)).

The expansion operation on automata modifies the transition function, and the priorities.

Given A = Q, Σ, {δ b } b∈Σ , Ω : Q → {0, . . . , p} we define exp p (A) = Q, exp p (Σ), {δ b } b∈exp p (Σ) , pr : exp p (Σ) → {0, . . . , p}
where the priority function pr is the one of exp p (Σ). The transition function is:

δ (q, b r) = δ(q, b) if Ω(q) = r δ (q, b r) = ∅ if Ω(q) = r δ (q, or) = {(∅, . . . , {q}, . . . , ∅)} {q} is on Ω(q)'th position
Proposition 14 Fix a maximal priority p. For every parity automaton A over an alphabet Σ using only priorities up to p, the visibly parity automaton exp p (A) over the priority alphabet exp p (Σ) is such that for every closed λYterm M of type o we have:

BT (M) is accepted by A from q iff BT (exp p (M)) is accepted by exp p (A) from q.
The above fact says that modulo exp p translation, visibly parity automata are equivalent to parity automata.

Recognizability by automata and models

Our main result, Theorem 16, is that visibly parity automata correspond to finitary powerset models in exactly the same way that automata with trivial acceptance conditions correspond to models with GFP-semantics.

Recall the correspondence between automata and models from Definitions 4 and 5. We can extend it to visibly parity automata. Let us fix an alphabet Σ pr of constants with priorities. From a visibly parity automaton A we construct a model D A as before since the model does not depend on the acceptance condition. From a model D we construct an automaton A D also as before, but now we take the parity condition given by Σ pr . (Recall up(A), as in Definition 2, accepts the same trees as A.)

Fact 15 Let Σ pr be an alphabet with priorities, and Σ the same alphabet with priorities erased. For every visibly parity automaton A over Σ pr , and every finitary powerset model D over Σ:

A D A is up(A), and D A D is D.
The main result of the paper states that for λY -calculus with priorities the recognizing powers of finitary powerset models, and visibly parity automata are the same. Because of the above fact, an analogous formulation but starting from the model is also true.

Theorem 16 Let Σ pr be an alphabet with priorities. Let A be visibly parity automaton over Σ pr , and let D A the corresponding powerset model. For every closed parity typable term M of type o:

[[M]] D A = {q : A accepts BT (M) from q} .
Remark: Recall that our parity automata are ⊥-blind (cf. page 6). This seems like a strange restriction, but in the light of Theorem 16 this is a property of the semantics of terms. One may wonder what makes it that ⊥ is always accepted, and not always rejected. This can be traced to the axiom Γ, x = (0, θ) x : θ of priority types. This axiom makes 0 the neutral priority. If we started priorities from 1, and adopted the same axiom but with 1, then ⊥ would be always rejected.

To prove the theorem we need to make a link between the semantics of the λ-calculus with priorities and the acceptance of Böhm trees by visibly parity automata. For this we need to understand how a Böhm tree is constructed. We adapt the method from [START_REF] Salvati | Krivine machines and higher-order schemes[END_REF] based on Krivine machines. Below we define the a game K(M, D A , q) so that we have the following proposition.

Proposition 17 Fix a priority alphabet Σ pr . Consider a visibly parity automaton A over Σ pr , and the associated model D A . For every closed priority typable term M of type o over Σ pr , and every state q of A, we have:

A accepts BT (M) from q iff Eve wins in K(M, D A , q) .
With this proposition at hand, to prove Theorem 16 it remains to make a link between winning in K(M, D, q) and the semantics of M in D. This is the main technical result of this paper.

Theorem 18 Consider an alphabet with priorities Σ pr and the alphabet Σ obtained by erasing priorities from Σ pr . Take a finitary powerset model D over Σ and the base set P(Q). For every q ∈ Q and every closed priority typed term M of type o over Σ pr :

q ∈ [[M]] D iff Eve wins in K(M, D, q) .
Theorem 16 follows from the above theorem and Proposition 17, when taking the model D A .

In the remaining of this section we will describe the game K(M, D, q). It will be clear from the description that Proposition 17 holds. The proof of Theorem 18 is presented in the next section.

Game K(M, D, q)

The intuition behind K(M, D A , q) is presented in Figure 4. A configuration of a game is of a form q ≤ (N, ρ, S) where q is a state of A, and (N, ρ, S) is a configuration of the Krivine machine. In the game, first a head normal-form of a term is computed (if it exists) using the rules of the Krivine machine; this is symbolized by a dashed line in the figure. At that moment a player, called Eve, chooses a transition of the automaton on b, and another player, called Adam, chooses on state and direction in exactly the same way as in the definition of acceptance of a tree by an automaton. This leads to a new configuration, say q ≤ (K 2 , ρ 2 , ε) in Figure 4, and the process repeats.

(;, {q 0 , q 00 }) We present the game in detail. For the rest of this section we fix a priority typable closed term M of type o, a finitary powerset model D over the base set P(Q), and an element q 0 ∈ Q.

 (C 1 , C 2) (;, {q 0 , q 00 }) 2 (b, q) node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) C 2 = (v 2 , K 2 , ⇢ 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ") pr (b) v 2 v 2 . . . pr (b) (;, {q 000 })  (C 1 , C 2) (;, {q 000 }) 2 (b, q) q 000  (K 2 , ⇢ 2 , ") v 2
First, we will need some terminology and notation related to Krivine machines. A Krivine machine works with environments and closures. The definition of these two concepts is mutually recursive. Environments, denoted ρ, are functions from variables to closures. Closures, denoted C, are triples (v, N, ρ), where N is a term, ρ is an environment, and v is a node of K(M, D, q 0) we will construct. Having v in the closure is not standard; we use it to track where the closure was created. As we will see in the rules below, a node v labeled by q ≤ (N • r K, ρ, S) will have a unique successor labeled q ≤ (N, ρ, (v, K, ρ) • S) where the closure (v, K, ρ) is created. We write pr (v) to denote r, namely the priority associated to the application in v. A closure can be also created when v is labeled by q ≤ (Y r F.N, ρ, S) and we write pr (v) to denote r in the superscript of Y . We will use pr (v) to state the main invariant of the tree K(M, D, q 0) with respect to priorities. We say that v is the node of the closure C = (v, K, ρ) and pr (v) is its priority. It will be handy to write v(C) for v, and pr (C) for pr (v).

• q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)) v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)) v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S)
• q  (b, ⇢, C

v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S) • q  (b, ⇢, C 1 . . . C
v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v). 4 • q  (x.N, ⇢, C • S) ! q  (N, ⇢[C/x], S)
• q  (b, ⇢, C

v i ! q i  (K i , ⇢ i , ") for q i 2 d i , C i = (v i , K i , ⇢ i), and i 2 {1, . . . , ar (b)}. • q  (N • r K, ⇢, S) ! q  (N, ⇢, (v, K, ⇢)S)
v is the node of q  (N • r K, ⇢, S).

• q  (Y r F.N, ⇢, S) ! q  (N, ⇢[(v, Y r F.N, ⇢)/F], S); v is the node of q  (Y r F.N, ⇢, S). • q  (x, ⇢, S) v ! q  (K v , ⇢ v , S) where ⇢(x) = (v, K v , ⇢ v).

Definition 19

The game K(M, D, q 0) is played on the tree whose root is labeled by q 0 ≤ (M, ∅, ε); where ∅ is the empty environment, and ε is the empty stack. The tree is constructed according to the rules presented in Figure 5: if l is a label of a node v and l r -→ l then v has a successor v labeled l and r is the label on the edge from v to v . A label can be a priority or a node; there may be also no label. There are two players, Eve and Adam, who repeatedly choose successors in order to construct an infinite path. Eve chooses a successor in nodes with configurations of the form (b, . . .), Adam chooses a successor in nodes with configurations of the form (d 1 , . . . , d k) ≤ (C 1 , . . . , C k). All other nodes have at most one successor. If one of the players cannot make a move she looses. Otherwise the result of a play is an infinite path; Eve wins the play iff the maximal priority seen infinitely often on the path is even.

Let us go back to Figure 4 to see on an example how the game is constructed. In node v, the application rule is used, then the dashed line represents the use of other rules till the head term becomes a constant. At that point the constant rule is used, and it is Eve who chooses a transition, and Adam who chooses a direction and a state. In the example he can only choose the second direction, as there were no states in the first direction. A transition where constant rule is used, is labeled by the priority of the constant. A transition when a closure is used is labeled by a node (the name of the closure).

Proof of Theorem 18

We present the proof of Theorem 18. The proof has three main steps. First, we prove that a certain invariant holds in K(M, D, d 0). This is where priority types are essential. Next, we show a rather straightforward characterization of the semantics of λY -terms with priorities in terms of a game SG(M, D). Finally, we show that the two games are equivalent. This also follows by simple examination of the rules, thanks to the notion of residual form [START_REF] Salvati | Krivine machines and higher-order schemes[END_REF].

Priority invariant in

K(M, D, d 0)
The whole mechanism of priority types is set up in order to state and guarantee an invariant on the maximal priority between the positions where the closure was created and where the closure was used. To formulate this property we needed to introduce additional parameters v in closures, and on the labels of transitions.

For a node v and its descendant v in K(M, D, d), we denote by pr (v, v) the maximal priority appearing on the path from v to v . Recall that pr (v) stands for the priority of the closure created at v; this is defined by the priority of the application symbol or fixpoint symbol of the term in v.

Lemma 20 (Priority invariant) Game K(M, D, d 0) satisfies the following priority invariant: if the unique incoming transition to v is labeled by v then pr (v, v) = pr (v).

The priority invariant is illustrated in Figure 6. In node v a closure is created because of an application. Then the closure is moved to the environment, because of an abstraction. Later, in v , the closure v is used: a computation makes a look up for a value of a variable x that is bound to the closure created in v. Note that at this moment the environment, the state, and the stack could have changed. The invariant says that the priority of the closure determines the maximal priority seen from the creation to a usage of the closure. Observe that a closure can be used several times.

q  ((x.N) • r K, ⇢, S) q  (x.N, ⇢, (v, K, ⇢)S) q  (N, ⇢[(v, K, ⇢)/x], S 10 q  ((x.N) • r K, ⇢, S) q  (x.N, ⇢, (v, K, ⇢)S) q  (N, ⇢[(v, K, ⇢)/x], S) 10 q  ((x.N) • r K, ⇢, S) q  (x.N, ⇢, (v, K, ⇢)S) q  (N, ⇢[(v, K, ⇢)/x], S) 10 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2) (;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ")
q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 :

q 000  (K, ⇢, S 000) v 2 v pr (b) 5 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2) (;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ") q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 : q 000  (K, ⇢, S 000) v 2 v pr (b) . . . 5 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2) (;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ")
q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 :

q 000  (K, ⇢, S 000) v 2 v pr (b)
. . .

5 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2) (;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ") q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 : q 000  (K, ⇢, S 000) v 2 v pr (b)
. . .

5 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2)
(;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ") q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 :

q 000  (K, ⇢, S 000) v 2 v pr (b) . . . 5 max priority is r = pr (v) 6 node v: q  (N • r K, ⇢, S) q  (N, ⇢, (v, K, ⇢)S) q  (b, ⇢, C 1 C 2) (;, {q 0 , q 00 }) 2 (b, q) C 2 = (v 2 , K 2 , ⇢ 2)
(;, {q 0 , q 00 })  (C 1 , C 2) q 0  (K 2 , ⇢ 2 , ") q 00  (K 2 , ⇢ 2 , ") q 000  (x, ⇢ 000 , S 000) ⇢ 000 (x) = (v, K, ⇢) node v 0 :

q 000  (K, ⇢, S 000) v 2 v pr (b)
. . . The rest of the section is devoted to the proof of Lemma 20.

A configuration represents a term obtained by recursively performing substitutions given by the environment, and applying it to terms represented by the closures on the stack. We show that the term associated to a configuration in K(M) is priority typable.

Definition 21 A term associated to a configuration (N, ρ, C 1 . . . C l) is: N, ρ, C 1 . . . C l =(. . . (N, ρ • pr (C 1) C 1) . . .) • pr (C l C l where N, ρ =N [ρ(x 1) /x 1 , . . .]
Lemma 22 For every node v of K(M, D, q 0), the term associated to the configuration labeling v is a closed priority typable term of type o.

Proof

By induction on the distance of the configuration from the root. The configuration at the root is (M, ∅, ε), so the associated term is just M , and it has all the required properties. For the remaining of the proof we look at the rule applied in the node of K(M).

In the case of λ abstraction we have

(λx.N, ρ, CS) -→ (N, ρ[x → C], S) .
The term associated to the configuration on the left is (λx.N, ρ • r C) Finally, for the cases of application and variable, the terms associated to configurations on both sides of the arrow are identical.

We are almost ready to prove the priority invariant for an usage that comes after the rule for a constant. We just need an observation that follows by straightforward induction.

Lemma 23 Let v be a node of K(M, D, q 0) and let (N, ρ, S) be its label. For every closure C on the stack S, we have that pr (v(C), v) = 0.

Invariant for the case of the constant rule is proved by the following lemma.

Lemma 24 Suppose the label of v is q i ≤ (K i , ρ i , ε) and that it has been created by the rule (S 1 , . . . , S ar (b)) ≤ (C 1 , . . . , C ar (b)) v i -→ q i ≤ (K i , ρ i , ε). In this case v satisfies the priority invariant.

Proof

By the shape of the rules we know that the sequence of transitions leading to v is:

q ≤ (b, ρ, C 1 . . . C ar (b)) pr (b) -→ (S 1 , . . . , S ar (b)) ≤ (C 1 , . . . , C ar (b)) v i -→ q i ≤ (K i , ρ i , ε)
Let us call the three nodes in the sequence v , v , and v respectively. By Lemma 23 we have pr (v(C i), v) = 0. Hence pr (v, v) = pr (b). By typability of b, ρ, C 1 . . . C ar (b) we have that pr (C i) = pr (b). But pr (C i) = pr (v i), so the lemma is proved.

In the rest of the section we prove the priority invariant for the second case, i.e., when the incoming v -→ transition is due to the variable rule. We need an auxiliary invariant on K(M), and for this we introduce a definition.

Definition 25

We say that a closure (N, ρ) is apr-consistent if for every variable x free in N we have: max(apr (x, N)) ≤ pr (ρ(x)), and ρ(x) is apr-consistent.

An extended closure (v, N, ρ) is apr-consistent if (N, ρ) is.
Lemma 26 For every configuration (N, ρ, S) labeling a node in K(M): (N, ρ) is apr-consistent as well as every closure C appearing in S.

Proof

Once again the proof is by induction on the distance of a node from the root of K(M).

Consider the abstraction rule (λx.N, ρ, C • S) -→ (N, ρ[C/x], S). From typability of λx.N, ρ, CS it follows that either apr (x, N) = {pr (C)}, or it is the empty set. In the later case we are done as x does not appear free in N . In the former case, we need only to check the condition for x. This follows from apr (x, N) = {pr (C)}, and the fact that ρ was apr-consistent.

The case of a constant

) v i -→ q i ≤ (K i , ρ i , ε)
follows directly from the definition. The case of the fixpoint rule (Y r F.N, ρ, S) -→ (N, ρ[(v, Y r F.N, ρ)/F], S). For F , we have by typability that either apr (F, N) = {r} or it is the empty set. In both cases the apr-consistency condition is satisfied. For every other variable free in N , we observe that max apr in N cannot be bigger than its max apr in Y r F.N . Finally, newly created closure (v, Y r F.N, ρ) is aprconsistent since (Y r F.N, ρ) was by induction hypothesis.

The case of application (N • r K, ρ, S) -→ (N, ρ, (v, K, ρ)S). Closure (N, ρ) is apr-consistent since (N • r K, ρ) is. For the same reason closure (K, ρ) is apr-consistent since max apr of a free variable in K, cannot be bigger than its max apr in N • r K.

Finally, we consider the case of a variable (x, ρ, S) -→ (K x , ρ x , S) for ρ(x) = (v x , K x , ρ X). By induction hypothesis we have that (K, ρ x) is consistent, so we are done.

Instead of proving the priority invariant we will consider stronger statement that we will prove by induction. For this we need a definition.

Proof

We proceed by induction on the distance of a node v from the root. Clearly the root is stable. We consider rules of constructing K(M, D, q 0) one by one.

Consider the abstraction rule (λx.N, ρ, C • S) -→ (N, ρ[C/x], S). We need to show that (N, ρ[C/x]) is 0-stable in v. By typability, Lemma 22, we have that apr (x, N) is a singleton or it is empty. In the later case we are done. In the former case, say apr (x, N) = {r}. Once again by typability, pr (C) = r. We need to show pr (C) = 0 ⊕ r ⊕ pr (v(ρ(x)), v) But we have pr (v(ρ(x)), v) = 0 by Lemma 23.

The case of a constant

q ≤ (b, ρ, C 1 . . . C ar (b)) pr (b) -→ (S 1 , . . . , S ar (b)) ≤ (C 1 , . . . , C ar (b)) v i -→ q i ≤ (K i , ρ i , ε)
We need to show that (K i , ρ i) is 0-stable. But this is immediate since every C i is 0-stable. The case of fixpoint rule (Y r F.N, ρ, S) -→ (N, ρ[(v, Y r F.N, ρ)/F], S) applied in a node v. By typability, Lemma 22, either apr (F, N) = {r} or it is the empty set. In the second case we are done. In the first, we need to show that (N, ρ[(v, Y r F.N, ρ)/F]) is 0-stable in v , the successor of v. For variable F the stability property holds because apr (F, N) = {r}, and pr (v, v) = 0. We need to show that (v, Y r F.N, ρ) is 0-stable in v , that is that (Y r F.N, ρ) is r stable in v . We know that it is 0 stable in v, hence in v . Moreover, by the definition of apr , for every x free in Y r F.N and every s ∈ apr (x, Y r F.N) we have s ≥ r. So the stability property holds for x. Then thanks to Lemma 29, the stability property holds for all closures hereditary appearing in ρ(x). For the other closures the stability property holds by induction hypothesis.

The case of application rule (N • r K, ρ, S) -→ (N, ρ, (v, K, ρ)S) used in node v, giving the unique successor v . Clearly (N, ρ) is 0-stable in v since pr (v, v) = 0, and (N • r K, ρ) is 0-stable in v. We show that (K, ρ) is r-stable in v , and use the fact that (K, ρ) is 0-stable in v. For this it is enough to observe that pr (ρ(x)) ≥ r for every x free in K. Indeed if s ∈ apr (x, N • r K) then s ≥ r, and the stability equation gives us pr (ρ(x)) ≥ s.

Finally, we consider the case of a variable (x, ρ, S) -→ (K x , ρ x , S) for ρ(x) = (v x , K x , ρ x). As before, we assume that the rule is applied at node v and the unique successor of v is v . We know by induction hypothesis that (K x , ρ x) is rk (v x)-stable in v, hence in v . We need to show that it is 0 stable in v . Take an y free in K x . The pr (v x)-stability in v says that pr (ρ x (y)) = pr (v x) ⊕ s ⊕ pr (v(ρ x (y)), v). For 0-stability in v we need to show that pr (ρ x (y)) = s ⊕ pr (v(ρ x (y)), v). For this we show that pr (v x) ≤ pr (v(ρ x (y)), v). Node v(ρ x (y)) is an ancestor of v x , because the closure ρ x (y) was there when the closure (v x , K x , ρ x) was created. This gives pr (v(ρ x (y)), v) ≥ pr (v x , v) since pr is the maximum rank on the path. But pr (v x , v) = pr (v x) by stability property using the fact that (x, ρ) is 0-stable and apr (x, x) = {0}.

Together Lemmas 24, 28 and 30 imply Lemma 20 saying that the priority invariant holds in K(M, D, d 0).

A game characterization of the semantics

Recall that we are working with finitary powerset models as in Definition 3. Instead of taking just any lattice as a base set, we have insisted that the base set is the powerset lattice P(Q) for some set Q. We will use this in the game characterization of the semantics presented in this section. The characterization is a quite direct translation of the semantic clauses into a game. It could have worked for any lattice model, but the distributivity property gives a smoother presentation and will allow later for better complexity arguments.

We will use a notion of a step function that is not completely standard. A step function of type Positions of the game will be of the form q ≤ (N, ϑ, g) where: q ∈ Q is a state, N is a term, ϑ is a valuation of free variables in N , and g is a sequence of elements of the model of appropriate types: if the type of N is A 1 → . . . A k → o, then g is a sequence of k-elements of type A 1 , . . . , A k respectively. This way [[N, ϑ]] applied to g is an element of D o . The intuitive meaning of a node q ≤ (N, ϑ, g) is that q ∈ [[N, ϑ]] g.

A 1 → • • • → A k → o is given by g = (g 1 , . . . , g k) ∈ D A 1 × • • • × D A k and q ∈ Q; it is a function g q such that (g d)(h 1 , . . . , h k) = {q} if h i ≥ g i for all i = 1, . . .
We define a game SG(M, D) for a closed term M of type o, and model D over the base set P(Q). The rules of the game are presented in Figure 7. Eve chooses f in fixpoint and application nodes. Next, Adam chooses a successor in nodes of the form q ≤ (f ; . . .). An infinite play is won by Eve iff the smallest priority seen infinitely often on the edges of the path is even. Actually, a short inspection of the game shows that the size of the term in the first component never increases. This means that SG(M, D) is actually a weak parity game, so it would be enough to use two priorities 0 and 1.

Lemma 31 Consider the game SG(M, D). A position

q ≤ (N, ϑ, g) is win- ning for Eve iff [[N, ϑ]] ≥ g q. • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]
](g); otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g)
• q  (b, #, g) is winning for Eve if q 2 [[b]](g); otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0 
(Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 (x.N, #, f • g) ! q  (N, #[f/x], g) (b, #, g) is winning for Eve if q 2 [[b]](g);
rwise Adam wins in this node.

(Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  .N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

(

N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

(x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f •g) and ! q 0  (K, #, h)
for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3

• q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0 
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0 
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0 
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 x.N, #, f • g) ! q  (N, #[f/x], g) b, #, g) is winning for Eve if q 2 [[b]](g);
wise Adam wins in this node.

Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) ll f and h of an appropriate type, and q 0 2 f (h).

N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  , h
) for all f , h of an appropriate type, and q 0 2 f (h).

x, #, g) is winning for Eve i↵ q 2 #(x)(g).

• q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r ! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g)
and ! q 0  (K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3

• q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0 
(K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3 • q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g)
and ! q 0  (K, #, h) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3

• q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

3

• q  (x.N, #, f • g) ! q  (N, #[f/x], g) • q  (b, #, g) is winning for Eve if q 2 [[b]](g);
otherwise Adam wins in this node.

• q  (Y r F.N, #, g) ! q  (f; Y r F.N, #, g) ! q  (N, #[f/F], g) and r
! q 0  (Y r F.N, #, h) for all f and h of an appropriate type, and q 0 2 f (h).

• q  (N • r K, #, g) ! q  (f; N • r K, #, g) ! q  (N, #, f • g) and ! q 0  (K, #, h
) for all f , h of an appropriate type, and q 0 2 f (h).

• q  (x, #, g) is winning for Eve i↵ q 2 #(x)(g).

Proof

The main insight is that in SG(M) almost every transition decreases the size of the term in the first component of a position; not counting intermediate (f ; . . .) nodes. The only exception is when going to the right in the fixpoint rule; in this case the size of the term does not change. So on every infinite path in SG(M) the term in the first component eventually stays the same.

In consequence, every infinite path must have a suffix of the form q ≤ (Y r F.N, ϑ, g) -→ q ≤ (f 1 ; Y r F.N, ϑ, g) r -→ q 1 ≤ (Y r F.N, ϑ, h 1) -→ . . . for some f i , h i , and

q i ∈ f i (h i).
With this observation we prove the theorem by induction on the size of N . For each case we consider both directions of the implication. The cases for fixpoint will require bit more work.

The case of a variable x. The statement of the theorem reduces to: a position q ≤ (x, ϑ, g) is winning for Eve iff {q} ≤ ϑ(x)(g). That is exactly the rule of the game.

The case of a constant is direct from the definition. The case of abstraction λx.N . If a position q ≤ (λx.N, ϑ, f • g) is winning then q ≤ (N, ϑ[f /x], g) must be also winning. By induction hypothesis this means

[[N, ϑ[f /x]]] ≥ g q. So [[λx.N, ϑ]] ≥ f g q. Since f g d is (f • g) q we get the desired [[λx.N, ϑ]] ≥ (f • g) q.
The reasoning in the opposite direction is analogous.

The case of application N K. If a position q ≤ (N K, ϑ, g) is winning then there is f such that the position q ≤ (f ; N K, ϑ, g) is winning. This means that the positions q ≤ (N, ϑ, f • g) as well as q ≤ (K, ϑ, h) are winning for all h, and q ∈ f (h). By induction assumption

[[N, ϑ]] ≥ f g q and [[K, ϑ]] ≥ h f (h) for all h. The later simply means that [[K, ϑ]] ≥ f . So [[N, ϑ]][[K, ϑ]] ≥ g q which gives the desired [[N K, ϑ]] ≥ g q. If [[N K, ϑ]] ≥ g q then [[N, ϑ]][[K, ϑ]] ≥ g q, giving us [[N, ϑ]] ≥ [[K, ϑ]] g q. By induction hypothesis this shows that d ≤ (N, ϑ, [[K, ϑ]]• g) is winning. Thus in order to show that q ≤ (N K, ϑ, g) is winning we can take f = [[K, ϑ]].
It remains only to verify that q ≤ (K, ϑ, h) is winning for every h, and every

q ∈ f (h). But recalling what is f we have [[K, ϑ]](h) = f (h) hence [[K, ϑ]] ≥ h f (h),
and by the induction hypothesis we get that q ≤ (K, ϑ, h) is winning.

The case of Y r F.N when r is even. Suppose q ≤ (Y r F.N, ϑ, g) is winning for Eve. Examining the rules of the game we get an infinite tree with paths of the following form

q w• h ≤ (Y r F.N, ϑ, h) -→ q w• h ≤ (f w• h ; Y r F.N, ϑ, h) r -→ q w• h• h i ≤ (Y r F.N, ϑ, h i), for q w• h• h i ∈ f w• h (h i).
Here subscripts w are sequences of h. The function f w• h is given by the strategy. Branching is at q w• h ≤ (f w• h ; Y r F.N, ϑ, h) node that has a successor for every possible h i and

q w• h• h i ∈ f w• h (h i).
The root of the tree is q ≤ (Y r F.N, ϑ, g) so in order to have a homogeneous notation we can set h ε to be g, and f ε to be the step function g q. We take f to be the supremum of all f w . Observe that since we are in finite lattices, for every h there is w such that f (h) = f w (h).

The rules of the game tell us that for every w, h and

q w• h ∈ f w (h) the position q w• h ≤ (N, ϑ[f w /F], h) is winning. So by induction hypothesis [[N, ϑ[f w /F]]] ≥ h f w (h). Taking w such that f w (h) = f (h), and using monotonicity we obtain [[N, ϑ[f /F]]] ≥ h f (h). Since h is arbitrary, this shows [[N, ϑ[f /F]]] ≥ f . Thus [[Y r F.N, ϑ]] ≥ f because f is a
fixpoint and the semantics is the greatest fixpoint.

We are done since

[[Y r F.N, ϑ]](g) ≥ f (g) ≥ f ε (g) = q;
where the last equation is by the definition of f ε .

For the other direction suppose that [[Y r F.N, ϑ]] ≥ g q and r is even.

Consider f = [[Y r F.N, ϑ]].
In order to show that q ≤ (Y r F.N, ϑ, g) is winning we make Eve choose q ≤ (f ; Y r F.N, ϑ, g). Then Adam can either choose q ≤ (N, ϑ[f /F], g), or q ≤ (Y r F.N, ϑ, h) for some h, and

q ∈ f (h). Position q ≤ (N, ϑ[f /F], g) is winning by the induction hypothesis since [[N, ϑ[f /F]] ≥ g q.
It remains to show that for every h and q ∈ f (h), position q ≤ (Y r F.N, ϑ, h) is winning. For this, since r is even, it is enough to show how Eve can play to stay in these positions or to go to positions that are already known to be winning. From a position q ≤ (Y r F.N, ϑ, h) Eve should chose f so the game proceeds to q ≤ (f ; Y r F.N, ϑ, h). Then Adam can bring the game either to q ≤ (N, ϑ[f /F], h) or choose some h 1 and go to q ≤ (Y r F.N, ϑ, h 1) for some q ∈ f (h 1). Positions of the second type are of the form we have assumed to be winning. The position of the first type is winning by the induction hypothesis since

[[N, ϑ[f /F]]] = f ≥ h → f (h).
This finishes the proof for this case.

The case of Y r F.N when r is odd. Suppose q ≤ (Y r F.N, ϑ, g) is winning. As before examining the rules of the game we get a tree of the following form

q w• h ≤ (Y r F.N, ϑ, h) -→ q w• h ≤ (f w• h ; Y r F.N, ϑ, h) r -→ q w• h• h i ≤ (Y r F.N, ϑ, h i), for q w• h• h i ∈ f w• h (h i).
The essential difference is that for rodd this tree is finite. As before subscripts w are sequences of h. The function f w• h is given by the strategy. Branching is at q w• h ≤ (f w• h ; Y r F.N, ϑ, h) node that has a successor for every possible h i and

q w• h• h i ∈ f w• h (h i).
The root of the tree is q ≤ (Y r F.N, ϑ, g) so in order to have a homogeneous notation we can set h ε to be g, and f ε to be the step function g d. The leaves are q w• h ≤ (⊥; Y r F.N, ϑ, h).

We prove [[Y r F.N, ϑ]] ≥ h f w (h) for every node of this tree. The proof is by induction on the height of the node. If it is a leaf

q w• h ≤ (⊥; Y r F.N, ϑ, h) then q w• h ≤ (N, ϑ[⊥/F], h) is winning. So by induction hy- pothesis [[N, ϑ[⊥/F]]] ≥ h q w• h . Hence also [[Y r F.N, ϑ]] ≥ h q w• h . For the induction step consider f w• h . By induction hypothesis on the size of terms we have [[N, ϑ[f w• h /F]]] ≥ h f w• h (h). By induction on the tree we have [[Y r F.N, ϑ, h]] ≥ h i f w• h (h i) for all h i . This means that [[Y r F.N, ϑ, h]] ≥ f w• h . Putting this together we obtain [[Y r F.N, ϑ]] ≥ h f w (h).
For the other direction we need to prove that if

[[Y r F.N, ϑ]] ≥ g q then q ≤ (Y r F.N, ϑ, g) is winning. Let f = [[Y r F.N, ϑ]]. Since [[Y r F.N, ϑ]] = LFP Z.[[N, ϑ[Z/F]]], it is the supremum of approximations f i , where f 0 = ⊥ and f i+1 = [[N, ϑ[f i /F]]]
. For every g, and q such that q ∈ f (g) there is the smallest i such that q ∈ f i (g). We reason by induction on this i and show that q ≤ (Y r F.N, ϑ, g) is winning. If i = 0 the statement is immediate. For the induction step we consider g with q ∈ f i+1 (g). From the position q ≤ (Y r F.N, ϑ, g) we let Eve to chose f i and move to q ≤ (f i ; Y r F.N, ϑ, g). Then Adam can either chose q ≤ (N, ϑ[f i /F], g) or q ≤ (Y r F.N, ϑ, h) for some h, and q ∈ f i (h). The positions of the second kind are winning by our induction hypothesis. Concerning q ≤ (N, ϑ[f i /F], g), we show that [[N, ϑ[f i /F]]] ≥ g q and use the induction hypothesis. Indeed, using the definition of

f i we have [[N, ϑ[f i /F]]] = f i+1 ,
and since f i+1 (g) ≥ q we are done.

5.3 Equivalence of K(M, D, q 0) and SG(M, D).

We prove that the same player wins in the K(M, D, q 0) as in SG(M, D).

Suppose Eve has a winning strategy σ in K(M, D, q 0). A strategy for Eve in SG(M, D) should tell her what values f to play in application and fixpoint rules. We show how to read them from σ.

We define a residual for every closure (v, K v , ρ v) created in K(M, D, q 0). It will be an element of D A where A is the type of K v . We denote it by We now show that indeed Eve can play so that the invariant is preserved, and win every play. For this we examine the rules of the game SG(M, D) one by one. The cases are pictured in Figure 8 • For λ-abstraction there is a unique successor. We have the situation as depicted in Figure 8. Clearly v 1 and v 2 satisfy the invariant.

• For a constant b we have once again refer to Figure 8. Node v 1 has the unique successor v 1 given by the strategy σ. In turn, node v 1 has a successor v i,q i 1 for all i = 1, . . . , ar (b), and all q i ∈ d i . Say,

C i = (v i , K i , ρ i). The transition from v 1 to v i,q i 1 implies that q i ∈ R σ (v i). Hence d i ≤ R σ (v i) = R σ (C i). Since q ∈ [[b]](d 1 , . . . , d ar (b)) then also q ∈ [[b]](R σ (C 1), . . . , R σ (C ar (b)
)) by monotonicity. So, Eve wins in v 2 .

• For fixpoint the situation the situation is presented in Figure 8. The strategy for Eve is to chose R σ (v 1). Then Adam can choose v N or v q , h for some h and q such that q ∈ R σ (v 1)(h). In the first case the vertex corresponding to v N is v 1 . In the second case we know by the definition of R σ (v 1) that there is a descendant v q ,S of v 1 such that h = R σ (S). The maximal priority on the path from v 1 to v q,S is r by Lemma 20. We choose v q ,S as the vertex associated to v q , h ; the invariant is clearly satisfied.

• For application the situation is very similar to that of a fixpoint. As in the case of the fixpoint, the strategy for Eve is to chose R σ (v 1). Then Adam can choose v N or v q , h for some h and q such that q ∈ R σ (v 1)(h). In the first case the vertex corresponding to v N is v 1 . In the second case we know by the definition of R σ (v 1) that there is a descendant v q ,S of v 1 such that R σ (S) = h. The maximal priority on the path from v 1 to v q ,S is r by Lemma 20. We choose v q ,S as the vertex associated to v q , h ; the invariant is clearly satisfied.

• For a variable the situation is:

v 1 :q ≤ (x, ρ, S) v 2 :q ≤ (x, R σ (ρ), R σ (S)) ↓ v K v 1 :q ≤ (K, ρ K , S)
win for Eve

where ρ(x) = (v K , K, ρ K). By the definition of R σ (v K) we have q ∈ R σ (v K)(R σ (S)). But then R σ (ρ)(x) = R σ (v K
) by the invariant, so indeed the position is winning for Eve.

We have shown how to play in G(M) while preserving the invariant, and win if a play terminates. For an infinite play in SG(M, D), by the priority

The case of λ-abstraction:

v 1 :q ≤ (λx.N, ρ, (v K , K, ρ K) • S) v 2 :q ≤ (λx.N, R σ (ρ), R σ (v K) • S)) ↓ ↓ v 1 :q ≤ (N, ρ[(v K , K, ρ K)/x], S) v 2 :q ≤ (N, R σ (ρ)[R σ (v K)/x], R σ (S))
The case of a constant:

v 1 :q ≤ (b, ρ, S) v 2 :(b r , R(ρ), R σ (S)) ↓ pr (b) v 1 :(d 1 , . . . , d ar (b)) ≤ (C 1 , . . . , C ar (b))
win for Eve

↓ v i v i,q i 1 :q i ≤ (K i , ρ i , ε)
The case of a fixpoint:

v 1 :q ≤ (Y r F.N, ρ, S) v 2 :q ≤ (Y r F.N, R σ (ρ), R σ (S)) ↓ ↓ v 1 :q ≤ (N, ρ[(v 1 , Y r F.N, ρ)/F], S) v Y :q ≤ (R σ (v 1); Y r F.N, R σ (ρ), R σ (S)) ↓ v N :q ≤ (N, R σ (ρ)[R σ (v 1)/F], R σ (S)) ↓ r v F,S :q ≤ (F, ρ , S) ρ (F) = (v 1 , Y r F.N, ρ) ↓ ↓ r v q ,S :q ≤ (Y r F.N, ρ, S) v q , h :q ≤ (Y r F.N, R σ (ρ), h)
The case of an application: invariant, Lemma 20, the maximal priority appearing infinitely often on this play is the same as the maximal priority appearing infinitely often on the corresponding play in K(M, D, q 0). Hence, Eve wins also every infinite play.

v 1 :q ≤ (N • r K, ρ, S) v 2 :q ≤ (N K, R σ (ρ), R σ (S)) ↓ ↓ v 1 :q ≤ (N, ρ, (v 1 , K, ρ)S) v 2 :q ≤ (R σ (v 1); N • r K, R σ (ρ), R σ (S)) ↓ v N :q ≤ (N, R σ (ρ), R σ (v 1)R σ (S)) ↓ v x,S :q ≤ (x, ρ , S) ρ (x) = (v 1 , K, ρ) ↓ v 1 ↓ r v q ,S :q ≤ (K, ρ, S) v q , h :q ≤ (K, R σ (ρ), h)
Lemma 34 If Adam wins in K(M, D, q 0) then Adam wins in SG(M, D) from q 0 ≤ (M, ∅, ε).

Proof Suppose Adam has a winning strategy σ in K(M, D, q 0). As in the case for Eve we define the residuals R σ (v). The definition is the same as before, but using σ instead of σ.

Similarly to the previous lemma, Adam will use σ in K(M, D, q 0) to play in SG(M, D). As before a position q ≤ (N, ρ, S) in K(M, D, q 0) determines a valuation R σ (ρ) and a sequence of elements of the model R σ (S).

In order to describe the invariant Adam will preserve, we need to define a complementarity predicate, Comp(R 1 , R 2) between residuals of the same type:

• For R 1 , R 2 ∈ D o , we let Comp(R 1 , R 2) if R 1 ∩ R 2 = ∅. • For R 1 , R 2 ∈ D A 1 →•••→A k →o we let Comp(R 1 , R 2) if for all sequences (R 1,1 , . . . , R 1,k), (R 2,1 , . . . , R 2,k) ∈ D A 1 × • • • × D A k satisfying predi- cates Comp(R 1,i , R 2,i), for i = 1, . . . , k, we have R 1 (R 1,1 , . . . , R 1,k) ∩ R 2 (R 2,1 , . . . , R 2,k) = ∅.
Adam will preserve the following invariant

v 1 : (N, ρ, S) v 2 : (N, ϑ, g) Comp(R σ (ρ), ϑ) and Comp(R σ (S), g)
where, as before, R σ (ρ)(x) = R σ (ρ(x)) and R σ (v, K v , ρ v) = R σ (v); and similarly for S. We examine possible moves of the game one by one. The possible situations are depicted in Figure 9. We discuss them below.

• For λ player have no choice and the result clearly satisfies the invariant.

• For a constant b there is a branching for every (d 1 , . . . , d ar (b)) such that q ∈ [[b]](d 1 , . . . , d ar (b)). We need to show that q ∈ [[b]](g). Suppose to the contrary. Then we can take g for (d 1 , . . . , d ar (b)). This gives us

q i ∈ d i ∩ R σ (v i). But d i = g i and Comp(g i , R σ (v i)) by the invariant. Since g i is of type 0, g i ∩ R σ (v i) = ∅. A contradiction.
• In case of application, to decide on his move Adam verifies if predicate Comp(R σ (v 1), f) holds. If it does then Adam chooses v N with

v 1 :q ≤ (λx.N, ρ, (v K , K, ρ K) • S) v 2 :q ≤ (N, ϑ, d • g)) ↓ ↓ v 1 :q ≤ (N, ρ[(v K , K, ρ K)/x], S) v 2 :q ≤ (N, ϑ[d/x], g)
The case of a constant:

v 1 :q ≤ (b, ρ, S) v 2 :q ≤ (b r , ϑ, g)) ↓ pr (b) v 1 :(d 1 , . . . , d ar (b)) ≤ (C 1 , . . . , C ar (b))
win for Adam

↓ v i v i,q i 1 :q i ≤ (K i , ρ i , ε)
The case of an application:

v 1 :q ≤ (N • r K, ρ, S) v 2 :q ≤ (N • r K, ϑ, g) ↓ ↓ v 1 :q ≤ (N, ρ, (v 1 , K, ρ)S) v 2 :q ≤ (f ; N • r K, ϑ, g) ↓ v N :q ≤ (N, ϑ, f • g) ↓ v x,S 1 :q ≤ (x, ρ x , S) ρ (x) = (v 1 , K, ρ) ↓ v 1 ↓ r v q ,S 1 :q ≤ (K, ρ, S) v q , h 2 :q ≤ (K, ϑ, h 2)
The case of a fixpoint:

v 1 :q ≤ (Y r F.N, ρ, S) v 2 :q ≤ (Y r F.N, ϑ, g) ↓ ↓ v 1 :q ≤ (N, ρ[(v 1 , Y r F.N, ρ)/F], S) v Y :q ≤ (f : Y r F.N, ϑ, g) ↓ ↓ v N :q ≤ (N, ϑ[f /F], g) ↓ r v F,S :q ≤ (F, ρ , S) ρ (F) = (v 1 , Y r F.N, ρ) ↓ ↓ r v q ,S 1 :q ≤ (Y r F.N, ρ, S 1) v q , h 2 :q ≤ (K, ϑ, h 2)
Figure 9: Constructing strategy for Adam in SG(M, D).

v 1 as the associated vertex, and the invariant is satisfied. If predicate Comp(R σ (v 1), f) does not hold then there are h 1 , h 2 such that Comp(h 1 , h 2) and q ∈ R σ (v 1)(h 1) = f (h 2), for some q . So there is node v q , h 2 by the definition of SG(M, D). By definition of R σ (v 1), there is a descendant v q ,S 1 of v 1 labeled (K, ρ, S 1) with R σ (S 1) = h 1 . Thus we can take v q ,S 1 as the vertex associated to v q , h 2 . The maximal priority on the path from v 1 to v q ,S 1 is r by Lemma 20.

• For fixpoint, to decide on his move Adam verifies if Comp(R σ (v 1), f) holds. If it does then Adam chooses v N with v 1 as the associated vertex, and the invariant is satisfied. If Comp(R σ (v 1), f) does not hold then there are h 1 , h 2 such that Comp(h 1 , h 2) and q ∈ R σ (v 1)(h 1) ∩ f (h 2) for some q . So there is node v q , h 2 by the definition of SG(M, D). By definition of R σ (v 1), there is a descendant v q ,S 1 of v 1 labeled (Y r F.N, ρ, S 1) with R σ (S 1) = h 1 . Thus we can take v q ,S 1 as the vertex associated to v q , h 2 .

• Variable

v 1 :q ≤ (x, ρ, S) v 2 :q ≤ (x, ϑ, g) v 1 :q ≤ (K, ρ K , S)
win for Adam where ρ(x) = (v K , K, ρ K). By the definition of R σ (v k) we have q ∈ R σ (v k)(R σ (S)). The invariant tells us that Comp(R σ (ρ)(x), ϑ) and Comp(R σ (S), g) hold. By the definition of Comp predicate, since q ∈ R σ (ρ(x))(R σ (S)) then q ∈ ϑ(x)(g). So the position is winning for Adam.

We have shown how Adam should play in SG(M, D) to preserve the invariant. This guarantees that whenever the play is finite, Adam wins. For an infinite play in SG(M, D), by the priority invariant, Lemma 20, the maximal priority appearing infinitely often on this play is the same as the maximal priority appearing infinitely often on the corresponding play in K(M, D, q 0). Hence, Adam wins also every infinite play.

6 Expressiveness of the λY -calculus with priorities

In this section we show that λY -calculus with priorities is sufficiently expressive: for every assignment of priorities to constants and for every λYterm there is an equivalent λY -term with priorities. By equivalent we mean that the two terms generate the same Böhm trees. The construction of the λY -term with priorities is effective. The presented construction gives an exponentially bigger term, but by sharing common subterms one can obtain a translation with only a quadratic blowup. Anyway the blow-up in the term size is not the main factor in our complexity considerations. The translation presented below was proposed by Melliès [START_REF] Grellois | Finitary semantics of linear logic and higher-order model-checking[END_REF][START_REF] Melliès | Higher-order verification[END_REF]. Here, it is extended to a fixpoint operator. The other translations in the higher-order model checking literature, [START_REF]Using models to model-check recursive schemes[END_REF][START_REF] Kobayashi | Functional programs as compressed data[END_REF][START_REF] Haddad | Model checking and functional program transformations[END_REF] or even before [START_REF] Van Bakel | The heart of intersection type assignment: Normalisation proofs revisited[END_REF], are bit different. They make a "product" of a term and a finite automaton/model; roughly they work on a normal form without first calculating one. For example, they can be used for so called global model checking problem, or to produce an image under a tree transducer [START_REF] Kobayashi | Functional programs as compressed data[END_REF]. Melliès construction handles priorities priorities between a binding and a use of a variable.

Fix an alphabet with priorities, Σ pr . This means that every constant b in Σ pr has its arity ar (b) and its priority pr (b). The two determine a priority type θ b of b; (cf. page 10). By forgetting priorities we get a normal alphabet Σ, where every constant has a simple type A b obtained by erasing priorities from θ b . Let p be the largest priority of a constant in Σ pr . Consider an operation transforming simple types into types with priorities:

o + = o (A → B) + = (p, A +) → • • • → (0, A +) → B +
We describe a matching operation on terms. It uses variables with superscripts that correspond to priorities. So for every variable x in the original term, we have x 0 , . . . , x p in the translated term.

The translation presented in Figure 10 uses some notation. For a term N with variables with superscripts, and a rank i we define N r to be a term obtained from N by replacing every free variable x i in N by x i⊕r ; recall that ⊕ denotes maximum operation. We will also need a variant of this operation, N r,F , where r is applied to all variables but F . For example in (ax 0 F 0) r,F is ax r F 0 . Observe that N 0 is just N but sometimes we will still use 0 for consistency.

The translation for a variable just selects variable with priority 0. The translation for a constant is a λ-term that multiplies the arity of the constant by p + 1, and then selects only components corresponding to the priority of the constant. The translation for the abstraction replicates the abstraction (p+1)-times; intuitively x i corresponds to appearances of x with application priority i (cf. Definition 11). The translation of application duplicates the argument (p + 1)-times, and uses an application of a different priority for each of the arguments. The translation for the fixpoint is by far the most complicated. It uses an auxiliary translation ((Y F.N)) i .

Remark: It would be tempting to translate Y F.N to

Y k F k .(. . . (Y 1 F 1 .(Y 0 F 0 .pa(N)) 1) 2) • • •) k
Unfortunately, the result may be not priority typable. This translation would be typable using the fixpoint rule without the side condition. As we have seen in the example on page 16, without the side condition the rule does not ensure that terms are priority homogeneous which is crucial for our constructions.

. . . (b • r x r 1) • • •) • r x r ar (b) where r = pr (b) pa(x.N) = x p . . . x 0 .pa(N) pa(MN) = (• • • (pa(M) • p pa(N) p) • p 1 pa(N) p 1) • • • • 0 pa(N) 0 pa(Y F.N) = ((Y F.N)) 0 where ((Y F.N)) p = Y p F p . . . Y 0 F 0 .pa(N) p,F ((Y F.N)) p 1 = Y p 1 F p 1 . . . Y 0 F 0 . pa(N) (p 1),F [((Y F.N)) p /F p] . . . ((Y F.N)) 0 = Y 0 F 0 .pa(N) 0,F [((Y F.N)) 1 /F 1 . . . ((Y F.N)) p /F p] 1
The correctness of the translation is stated in the next theorem. In the proof it is very handy to use the equivalence between models and automata with trivial acceptance conditions, Proposition 7.

Theorem 35 For every closed term M of type o of λY -calculus, term pa(M) is priority typable, and BT (pa(M)) = BT (M).

The rest of the section is devoted to the proof of this theorem. The next lemma takes care of the first part of the theorem.

Lemma 36 If Γ M : A in simple types then Γ + pa(M) : A + in priority types.

Proof

We will do a proof by induction on the derivation in simple types, but we will need a more general statement. For this we need to generalize r and r operations Let lift : Vars → {-1, 0, . . . , d} be a function assigning a rank to every variable. We define Γ lift to be an priority typing environment obtained from Γ by • changing all assertions x = (r, θ) where r = lift(x) to x ≤ (r, θ); and

• removing assertions x = (i, θ) or x ≤ (i, θ) with i < lift(x).

In a similar way, we define M lift to be a term obtained from M by replacing every free variable x i by x i⊕lift(x) . which is the desired (Γ +) lift pa(M N) lift : B.

If the typing derivation ends with the fixpoint Γ Y F.M : A then it is preceded by Γ, F : A M : A. We use the induction assumption, supposing at the same time that lift(F) = -1. For arbitrary r = 0, . . . , p this gives us judgments:

(Γ +) lift r , F p = (p, A +), . . . , F 0 = (0, A +) pa(M) lift r,F : A +
Using the fixpoint rule (r + 1)-times we get

(Γ +) lift r , F p = (p, A +), . . . , F r+1 = (r + 1, A +) Y r F r . . . Y 0 F 0 .pa(M) lift r,F : A + (2)
Observe that the side condition of the fixpoint rule (cf. Fig 1) prevents us from applying it further since in (Γ +) lift r there may be assertions of rank r.

For r = p the equation (2) is

(Γ +) lift p Y p F p . . . Y 0 F 0 .pa(M) lift p,F : A + that is (Γ +) lift p ((Y F.M)) p lift :
A + , since lift and p,F commute. Next, we take equation (2) for r = p -1 we get

(Γ +) lift p-1 , F p = (p, A +) Y p-1 F p-1 . . . Y 0 F 0 .pa(M) lift r,F : A + Using Lemma 9 we get (Γ +) lift p-1 , Y p-1 F p-1 . . . Y 0 F 0 .pa(M) lift p-1,F [((Y F.M)) p lift /F p] : A + Which is (Γ +) lift p-1 , ((Y F.M)) p-1 lift
Continuing this way we get (Γ +) lift , ((Y F.M)) 0 lift that is the desired conclusion.

To complete the proof of Theorem 35 it remains to show that M and pa(M) generate the same trees: BT (pa(M)) = BT (M).

We claim that if two Σ-trees cannot be distinguished by an automaton with a trivial acceptance conditions then they are the same. This holds even for ⊥-blind automata. In consequence, by Proposition 7, two terms have the same Böhm trees iff they have the same value in all finitary lattice models under GFP-interpretation.

Let N be pa(N) with priority information removed (superscripts on application and fixpoint operators, but not over variables). By definition BT (pa(N)) is BT (N). Observe that when N uses a variable x, then N uses variables x 0 , . . . , x p . Given a valuation ϑ for N we can define a valuation ϑ for N by ϑ(x i) = ϑ(x), for i = 0, . . . , p. By induction on the size of N , we show that for every finitary lattice model D:

[[N, ϑ]] D GFP = [[N , ϑ]] D GFP .
For a closed term M this gives the desired conclusion.

Higher-order model-checking through powerset models

We examine how we can use the link between automata and models to do higher-order model-checking. Given λY -term M and parity automaton A, we want to decide if BT (M) is accepted by A from q.

We show that there is no overhead in reducing the higher-order modelchecking to evaluation in models. At the same time, the examples we give here show that evaluation in models should not be done naively, by just taking the semantic clauses.

Model-checking λY -calculus

Let us first look at the case when we have a prioritized alphabet Σ pr , a priority typed term M of type o, and a visibly parity automaton A, both over Σ pr . In this case we can construct a model D A as in Definition 4.

Theorem 16 tells us that [[M]] D A

is the set of states q from which A accepts BT (M). So the model-checking problem reduces to calculating the value of a term in the finitary powerset model constructed from the automaton.

The model-checking problem for λY -calculus, can be reduced to that for λY -calculus with priorities thanks to Proposition 14. Suppose we are given an alphabet Σ of typed constants, a λY -term M , and a parity automaton A; both over the alphabet Σ. For pr the priority function of A, we consider the maximal priority p, and construct a priority alphabet exp p (Σ) (cf. page 16). Both exp p (M) and exp p (A) are over the alphabet exp p (Σ), and exp p (A) is a visibly parity automaton. By Proposition 14, BT (M) is accepted by A from q, iff BT (exp p (M)) is accepted by exp p (A) from q. Finally, we can use Theorem 35 to obtain pa(exp p (M)), a priority typable term with the same Böhm tree as exp p (M). So the model checking problem reduces to checking if the Böhm tree of pa(exp p (M)) is accepted by exp p (A). By Theorem 16, this in turn can be done by evaluating pa(exp p (M))) in the model constructed from exp p (A).

We claim that the complexity of this approach is not worse than that of other approaches to the model checking problem. To carry out the complexity analysis we need to name some parameters of the problem. We have a fixed alphabet of constants with priorities, Σ pr . We use p for the maximal priority in Σ pr . We use |M | for the size of the term, and |Q| for the number of states in A. Let n > 0 be the maximal order of the type of a subterm of M ; Let n fix ≤ n be the maximal order of a fixpoint subterm of M . We start counting the order from 0, namely: order (o) = 0, and order (A → B) = max(order (A) + 1, order (B)). Finally, we use K for the maximal arity of a subterm of M ; where the arity of a term is the sum of the number of its free variables and the number of its arguments. Observe that together n and K give a bound on the shape of types of subterms of

Model-checking higher-order recursive schemes

To look at the complexity of model-checking schemes, we need to look at a translation from schemes to the λY -calculus [START_REF] Salvati | Simply typed fixpoint calculus and collapsible pushdown automata[END_REF]. Terms obtained by translating schemes are in a β-normal form (but, of course, not in βδ-normal form). Moreover, all fixpoint subterms are semi-closed : the only free variables are those that are later closed with a fixpoint operator. The notion of arity we have used above becomes a standard one for schemes, since the right-hand sides of equations do not have free variables. If we use the translation from [START_REF] Salvati | Simply typed fixpoint calculus and collapsible pushdown automata[END_REF] followed by the method described above we do not get the algorithm of same complexity as [START_REF] Kobayashi | A type system equivalent to modal mucalculus model checking of recursion schemes[END_REF]. The problem is that in op. cit. the algorithm has the complexity of Tower n while our calculation gives the complexity of Tower nmax +1 . The complexity is bigger when n fix = n.

This discrepancy in the complexity is actually not that surprising. The target of our reduction is a weak parity game while the target of the reduction in [START_REF] Kobayashi | A type system equivalent to modal mucalculus model checking of recursion schemes[END_REF] is a parity game. The problem comes from the fact that in the semantic game, in the case of the fixpoint rule, Eve is required to play with what she thinks approximates the semantics of the fixpoint. One exponent can be saved by limiting her choice: we may allow her to play only with approximations of the fixpoint from the Knaster-Tarski theorem. Their number is bounded by the height of the lattice, so in our case it is one exponent smaller than the size of the lattice. Yet, even better is to handle fixpoints through a parity condition.

We describe a game P SG(M, D) that is a variant of SG(M, D) where fixpoints are handled through unfolding and a parity condition. We assume that every fixpoint subterm of M is semi-closed. Recall that terms obtained from translations of schemes have this property. Without loss of generality we may assume that every fixpoint variable in M is bound once. So a variable F bound in M uniquely identifies the fixpoint subterm Y r F.N in M . We refer to this subterm as term(F, M).

The rules of the game P SG(M, D) are the same as SG(M, D) (cf. Figure 7) but for those handling the fixpoint. They become:

• q ≤ (Y r F.N, ϑ, g) -→ q ≤ (N, ϑ, g) • q ≤ (F, ϑ, g) r -→ q ≤ (N, ϑ, g) when term(F, M) = Y r F.N
The winning condition in P SG(M, D) is the parity condition given on the parities written on the edges. We get an analog of Lemma 32.

Lemma 37 If Eve wins in K(M, D, q 0) then Eve wins in P SG(M, D) from q 0 ≤ (M, ∅, ε). Moreover she can win by playing with residuals. Analogously for Adam.

The size of the game P SG(M, D A) is of order of magnitude Tower n , since contrary to SG(M, D A) the sizes of domains for fixpoints do not enter into computation. Thus using P SG(M, D A) we obtain the same worst case complexity as algorithms working directly for schemes.

In the rest of this subsection we give a proof of Lemma 37. The proof is almost the same as for the equivalence with SG(M, D) but for handling fixpoints. The rules of the game K(M, D, q 0) are given in Figure 5. For convenience we list in full the rules for the game P SG(M, D) in Figure 11.

We need some definitions concerning syntactic dependencies between Y -variables. For two Y -variables F, G of M , we write F M G for the transitive closure of the relation "F occurs free in term(G, M)". We say that F is hereditary free in a subterm N of M if there is G free in N such that F M G.

Lemma 38

The relation F G is a partial-order. We have F G iff F is hereditary free in Y G.N G .

Proof

For the first statement it is sufficient to prove that F G is antisymmetric. This follows from the observation that F G implies that the size of term(F, M) is strictly bigger than that of term(G, M).

For the right-to-left implication of the second statement we take some H free in Y G.N G , such that F H. Since we have H G we get F G by transitivity.

For the left-to-right implication we take H such that F H G, and H is the -smallest possible; or let F = H if there is no such H. This means that H appears free in Y G.N G . So F is hereditary free in Y G.N G .

• q ≤ (λx.N, ϑ, f • g) -→ q ≤ (N, ϑ[f /x], g) .

• q ≤ (N • r K, ϑ, g) -→ q ≤ (f ; N • r K, ϑ, g) -→ q ≤ (N, ϑ, f • g) and -→ q ≤ (K, ϑ, h) for all f , h of an appropriate type, and q ∈ f (h).

• q ≤ (b, ϑ, g) is winning for Eve if q ∈ [[b]](g); otherwise Adam wins in this node.

• q ≤ (x, ϑ, g) is winning for Eve iff q ∈ ϑ(x)(g); here x is a λ-variable.

• q ≤ (Y r F.N, ϑ, g) -→ q ≤ (N, ϑ, g) .

• q ≤ (F, ϑ, g) r -→ q ≤ (N, ϑ, g) when term(F) = Y r F.N . We prove that the same player wins in the K(M, D, q 0) as in P SG(M, D). As for the equivalence with SG(M, D), we use the notion of residual presented on page 30.

We describe how Eve should play in P SG(M, D) in order to win. While playing in P SG(M, D), Eve will also play in K(M, D, q 0) and use the strategy there. We use residuals as defined on page 30. From a position q ≤ (N, ρ, S) in K(M, D, q 0) Eve can read a valuation R σ (ρ) and a sequence of values R σ (S). The valuation is defined by R σ (ρ)(x) = R σ (v x) were ρ(x) = (v x , K x , ρ x), and x is a λ-variable. This time Y -variables do not have values since they are never evaluated in P SG, they are just unfolded. Similarly, the i-th element of R σ (S) is R σ (v i), where the i-th element of S is (v i , K i , ρ i).

In order to win in P SG(M, D), Eve will also play in K(M, D, q 0) and preserve a certain invariant. When a play reaches a node v 2 of P SG(M, D), in the other game the corresponding play will reach a node v 1 leading to a situation: v 1 : q ≤ (N, ρ, S) v 2 : q ≤ (N, ϑ, g)

with the following properties:

I1 ϑ(x) = R σ (ρ)(x) for every λ-variable x free in N , and g = R σ (S).

I2 If F is Y -variable hereditary free in N and ρ(F) = (v F , Y F.N F , ρ F) then for every node v on the path from v F to v, F is hereditary free in the term component of the label of v .

To be precise, the term component of a label of a node is K, when a node label is q ≤ (K, ρ, S).

We now show that indeed Eve can play so that the invariant is preserved, and win every play. For this we examine the rules of the game P SG(M, D). The cases are presented in Figure 12. We discuss them one by one.

• For λ-abstraction there is a unique successor in each game. Clearly v 1 and v 2 satisfy the invariant.

• For a constant b we have the following situation: Node v 1 has the unique successor v 1 given by the strategy σ. In turn, node v 1 has a successor v i,q i 1 for every i = 1, . . . , ar (b), and every q i ∈ d i . Say, C i = (v i , K i , ρ i). The transition from v 1 to v i,q i 1 implies that q i ∈ R σ (v i). Hence • For application, the strategy for Eve is to chose R σ (v 1). Then Adam can choose v N or v q , h for some h and q such that q ∈ R σ (v 1)(h). In the first case the vertex corresponding to v N is v 1 . In the second case we know by the definition of R σ (v 1) that there is a descendant v q ,S of v 1 such that R σ (S) = h. The maximal rank on the path from v 1 to v q ,S is r by Lemma 20. We choose v q ,S as the vertex associated to v q , h ; the invariant is clearly satisfied.

d i ≤ R σ (v i) = R σ (C i). Since q ∈ [
• For λ-variable, the situation is:

v 1 :q ≤ (x, ρ, S) v 2 :q ≤ (x, ϑ, g)

↓ v K v 1 :q ≤ (K, ρ K , S)
win for Eve where ρ(x) = (v K , K, ρ K). By the definition of R σ (v K) we have q ∈ R σ (v K)(R σ (S)). But R σ (v K) = R σ (ρ)(x) = ϑ(x) and R σ (S) = g) by the invariant, so indeed the position is winning for Eve.

• For fixpoint there is no choice in any of the two games. Clearly v 2 and v 2 satisfy the invariant (I1) as it does not talk about Y -variables. For Y -variables observe that F is the only new Y -variable hereditary free in N that is not hereditary free in F . For F the invariant clearly holds. For the other Y -variables the invariant holds by the induction hypothesis.

• For fixpoint variable the situation is: v 1 :q ≤ (F, ρ, S) v 2 :q ≤ (F, ϑ, g) ↓ v ↓ r v 1 :q ≤ (Y r F.N, ρ F , S) v 1 :q ≤ (N, ρ F [(v 1 , Y r F.N, ρ F)/F], S) v 2 :q ≤ (N, ϑ, g)

where ρ(F) = (v, Y r F.N, ρ F) for some v, and term(F) = Y r F.N . Observe that pr (v) is r since the priority of the fixpoint is r. As we have assumed that the initial term is semi-closed, N does not have free λ-variables. So the pair of nodes v 1 , and v 2 satisfies the invariant I1. Concerning I2, the invariant holds for F directly from the definition. For any other Y -variable G hereditary free in N , we have that it is also hereditary free in F . This G is hereditary free in all terms on the path from v to v 1 , since F is. We claim that ρ(G) = ρ F (G). Let v G be the vertex in ρ(G) and v F G be the vertex in ρ F (G). By invariant we know that v G is the last node before v 1 where G was regenerated. Similarly, v F G is the last node before v where G was regenerated. Since G is hereditary free between v and v 1 , it could not be regenerated between v and v 1 . So v G = v F G .

We have shown how Eve can play in G(M) while preserving the invariant.

We have also shown that Eve wins if such a play terminates. must be empty since K v is a term of type o. So there cannot be any use of the v-closure below v . By Lemma 37, Eve can win in P SG(M, D) when playing with residuals coming from a winning strategy σ for Eve in K(M, D, q 0). By the preceding paragraph, for every closure (v, K v , ρ v) with K v of type o, the residual R σ (v) is a singleton or an empty set. So it is an element of D thin

Conclusions

This work pursues a model-based approach to higher-order model-checking. It proposes an extension of the λY -calculus with priorities and shows that its semantics is perfectly suited for higher-order model-checking, in a sense that there is a correspondence between models and visibly parity automata (Fact 15), such that value in the model coincides with acceptance by the corresponding automaton (Theorem 16). This gives a partial answer to the most fundamental question about the model-based approach, namely is there a simple semantically defined class of models recognizing exactly properties expressed in monadic second-order logic.

The answer is partial since it concerns only λY -calculus with priorities, and is restricted to ⊥-blind parity automata. Yet, λY -calculus with priorities is sufficiently expressive, as it generates the same Böhm trees as λY -calculus. Moreover, Theorem 16 says that ⊥-blindness is unavoidable if we want to stay with the interpretation with least and greatest fixpoints.

There exist models that can recognize ⊥-insightful properties [START_REF] Salvati | A Model for Behavioural Properties of Higher-order Programs[END_REF][START_REF]Using models to model-check recursive schemes[END_REF], but they are substantially more complicated. The easiest way around seems to simply assume that terms are productive, i.e., their Böhm trees do not have ⊥. Every term can be transformed to a productive term [START_REF]Using models to model-check recursive schemes[END_REF][START_REF] Haddad | IO vs OI in higher-order recursion schemes[END_REF], but the transformation is algorithmically expensive. Instead, one may simply add a new constant in front of every fixpoint operator: the resulting term would be productive, and in its Böhm tree one could see the unfoldings of fixpoints. Observe that already in the propositional mu-calculus guardedness is a technical issue [START_REF] Bruse | On guarded transformation in the modal µ-calculus[END_REF].

From a more general perspective, models have a rich structure, and this can guide refinement of the syntax to make this structure explicit. Development of linear logic and differential calculus are flagship examples of this approach. On a much more modest scale, we have followed the same methodology here. We have extracted priorities from models to the syntax,

 D A) For an automaton A = Q, Σ, {δ b } b∈Σ , Ω the model D A has P(Q) as the interpretation of the base type; a constant b is interpreted as [[b]] GFP (S 1 , . . . , S ar (b)) = {q : (S 1 , . . . , S ar (b)) ∈ up(δ b (q))} .

Figure 1 :

 1 Figure 1: Typing rules of λ-calculus with priorities.

Figure 4 :

 4 Figure 4: Game K(M, D, q 0). Eve chooses in rounded boxes, and Adam in rectangular boxes.

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 1 . . . C ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

 1 . . . C ar (b)) pr (b) ! (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b)), for (d 1 , . . . , d ar (b)) such that q 2 [[b]] D (d 1 , . . . , d ar (b)). • (d 1 , . . . , d ar (b))  (C 1 , . . . , C ar (b))

4

 4

Figure 5 :

 5 Figure 5: Rules of constructing K(M, D, q 0).

5 Figure 6 :

 56 Figure 6: Priority invariant in game K(M, D, q 0).

q

 ≤ (b, ρ, C 1 . . . C ar (b)) pr (b) -→ (S 1 , . . . , S ar (b)) ≤ (C 1 , . . . , C ar (b)

 , k, and (g d)(h 1 , . . . , h k) = ∅ otherwise. A standard notion of a step function would allow any d ∈ D o = P(Q) and not just q ∈ Q. In our notion we allow only atoms of D o as values. It should be clear that every step function in the standard sense is a supremum of our step functions.

3

 3

3

 3

Figure 7 :

 7 Figure 7: Rules of the game SG(M, D).

Figure 8 :

 8 Figure 8: Constructing strategy for Eve in SG(M, D).

 pa(x) = x 0 pa(b) = x p 1 . . . x 0 1 . . . x p ar (b) . . . x 0 ar (b) .

(

Figure 10 :

 10 Figure 10: Translation to priority typable terms.

Figure 11 :

 11 Figure 11: Rules of the game P SG(M, D).

 [b]](d 1 , . . . , d ar (b)) then also q ∈ [[b]](R σ (C 1), . . . , R σ (C ar (b))) by monotonicity. So, Eve wins in v 2 , as (R σ (C 1), . . . , R σ (C ar (b))) = g by the invariant.

0=

 {{q} :∈ Q}∪{∅}. By definition of residuals, a residual of a typeA 1 → • • • → A k → o is a set of step functions from D thin A 1 × • • • × D thin A k to D thin o .Hence the size of D thinA , for a type A of order n, is bounded by Tower n (O(K|Q|)), compared to Tower n+1 (O(K|Q|)) for D A . So the size of the game P SG(M, D) is of order of magnitude Tower n-1 , and it can be solved in time exponential in the number of priorities.

 • • • where r = pr (C). The term associated to the configuration on the right is then of the form N, ρ [C /x] • • • . It is typable by Lemma 10. Since term b, ρ, C 1 . . . C k is priority typable, we can conclude that there is a typing C

The case of a constant b : (r 1 , o) → • • • → (r k , o) → o. i : o. There is no typing environment since all C i are closed. The rule for Y is (Y r F.N, ρ, S) -→ (N, ρ[(v, Y r F.N, ρ)/F], S). The conclusion follows from Lemma 10

All automata in this paper are ⊥-blind; called Ω-blind in[START_REF]Using models to model-check recursive schemes[END_REF]. We discuss this restriction in the main text and in the conclusions.

capturing the interactions between computation and priorities in a form of a type system.

Models are modular, and agnostic to syntax. One can extend the syntax as long as it can be interpreted in the model. They may be useful in the context of modular model-checking [34]. It would be interesting to extend the current work to linear constructs investigated recently by Clairambault, Grellois and Murawski [35]. Observe that the size of domains for linear types indicates that it could be possible to recover their complexity results through the model approach.

This work was inspired by the paper of Kobayashi et. al. [19] studying the relation with model checking of higher-order fixpoint logic (HFL-MC). The reduction to λY -calculus with priorities gives a reduction of higherorder model-checking problem to HFL-MC. Except for fixpoints, this is the same reduction as in [19]. It would be very interesting to find an inverse reduction that preserves the structure of fixpoints, depends only on the nesting of fixpoints and not the size of the transition system. A recent paper of Kobayashi, Tsukada, and Watanabe [36] makes a strong case for HFL-MC.

Definition 27 Let r be a priority and let v be a node of K(M, D, q 0). We say that:

• A closure (N, ρ) is r-stable in v if for every variable x free in N : (i) ρ(x) is 0-stable, and (ii) every priority s ∈ apr (x, N) we have pr (ρ(x)) = r ⊕ s ⊕ pr (v(ρ(x)), v) .

• node v is 0-stable if for its label (N, ρ, S): (i) (N, ρ) is 0-stable, and (ii) every C in S is 0-stable.

We will prove that all nodes of K(M) are 0-stable. But before doing this let us show how 0-stability implies the priority invariant in case of the variable rule.

Lemma 28 Suppose v is labeled by (x, ρ, S) and ρ(x) = (v x , K x , ρ x). If v is 0-stable then pr (v x , v) = pr (v x).

Proof

Observe that apr (x, x) = 0. So 0-stability applied to x gives pr (ρ(x)) = pr (v x , v) since apr (x, x) = 0.

The definition of stability is recursive and puts conditions all closures appearing hereditary in a closure. By this we mean that in a closure (N, ρ) hereditary appear all closures (K x , ρ x) for ρ(x) = (v x , K x , ρ x) as well as all closures appearing hereditary in (K x , ρ x). The condition of r-stability is local to each closure, and does not depend on the place where the closure appears in a configuration. The following useful observation shows some structural property of 0-stable configurations.

Lemma 29 If (v N , N, ρ) is 0-stable in some node of K(M, D, q 0) then for every variable x free in N the priority of ρ(x) is at least pr (v N). In consequence, the rank of every closure appearing hereditary in ρ is at least pr (v N).

Proof

By definition (N, ρ) is pr (v N)-stable so for every x, pr (ρ(x)) ≥ pr (v N) by the stability property. Then for ρ

Now we are ready to prove that every node of K(M, D, q 0) is 0-stable.

Lemma 30 Every node of K(M, D, q 0) is 0-stable. R σ (v). This notation makes use of the fact that v uniquely determines all other elements of the closure. The definition of R σ (v) is on the order of the (simple) type of the closure, namely the order of the type of K v .

For K v of type o, we look at all the nodes reachable from v while Eve plays the strategy σ. We select all those who have an incoming transition labeled v. Their labels are necessarily of the form q ≤ (K v , ρ v , ε), for some q . We define R σ (v) to be the set of all such states q . Observe that since K v is of type o, the stack in the configuration (K v , ρ v , ε) must be empty.

For

we also collect collect all the nodes reachable from v when Eve plays σ. We select once again those nodes v who have incoming edges labeled v. This time the label of v must have the form q ≤ (K v , ρ v , S v), for some q and S v . By typability, S v is a sequence of closures C 1 , . . . , C k of types A 1 , . . . , A k , respectively. By induction R σ (v(C 1)), . . . , R σ (v(C k)) are defined. We consider the step function (R σ (v(C 1)), . . . , R σ (v(C k)) q . We define R σ (v) as the supremum of all such step functions.

Lemma 32 If Eve wins in K(M, D, q 0) then Eve wins in SG(M, D) from q 0 ≤ (M, ∅, ε). Moreover she can win by playing with residuals. Analogously for Adam. This lemma completes the proof of Theorem 18. Indeed, if Eve wins in K(M, D, q 0) then she wins from q 0 ≤ (M, ∅, ε) in SG(M, D) and so q ∈ [[M, ∅]] D by Lemma 31. Analogously for Adam.

The rest of this section is devoted to the poof of the above lemma. The proof is split into two arguments, one for Eve and one for Adam.

Lemma 33 If Eve wins in K(M, D, q 0) then Eve wins in SG(M, D) from q 0 ≤ (M, ∅, ε). Moreover she can play with residuals.

Proof

We describe how Eve should play in SG(M, D) in order to win. While playing in SG(M, D), Eve will also play in K(M, D, q 0) and use the strategy there. From a position q ≤ (N, ρ, S) in K(M, D, q 0) she can read a valuation R σ (ρ) and a sequence of values R σ (S). The valuation is defined by

In order to win in SG(M, D), Eve will also play in K(M, D, q 0) and preserve certain invariant. When a play reaches a node v 2 of SG(M, D), in the other game the corresponding play will reach a node v 1 and the following invariant will hold:

Observe that when lift(x) = r for every variable x then Γ lift is Γ r and M lift is M r . When lift assigns -1 to all variables then Γ lift is just Γ, and M lift is just M . Even when lift assigns either -1 or 0 to every variable, we have M lift = M , but not M r = M .

We will often use commutation property of the two operations

The operations commute since the two are just a bit complicated way of applying max operation.

The statement we will prove is:

The proof is by induction on the size of the typing judgment Γ M : A. The first base case is an axiom Γ, x : A : A. Let r = lift(x). We have two cases. First suppose that r ≥ 0. We have that x r ≤ (r, A +) is in (Γ +) lift ; and pa(x 0) lift is x r . So we can use an axiom from priority types. If r = -1 then we have x 0 = (0, A +) in (Γ +) lift and pa(x 0) lift is x 0 . So once again we can use an axiom from priority types.

Another base case is a constant Γ

If the typing derivation ends with Γ λx.M : A → B, then it must be preceded by Γ, x : A M : B. Consider a function lift x that is identical to lift except that lift(x) = -1. By induction hypothesis we get ((Γ, x : A) +) lift x pa(M) lift x : A + . By definition (Γ +) lift x is Γ lift , x 0 = (0, A +), . . . , x p = (p, A +). Since pa(λx.M) lift is λx p . . . λx 0 .pa(M) lift x , we get the desired conclusion by applying abstraction rule d times.

If the typing derivation ends with Γ M N : B then it must be preceded by Γ M : A → B and Γ N : A. By induction assumption

Moreover, for every r we have

Taking the later judgment for r = p, and using the application rule we obtain

thanks to commutation of operation We can continue like this, taking judgment (1) for r = p -1, . . . , 0 and using application rule, till we get

M : they need to have order ≤ n and be hereditary of arity ≤ K. By this we mean that they must have a form A 1 → • • • → A k → o with k ≤ K and all A i types of order ≤ (n -1) and hereditary of arity K.

Before calculating the complexity, let us remark that the translation from the λY -calculus to the λY -calculus with priorities does not induce an important complexity blowup. The size of exp p (A) is the same as that of A. The size of pa(exp p (M)) is O(|M | • p |M |), and its arity is p • K. Actually, by encoding common subterms one can get a translation of size quadratic in p • |M |, but anyway the size of the term is not a dominant factor in the complexity.

Thus the complexity of the algorithm comes from checking q ∈ [[M]] D A . For this check we could just use the semantic clauses. We can get better complexity by looking at the game characterization of the semantics from Lemma 31. To decide q ∈ [[M]] D A we need to find out if Eve has a winning strategy from the position q ≤ (M, ∅, ε) in the game SG(M, D A). The latter is a weak parity game, so in order to establish the complexity of deciding the winner we need to know its size.

We calculate the size of SG(M, D A). Positions of the game are of the form q ≤ (N, ϑ, g) or q ≤ (f ; N, ϑ, g); where f is an element of D A , ϑ is a valuation in D A , and g is a sequence of elements of D A . To give a bound on the size of SG(M, D A) we need to estimate the types of f , as well as the types of elements in ϑ, and g. By examining the rules of the game SG(M, D A) we can see that the type of f has order ≤ max(n -1, n fix), and hereditary arity ≤ K. Similarly for elements in g. The type of the element ϑ(x) is determined by the type of x. Its order is trivially bounded by n, but when M is closed then it is bounded by max(n -1, n fix), and it has hereditary arity ≤ K. Thus the orders of f , ϑ, and g are bounded by n max = max(n -1, n fix) ≤ n. Observe that the number of step functions in D A A for a type A of order n and hereditary arity ≤ K is bounded by Tower n (O(K|Q|)). The number of elements in D A A , is one exponent bigger; so it is bounded by Tower n+1 (O(K|Q|)).

These calculations give a bound of |M |Tower nmax +1 (O(K|Q|)) on the number of positions in the game SG(M, D A). Since the game is a weak parity game, it can be solved in linear time wrt. the number of transitions. So the size of the game gives also the complexity of the algorithm. This is in some respect better than the known algorithms since p does not appear in the Tower term. The reason is that we have considered the problem for priority λY -calculus. For λY -calculus we need to take into account the increase of arity due to pa(exp p (M)) translation. This gives the complexity O(|M | • p |M |)Tower nmax +1 (O(Kp|Q|)) as do other methods for the λY -calculus [START_REF] Salvati | Krivine machines and higher-order schemes[END_REF].

The case of λ-abstraction:

The case of a constant:

win for Eve

The case of an application:

The case of a fixpoint: Let us show that the biggest priority appearing infinitely often on an infinite play in P SG(M, D), is the same as the one from the corresponding play in K(M, D, q 0). Suppose this priority on a play in P SG(M, D) is r, and let F be the Y -variable responsible for this priority; in other words we have: term(F) = Y r F.N , and F regenerated infinitely often on the path. Because of invariant I2, and the fixpoint variable rule we have that on the corresponding play in K(M, D, q 0) we can find a sequence of vertices:

With v i labeled by (Y r F.N, ρ i , S i), and v i labeled by (F, ρ i+1 , S i+1) with ρ i+1 (F) = (v i , Y r F.N, ρ i), for some ρ i and S i . Observe that the fact the v i is the vertex in ρ i+1 is the consequence of I2. Another important point is that pr (v i) = r, so by the priority invariant, Lemma 20, the biggest priority appearing between v i , and v i+1 is r. This shows that the biggest priority on this play is also r.

The proof also shows that Eve can win by playing residuals R σ (v).

The argument for Adam is analogous to that from Lemma 34, with the same adaptations as we have done above for the case of the fixpoint.

Model-checking for disjunctive automata

We show how to do model-checking for disjunctive automata in (n -1)-Exptime. This result has been proved by Kobayashi and Ong [START_REF] Kobayashi | Complexity of model checking recursion schemes for fragments of the modal mu-calculus[END_REF]. Technically, it is a very interesting result because it is difficult to prove without going into internals of a decision procedure for higher-order model-checking. In our case we will use the game P SG(M, D) and the fact that in this game Eve may play only with residuals. It is this later fact that is difficult to capture on the level of semantics.

A disjunctive automaton is a parity automaton whose transition function has the property: for every (S 1 . . . , S ar (b)) ∈ δ b , the union S 1 ∪ • • • ∪ S ar (b) is a singleton. In particular, at most one of S 1 , . . . , S ar (b) is not empty. The dual of a disjunctive automaton is a deterministic automaton, potentially exponentially bigger. Observe that if A is disjunctive then exp p (A) is also disjunctive. In the light of the above discussion, to get (n-1)-Exptime algorithm it is enough to show it for λY -calculus with priorities and disjunctive visibly parity automata.

Let us look at K(M, D A , q 0) when A is a disjunctive visibly parity automaton. A winning strategy for Eve in this game is a path. Indeed, branching for Adam appears only at nodes of the form (d 1 , . . . , d ar (b)) ≤ (C 1 , . . . , C ar (b)). Because of disjunctiveness, Adam has no choice there. The consequence of this is that every closure of type o is used at most once when Eve is playing her strategy. Indeed, when a v-closure is used in v due to the transition v -→ (K v , ρ v , ε) then v-closure cannot appear in ρ v , and the stack