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We consider a variational problem in dimension 2 with Dirichlet condition and exponential nonlinearity and having interior singularity. We derive a local boundedness result for solutions of this Liouville type equation.

Introduction and Main Results

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

We consider the following equation:

(P )    -∆u = -log |x| 2d V e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here:

0 ≤ V ≤ b, Ω -log |x| 2d e u dx ≤ C, u ∈ W 1,1 0 (Ω),
and,

d = diam(Ω), 0 ∈ Ω
Equations of the previous type were studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bahoura | About Brezis Merle problem with Lipschitz condition[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Bartolucci | A sup+inf inequality for Liouville type equations with weights[END_REF][START_REF] Bartolucci | A sup × inf-type inequality for conformal metrics on Riemann surfaces with conical singularities[END_REF][START_REF] Bartolucci | The Liouville equation with singular data: a concentration-compactness principle via a local representation formula[END_REF][START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Tarantello | A Harnack inequality for Liouville-type equation with Singular sources[END_REF], where one can find some existence and compactness results.

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem

Theorem. ).If (u i ) is a sequence of solutions of problem (P ) with (V i ) satisfying 0 < a ≤ V i ≤ b < +∞ and without the termlog |x| 2d , then, for any compact subset K of Ω, it holds:

sup K u i ≤ c,
with c depending on a, b, K, Ω If we assume V with more regularity, we can have another type of estimates, a sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i is a sequence of functions solutions of the previous equation without assumption on the boundary with V i satisfying 0 < a ≤ V i ≤ b < +∞, then we have a sup + inf inequality.

Here, we have:

Theorem For sequences (u i ) i and (V i ) i of the previous Problem (P ) we have:

||u i || L ∞ (K) ≤ c(b, C, K, Ω),
Note that by the argument of "moving-plane", near the boundary, of Chen-Li, we have the boundedenss of the solutions of (P ), near the boundary if we add the assumption; ||∇V || ∞ ≤ A.

Proof of the Theorem

We have:

u i ∈ W 1,1 0 (Ω)
, and e ui ∈ L 1 (Ω). Thus, by corollary 1 of Brezis and Merle we have:

e ui ∈ L k (Ω), ∀ k > 2.
Using the elliptic estimates and the Sobolev embedding, we have:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).

By the maximum principle u

i ≥ 0.
Also, by a duality theorem or a result of Brezis-Strauss, we have:

||∇u i || q ≤ C q , 1 ≤ q < 2. Since, Ω -log |x| 2d V i e ui dx ≤ C,
We have a convergence to a nonegative measure µ:

Ω -log |x| 2d V i e ui φdx → Ω φdµ, ∀ φ ∈ C c (Ω).
We set S the following set:

S = {x ∈ Ω, ∃ (x i ) ∈ Ω, x i → x, u i (x i ) → +∞}.
We say that x 0 is a regular point of µ if there function ψ ∈ C c (Ω), 0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x 0 such that:

ψdµ < 4π. (1) 
We can deduce that a point x 0 is non-regular if and only if µ(x 0 ) ≥ 4π.

A consequence of this fact is that if x 0 is a regular point then:

∃ R 0 > 0 such that one can bound (u i ) = (u + i ) in L ∞ (B R0 (x 0 )). (2) 
We deduce (2) from corollary 4 of Brezis-Merle paper, because we have:

||u + i || 1 = ||u i || 1 ≤ Ω e ui dx ≤ C 1 Ω -log |x| 2d e ui dx ≤ C,
or, by the Gagliardo-Nirenberg-Sobolev inequality:

||u + i || 1 = ||u i || 1 ≤ c q ||u i || q * ≤ C ′ q ||∇u i || q ≤ C q , 1 ≤ q < 2.
We denote by Σ the set of non-regular points.

Step 1: S = Σ. We have S ⊂ Σ. Let's consider x 0 ∈ Σ. Then we have:

∀ R > 0, lim ||u + i || L ∞ (BR(x0)) = +∞. (3) 
Suppose contrary that:

||u + i || L ∞ (BR 0 (x0)) ≤ C. Then: ||e ui k || L ∞ (BR 0 (x0)) ≤ C, and BR(x0) -log |x| 2d V i k e ui k = o(1).
For R small enough, which imply (1) for a function ψ and x 0 will be regular, contradiction. Then we have (3). We choose R 0 > 0 small such that B R0 (x 0 ) contain only x 0 as non -regular point. Σ. Let's x i ∈ B R (x 0 ) scuh that:

u + i (x i ) = max BR(x0) u + i → +∞.
We have x i → x 0 . Else, there exists x i k → x = x 0 and x ∈ Σ, i.e. x is a regular point. It is impossible because we would have [START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF].

Since the measure is finite, if there are blow-up points, or non-regular points, S = Σ is finite.

Step 2: Σ = {∅}. Now: suppose contrary that there exists a non-regular point x 0 . We choose a radius R > 0 such that B R (x 0 ) contain only x 0 as non-regular point. Thus outside Σ we have local unfirorm boundedness of u i , also in C 1 norm. Also, we have weak *-convergence of V i to V ≥ 0 with V ≤ b.

Let's consider (by a variational method):

z i ∈ W 1,2 0 (B R (x 0 )), -∆z i = f i = -log |x| 2d V i e ui in B R (x 0 ), et z i = 0 on ∂B R (x 0 ).
By a duality theorem:

z i ∈ W 1,q 0 (B R ), ||∇z i || q ≤ C q . By the maximum principle, u i ≥ z i in B R (x 0 ). -log |x| 2d e zi ≤ -log |x| 2d e ui ≤ C. (4) 
On the other hand, z i → z a.e. (uniformly on compact sets of B R (x 0 )-{x 0 }) with z solution of :

-∆z = µ in B R (x 0 ), et z = 0 on ∂B R (x 0 ).
Also, we have up to a subsequence, z i → z in W 1,q 0 (B R (x 0 )), 1 ≤ q < 2 weakly, and thus z ∈ W 1,q 0 (B R (x 0 )). Then by Fatou lemma:

-log |x| 2d e z ≤ C. (5) 
As x 0 ∈ S is not regular point we have µ({x 0 }) ≥ 4π, which imply that, µ ≥ 4πδ x0 and by the maximum principle in W 1,1 0 (B R (x 0 )) (obtainded by Kato's inequality)

z(x) ≥ 2 log 1 |x -x 0 | + O(1) if x → x 0 .
Because,

z 1 ≡ 2 log 1 |x -x 0 | + 2 log R ∈ W 1,s 0 (B R (x 0 )), 1 ≤ s < 2.
Thus,

-log |x| 2d e z ≥ C log |x| 2d -|x -x 0 | 2 , C > 0.
Both in the cases x 0 = 0 and x 0 = 0 we have:

BR(x0) -log |x| 2d e z = ∞.
But, by (5):

-log |x| 2d e z ≤ C.
which a contradiction.

Example

Here, ∆ = ∂ 11 + ∂ 22 .

Let's consider µ ≥ 0 such that:

µ = inf{ Ω |∇u| 2 dx, Ω -log |x| 2d V e u dx = 1, u ∈ H 1 0 (Ω)}
Here, Ω = B 1 (0), the unit ball and d = diameter(Ω).

1) We prove that this set is not empty:

We consider u β (r) = β(1r 2 ) and 0 < ǫ ≤ V ≤ 2ǫ. First we take the null function u ≡ 0. We choose ǫ > 0 small such that:

Ω -log |x| 2d V e u dx ≤ 2ǫ Ω -log |x| 2d dx < 1.
We use u β , we use polar coordinates:

Ω -log |x| 2d V e u dx = B1(0) -log |x| 2d V e u β dx ≥ 2πǫ 1 0 -log(r/2d)re β(1-r 2 ) dr
For β big enough:

Ω -log |x| 2d V e u dx ≥ (1/β)πǫ log(2d)e β (1 -e -β ) → +∞.
Thus, there is β 0 ≤ β max = β max (ǫ, α) such that:

Ω -log |x| 2d
V e u β 0 dx = 1.

Thus µ well defined.

2) We use a minimisant sequence and the Moser-Trudinger embedding in L 1 , µ is achieved and by a well knowen Euler-Lagrange multiplier we have the existence of u and λ such that:

-∆u = -λ log |x| 2d V e u , u ∈ H 1 0 , Ω -log |x| 2d V e u dx = 1.
u is regular C 1,θ , θ > 0. If λ ≤ 0 by the maximum principle u ≤ 0 and then:

Ω -log |x| 2d V e u dx < 1.
It is not possible. Thus λ > 0 and u > 0.