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Estimation of Time Delays with Fewer Sensors

than Sources

B. Emile, P. Comon, and J. Le Roux

Abstract—A number of papers have been dealing with the
problem of estimating the differential delay of an unknown signal
impinging on two sensors. The present contribution deals with
the presence of more than one source, which is a case that has
never been dealt with before. The solution resorts to slices of
high-order spectra, and the full spectral band of the signals is
utilized in order to recover the delays. It can be viewed as an
improvement to the classical procedure consisting of searching
the autocorrelation for local maxima, which does not work when
delays are smaller than the source correlation length.

I. INTRODUCTION

It is assumed that k real signals si(t) are received on l ≤ k
sensors. Those signals satisfy the equation model below (given

here for l = 2):

r1(t)=s1(t) + s2(t) + · · ·+ sk(t) + v1(t), (1)

r2(t)=s1(t+ τ1) + s2(t+ τ2) + · · ·+ sk(t+ τk) + v2(t), (2)

where τi denote delays, vi noises, and si are unknown source

signals. The problem consists of estimating delays τi from a

finite extend observation. It is assumed that:

A1 The source signals are real and non Gaussian

A2 The source signals are mutually independent

A3 Delays τi are different

Note that assumption A3 is not restrictive, for if two delays τi
and τj are equal, then sources si and sj are undistinguishable.

Thus it is assumed that nothing is known about the statistics

of the sources but their non Gaussian character and their

independence. In addition, because of the low SNR (Signal

to Noise Ratio) in narrow band, it is necessary to fully take

advantage of the signal bandwidth.

The identification of a differential delay between two signals

is an old problem in signal processing; see for instance the

June 1981 special issue of IEEE Transactions on ASSP. New

methods have been proposed in [5], [14], [17] [11]. See

also the approaches based on MUSIC-like algorithms [18]

[15], with more sources than sensors [16] [3], based on the

cyclostationarity of the source signals [10] or based on the

knowledge of the steering vectors coefficients [19]. All these

works are either dealing with the case of a single signal, i.e.,

s2 = s3 = ... = sk = 0, or take advantage of some knowledge

about the array.

Some works have tackled blind identification of time delays

in presence of more than one source (i.e. neither signals si(t)
nor their spectra are known, and the array is unknown), and

include [4], [7] and [8]. But the appoach there is basically

narrow-band, and there is always fewer signals than sensors.
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Recent techniques allow to virtually augment the size of the

array, but localizing sources from such arrays can be seen as

equivalent to applying a higher-order localization algorithm

[6], e.g. 4-Music [3], or Virtual Esprit (Vespa) [12]. Note

that previous works establishing bounds on the number of

resolvable sources [1] are not questioned here since they hold

true only in the Gaussian context.

In this article, we present a method for estimating delays be-

tween more source signals than sensors. Section III establishes

the required equations where delays are the only unknowns in

the spectral domain. Section IV solves the delay estimation

problem in wide band.

II. NOTATION

In the spectral domain, denote the observations at pulsation

ω:

r1(ω)=s1(ω) + s2(ω) + · · ·+ sk(ω) + v1(ω), (3)

r2(ω)=s1(ω)x
∗

1 + s2(ω)x
∗

2 + · · ·+ sk(ω)x
∗

k + v2(ω). (4)

where xi = e−ωτi ,  =
√
−1, and (∗) denotes the complex

conjugation. Define the following n-th order cumulant spectra

of observations at the pulsation ω :

C
(n)
i = Cum{r1(ω), · · · , r1(ω)

︸ ︷︷ ︸
n
2

, r1(−ω), · · · , r1(−ω)
︸ ︷︷ ︸

n
2
−i

,

r2(−ω), · · · , r2(−ω)
︸ ︷︷ ︸

i

}.

These spectra correspond to slices of the standard multi-

variate cumulant spectrum [2] [20] [13]. In this framework, n
must be even and n ≥ 2(k− 1), where k denotes the number

of sources.

III. PROBLEM FORMULATION

A. Preliminary basic properties

The required equations are obtained by taking advantage of

3 basic properties, as shown below.

1) Independence property: Because of the independence

between sources, the sensor cumulants C
(n)
i can be written

as:

C
(n)
i = xi

1Γ1 + · · ·+ xi
kΓk,

where Γp are the sources cumulants:

Γp = cum{sp(ω), · · · , sp(ω), sp(−ω), · · · , sp(−ω)
︸ ︷︷ ︸

n

}.

Letting i range in {0, ..., k − 1}, the following system is

satisfied:
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In compact notation, the last relation can be rewritten as

follows:

C = V Γ (property I). (5)
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The above relation involves 2k unknowns, but only k equa-

tions. Therefore, the identification of these 2k parameters

cannot be carried out by a technique such as the one described

in [11] or in references therein.

2) Van der Monde property: Let V be a Van der Monde ma-

trix, as the one defined in equation (5), and Pi be a symmetric

polynomial of degree i in k variables defined as: P0 = 1, P1 =
x1+x2+· · ·+xk, P2 = x1x2+x1x3+· · ·+xk−1xk, · · · , Pk =
x1x2 · · ·xk. If QT = [(−1)k−1Pk−1, · · · ,−P1, P0], then the

following property is obtained:

QTV = (−1)k−1XT , (property II) (6)

where XT = [x2 · · ·xk, x1x3 · · ·xk, · · · , x1 · · ·xk−1]. In other

words, the sum of the components of X is the first entry of

Q, up to a sign.

3) Unit modulus property: The complex conjugate of C
(n)
1

can be written as: C
(n)∗
1 = x∗

1Γ1 + · · ·+ x∗

kΓk. Now multiply

both sides of the previous equation by Pk and use the fact that

for all i ∈ {1, ..., k}, |xi| = 1 since xi = e−ωτi , we obtain:

PkC
(n)∗
1 = x2 · · ·xkΓ1 + · · · + x1 · · ·xk−1Γk. Or with the

previous compact notation:

PkC
(n)∗
1 = XTΓ (property III). (7)

B. Results

With the help of the three properties above, the unknown

source cumulants (Γ) can be eliminated:

QTC = QTV Γ, from (I)
= (−1)k−1XTΓ, from (II)

= (−1)k−1C
(n)∗
1 Pk. from (III)

(8)

Equation (8) then yields:

k−1∑

i=0

(−1)iPiC
(n)
k−1−i = (−1)k−1C

(n)∗
1 Pk, (9)

where C
(n)
i can be estimated (cross-cumulants between the

sensors), and where the Pi’s contain the unknown delay

information.

IV. ESTIMATION OF DELAYS

Equation (9) can be arranged as follows:

C
(n)
k−1

C
(n)
k−2

= P1 −
1

C
(n)
k−2

(
k−1∑

i=2

(−1)iPiC
(n)
k−1−i + (−1)kC

(n)∗
1 Pk).

(10)

In Pi, all delays are represented by variables xj = e−ωτj .

Now, if we take the inverse Fourier transform of (10), we

obtain k peaks, each representing one delay (the P1 term),

and several attenuated peaks located at partial sums of the

delays (terms Pi, i 6= 1). If the number of delays is known, it

is then sufficient to estimate the location of the first k peaks,

that represent the delays τj .

Equation (10) can be computed for every pulsation ω such

that C
(n)
k−2(ω) 6= 0 in the signal bandwidth.
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Fig. 1. Inverse Fourier transform of C
(2)
1 /C

(2)
0 (top), and of C

(2)
1 (botton),

k = 2 sources, τ1 = 2.3, τ2 = 4.2 (interpolated zoom on the first 20
frequency bins, after a FT of length 256).

1) Example: k = 2 and n ≥ 2: If n = 2 is chosen, the

following equation is obtained:

C
(2)
1 = P1C

(2)
0 − P2C

(2)∗
1 . (11)

Since P1 = x1+x2, the inverse Fourier transform of P1 gives

two peaks at τ1 and τ2. As shown in Figure 1 by taking the

inverse Fourier transform of C
(2)
1 /C

(2)
0 , we find two peaks and

an attenuated peak at τ1 + τ2 (P2 = x1x2). In the bottom of

Figure 1, the plot of the raw cross correlation C
(2)
1 shows that

the delays cannot be detected because the correlation length

of the sources is too long. If n = 4, the same equation would

be constructed.

2) Example: k = 3 and n ≥ 3: Since n must be even, the

smallest n we can consider is n = 4. The following equation

is obtained:

C
(4)
2 = P1C

(4)
1 − P2C

(4)
0 + P3C

(4)∗
1 (12)

The inverse Fourier transform of C
(4)
2 /C

(4)
1 gives three peaks,

at τ1, τ2 and τ3, and attenuated peaks at τ1+τ2, τ1+τ3, τ2+τ3,

and τ1 + τ2 + τ3, as shown in Figure 2.

3) Limitations: The proposed method has some restrictions:

(i) If a peak corresponding to a delay is too close to another

one corresponding to the partial sum of delays, then the

identification becomes ill-conditionned.

(ii) Obviously, if delays are too close to each other, a single

peak might be detected.

(iii) Because of the relation between the number of sources
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Fig. 2. Inverse Fourier transform of C
(4)
2 /C

(4)
1 , k = 3 sources, τ1 =

6.2, τ2 = 8.6, τ3 = 11.9 (interpolated zoom on the first 20 frequency bins,
after a FT of length 256).

and the order of cumulants n ≥ 2(k − 1), only three source

signals can be considered if fourth order cumulants are used.

(iv) It is useful to know the number of source signals,

especially when it is difficult to differentiate between peaks

corresponding to delays and those corresponding to sum of

delays.

If delays are well separated (compared to source correlation

length), a mere maxima search of the autocorrelation function

can be sufficient. This method yields a solution when delays

are separated by a gap that is much smaller than the correlation

length of the signal. It can be applied to several problems in

Sonar, Radar, or telecommunications.

τ1 τ2
mean std mean std

M1 2.16 0.014 4.1 0.041
M2 2.30 0.047 4.19 0.004

TABLE I
MEAN AND STANDARD DEVIATION (STD) OF ESTIMATED DELAYS OVER

100 INDEPENDENT TRIALS USING THE WIDE-BAND SPECTRAL APPROACH

(M1) AND THE TIME DOMAIN APPROACH (M2). TRUE DELAYS ARE 2.3
AND 4.2 IN THIS SIMULATION.

V. SIMULATION RESULTS

The signals si(t) are ARMA processes driven by a i.i.d.

sequence uniformly distributed with zero mean and unit

variance: si(t) = −a1,isi(t − 1) − a2,isi(t − 2) + vi(t) +
b1,ili(t − 1) + b2,ili(t − 2). Coefficients are defined as:

a1,i = −2ρi cos θi, a2,i = ρ2i , b1,i = −2λi cosφi, b2,i = λ2
i

and θ1 = 60◦, θ2 = 30◦, θ3 = 40◦, ρ1 = 0.7, ρ2 = 0.8,

ρ3 = 0.6, φ1 = 110◦, φ2 = 140◦, φ3 = 160◦, λ1 = 0.8,

λ2 = 0.9, λ3 = 0.7.

All results are obtained over 100 independent trials, each of

sample size 10000. Table I summarizes the results with two

delays (without noise). The method M1 is the one described in

section IV-1. The inverse Fourier transform of (C
(2)
1 /C

(2)
0 ) is

interpolated with the cardinal sine function in order to find the

maxima of the function with increased accuracy. The method

M2 is the optimization method described in [9], with initial

guesses given by method M1.

The advantage of the method M1 is that it does not need

initial guesses, and that it is wide-band, compared to the

SNR τ1 τ2
(dB) mean std mean std

M1 0 4.01 0.20 7.98 0.62
M2 0 3.28 0.86 9.38 1.66

M1 10 3.33 0.22 4.04 0.20
M2 10 3.56 0.27 4.02 0.36

M1 12 2.16 0.02 4.06 0.07
M2 12 2.31 0.05 4.21 0.03

TABLE II
MEAN AND STANDARD DEVIATION OF ESTIMATED DELAYS OVER 100

INDEPENDENT TRIALS WITHOUT ATTENUATIONS USING THE WIDE-BAND

SPECTRAL APPROACH (M1) AND THE TIME DOMAIN APPROACH (M2) IN A

NOISY CONTEXT. TRUE DELAYS ARE 2.3 AND 4.2 IN THIS SIMULATION.

τ1 τ2 τ3
mean std mean std mean std

M1 6.1 0.016 8.42 0.039 11.95 0.05
TABLE III

MEAN AND STANDARD DEVIATION (STD) OF ESTIMATED DELAYS OVER

100 INDEPENDANT TRIALS USING THE SPECTRAL METHOD WITH 2
SENSORS AND 3 SOURCE SIGNALS (M1). TRUE DELAYS ARE 6.2, 8.6 AND

11.9 IN THIS SIMULATION.

spectral method proposed in [8]. The time domain optimization

improves the result.

The same approach (table I) is presented with indepen-

dent noises v1 and v2. The numerical value of delays has

been chosen in order to find the limit of validity of the

approach. The signal to noise ratio (SNR) is defined as

SNR = 10 log(std(s1 + s2)/std(v1)), where std denotes

standard deviation.

The limit of performance is reached when the two peaks

cannot be separated (about SNR = 12dB). With SNR =
0dB, the second peak detected is located in the neighborhood

of the sum of the two delays (without noise), which explains

the bias. Table III presents the wide-band method described

in section IV-2 with three delays.

This result is attractive, because with only two sensors, it is

possible to estimate the delays of three source signals using

fully the signal bandwidth.

VI. CONCLUSION

The algorithm described in this paper allows the estimation

of relative differential delays between more sources than

sensors, in a wide-band context. It can also be seen as a

whitening operation applicable when sources are unknown,

because of the division by C
(n)
k−2. This key operation strongly

increases accuracy. For the moment, the algorithm cannot be

compared to others, since none exists that is able to perform

blind identification of time delays when the number of sensors

is not larger than the number of sources. Following the same

lines as in [9], unknown attenuations can be taken into account

as well.
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