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Blind Separation of Independent Sources from

Convolutive Mixtures
P. Comon, and L. Rota

Abstract—The problem of separating blindly independent
sources from a convolutive mixture cannot be addressed in its
widest generality without resorting to statistics of order higher
than two. The core of the problem is in fact to identify the
paraunitary part of the mixture, which is addressed in this paper.
With this goal, a family of statistical contrast is first defined. Then
it is shown that the problem reduces to a Partial Approximate
Joint Diagonalization (PAJOD) of several cumulant matrices.
Then, a numerical algorithm is devised, which works block-wise,
and sweeps all the output pairs. Computer simulations show the
good behavior of the algorithm in terms of Symbol Error Rates,
even on very short data blocks.

keywords Blind Source Separation, Blind Equalization, Statis-
tical Contrasts

I. INTRODUCTION

When channel inputs are not observed, equalization or

identification is referred to as blind, as opposed to pilot-

aided techniques. They do not need the eye to be open, hence

their name. Pilot sequences are difficult to fully exploit when

channels are fast varying, or have long impulse responses. In

addition, the present tendency is to reduce the length of pilot

sequences, in order to increase the throughput, among others.

Even if Multiple Input Multiple Output (MIMO) equaliza-

tion can be sometimes carried out with the help of second-

order statistics, in particular cases exploiting either the source

color [1] or their discrete character [12], it generally requires

the use of High-Order Statistics (HOS) [20] [14], at least in

a final stage [18] [4]. See [13, ch.5] for further references. It

is believed that HOS require ”very long convergence times”;

this belief is actually often due to an on-line (time recursive)

implementation. In fact, on-line blind equalization algorithms

require long data blocks to converge (typically from 10,000

to 100,000 symbols); therefore, it is of interest to devise

off-line algorithms able to converge much faster (typically

500 symbols), in order to cope with channels with shorter

stationarity durations. Therefore, it is exclusively focussed on

such block algorithms in the present paper.

The case of static mixtures (as opposed to convolutive) has

also retained a lot of attention because its simpler form allows

a deeper treatment. This special instance will not be addressed

here; we refer to [13] for various aspects of that question.

On-line algorithms generally suffer from a number of

drawbacks: they cumulate the convergence times of the op-

timization algorithm, and the estimation of moments. They

are also very sensitive to initialization, and may lead to local

extrema, and consequently spurious solutions. On the other

hand, block algorithms enjoy some advantages. They fully

exploit the data (in the sense of a better weighting), are well
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matched to TDMA transmission formats, and allow the design

of analytical algorithms. Their main drawback has been for a

long time their excessive computational complexity. But this

bottleneck seems to be today much less critical. Let us insist

eventually on one striking property of MIMO systems : Finite

Impulse Response (FIR) filters can have a FIR inverse [15],

which is of course impossible in the SISO case.

The paper is organized as follows. In section II, assumptions

and notation are stated. The HOS-based contrast criterion is

defined in section III. The block algorithm, aiming at reaching

acceptable performances on very short data records (e.g., 500

symbols), is then described in section IV. Extensive computer

experiments are eventually concisely reported in section V.

II. SYSTEM MODEL

Consider the following linear time-invariant (LTI) invertible

system:

x(n) =
∞∑

k=−∞

F (k)s(n− k) (1)

where s(n) denotes the N-dimensional source vector, x(n)
the N-dimensional observation, and {F } = {F (n), n ∈ Z}
denotes the N×N channel impulse response matrix sequence.

For convenience, vectors and matrices are denoted with

bold lowercase and bold uppercase letters, respectively.

For examples, I denotes the identity matrix. Throughout

the paper, (T) stands for transposition, (H) for conjugate

transposition, end (∗) for complex conjugation. Also denote

by Z the set of integers, by N the subset of positive integers,

and by Ğ(z) the Z-transform of the time sequence G(n):
Ğ(z) =

∑∞

−∞ G(k)z−k.

The MIMO equalization problem consists of finding a filter

{H} = {H(n), n ∈ Z} from the sole observation of the

channel outputs x(n). Thus the outputs y(n) of the equalizer

are estimations of the inputs s(n).
The following hypothesis are assumed :

H1. Inputs si(n), i ∈ {1, . . . , N} are mutually independent

i.i.d. zero-mean processes, with unit variance

H2. s(n) is stationary up to the considered order, r, r ≥ 3,

i.e. ∀i ∈ {1, . . . , N}, the order-r marginal cumulants,

C
q
p [si] = Cum[si(n), . . . , si(n)

︸ ︷︷ ︸

p terms

, s∗i (n), . . . , s
∗
i (n)

︸ ︷︷ ︸

q=r−p terms

] (2)

do not depend on n; for definitions of cumulants, refer

to [17] and references therein.

H3. At most one source has a zero marginal cumulant of order

r.
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H4. The global transfer matrix, Ğ(z) = F̆ (z)H̆(z), satisfies

the property

Ğ(z)Ğ
H
(1/z∗) = I (3)

where I denotes the N × N identity matrix; in other

words, F̆ (z) and Ğ(z) are paraunitary, and hence H̆(z).

The interest in using cumulants is that cross cumulants

of independent random variables cancel (whereas moments

do not necessarily do) [16]. In addition, as pointed out in

introduction, HOS are mandatory to restore identifiability.

Remark 1. More generally, if sources are not i.i.d. but are

still linear processes, our approach of this problem holds valid.

It suffices to assume H1 in a first stage in order to equalize

the channel, and to extract the original sources in a second

stage by linear regression between each equalizer output and

the observations. In fact the equalizer outputs are the driving

processes of the sources.

Remark 2. Hypothesis H4 is not restrictive. Indeed, one can

always whiten the observations, by using a filter that factorizes

the second-order power spectrum. This whitening filter is not

unique, and one can merely choose it to be minimum phase.

III. CONTRASTS

The results stated in this section show how contrast-based

blind MIMO equalization can be posed in terms of a Par-

tial Joint Approximate Diagonalization (PAJOD) of a set of

cumulant matrices. This may be very convenient from the

numerical point of view, since we are more familiar with the

manipulation of matrices than that of tensors. Proposition 1

defines the contrast optimization criterion, and Proposition 2

proves that the maximization problem deflates into a joint

matrix diagonalization. Proposition 3 allows to choose the

subset of matrices to be diagonalized. For the sake of clarity,

we shall subsequently consider only cumulants of order r = 4,

but principles hold for orders 3 and higher.

A. Definitions

To start with, denote the following cumulant:

C
2,y
2 [i, j, ℓ] = Cum[yi(n), yi(n)

∗, yj1(n− ℓ1), yj2(n− ℓ2)
∗]

(4)

where j = (j1, j2) and ℓ = (ℓ1, ℓ2). Also define J=
{1, 2, . . . , N}2, and L a subset of Z2; unless otherwise spec-

ified, L = Z2. The delays ℓ1 and ℓ2 are introduced in the

above definition, because they will be necessary to devise an

optimization criterion (Proposition 1) that will be reducible

to matrix diagonalization (Proposition 2). This reduction,

together with the adequate numerical algorithm, constitues the

core of our contribution.

Next, define the following terms:

• Trivial filters. Clearly, the blind equalization problem we

have stated contains inherent indeterminacies. In fact, the

set S of source processes is characterized by assumptions,

such as H1. One defines the set T of trivial filters, as

containing all filters that do not affect these assumptions.

In other words, S is stable by the operation of T . For

instance, filters of the form Λ(z) · P , where P is a

permutation matrix, and Λ(z) a diagonal filter, do not

affect mutual independence between components of s(n).
If in addition s(n) is an i.i.d. non Gaussian process, Λ(z)
should contain only pure delays, integer multiples of

the sampling period, and fixed complex factors; in other

words, the entries of Λ(z) are of the form λzk, k ∈ Z.

• Contrasts. Let H be a set of filters, and denote H · S
the set of processes obtained by operation of filters of H
on processes of S. An approximation criterion, Υ(H;x),
will be referred to as a contrast defined on H ∈ H,x ∈
H · S, if it satisfies the three properties below [5] :

P1. Invariance: The contrast should not change within

the set of acceptable solutions, which means that

Υ(H;x) = Υ(I;x), ∀H ∈ T , ∀x ∈ H · S.

P2. Domination: If sources are already separated, any

filter should decrease the contrast. In other words,

∀x ∈ S, ∀H ∈ H, then Υ(H;x) ≤ Υ(I;x).
P3. Discrimination: The maximum contrast should be

reached only for filters linked to each other via trivial

filters: ∀x ∈ S,Υ(H;x) = Υ(I;x) ⇒ H ∈ T .

In the remaining, and in accordance with assumptions H1

through H4, H will denote the set of paraunitary filters,

and S the set of i.i.d. processes with mutually independent

components. As a consequence, H·S is the set of standardized

linear processes (i.e., second-order white with unit covariance).

Lastly; trivial filters of T are of the form Λ(z) ·P , where P

is a permutation, and Λ(z) a diagonal filter, whose entries are

of the form λzk, with k ∈ Z and |λ| = 1.

B. Particular contrast proposed

We are now in a position to prove the proposition below:

Proposition 1 The functional

J 2
2 (H;x) =

N∑

i=1

∑

j∈J

∑

ℓ∈L

|C2,y
2 [i, j, ℓ] |2 (5)

is a contrast when observations x(n), and hence the outputs

y(n) of the paraunitary equalizer, are standardized.

Let us first comment this criterion. As in the static case [2]

[10], the idea is to contract the fourth order cumulant tensor on

two indices in order to get a set of matrices to be diagonalized.

Because the mixture is convolutive, the contraction should also

apply on all delays associated with the contracted indices.

Other contrasts of the same family can be defined [7], but

will not be discussed here. Let us now turn to the proof.

Proof. Let us then prove proposition 1. The input-output

relations of the global system is

yi(n) =
∑

q,m

Giq(m)sq(n−m). (6)
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Thus, using the multilinearity of cumulants and the definition

of J 2
2 , we get:

J 2
2 =

∑

i

∑

j1,j2

∑

ℓ1,ℓ2

∣
∣
∣
∣

∑

q,m

∑

q′,m′

∑

k1,p1

∑

k2,p2

Giq(m)

G∗
iq′ (m

′)Gj1k1(p1)G
∗
j2k2

(p2) ·
Cum[sq(n−m), s∗q′(n−m′),

sk1(n− ℓ1 − p1), s
∗
k2
(n− ℓ2 − p2)]

∣
∣
∣
∣

2

(7)

Since si(n) are i.i.d. (assumption H1), the only non-zero

cumulants are obtained for m = m′ = ℓ1 + p1 = ℓ2 + p2.

Next, since si(n) are mutually independent, non-zero terms

also need that q = q′ = k1 = k2. Deleting the null terms, and

expanding the squared modulus yields:

J 2
2 =

∑

i

∑

j1,j2

∑

ℓ1,ℓ2

∑

q,m

∑

q′,m′

G2
iq(m)G2∗

iq′ (m
′)

Gj1q(m− ℓ1)G
∗
j1q′

(m′ − ℓ1)Gj2q(m− ℓ2)

G∗
j2q′

(m′ − ℓ2)C
2
2[sq]C

2∗
2 [sq′ ] (8)

Yet, since G ∈ H · S is standardized, it satisfies (3), and in

particular, its columns are orthogonal and of unit modulus [5],

which means:
∑

j,ℓ

Gjq(k − ℓ)G∗
jq′ (k

′ − ℓ) = δqq′δkk′ (9)

Applying this property to the pairs of indices (j1, ℓ1) and

(j2, ℓ2), we get:

J 2
2 =

∑

i

∑

q,m

∣
∣G2

iq(m)
∣
∣
2 ∣
∣C

2∗
2 [sq]

∣
∣
2

(10)

Last from (9), we have in particular [5] [19]:
∑

k,i |Gij(k)|
4 ≤

1 which eventually yields J 2
2 ≤ ∑

i

∣
∣C2

2[si]
∣
∣
2

which proves

that J 2
2 (H;x) ≤ J 2

2 (I; x), for any G ∈ H and s ∈ S.

Equality holds if and only if
∑

k,i |Gij(k)|
4
= 1, which is

possible only for trivial filters.

Now denote the cumulant tensor of observations :

Ta,b(α, β) = Cum[xa1(n− α1),

x∗a2(n− α2), xb1 (n− β1), x
∗
b2
(n− β2)] (11)

where a, α, b, β are vectors of size 2. The entries of a and

b belong to 1, . . . , N , by construction.

Consider a FIR equalizer {H(n), 0 ≤ n ≤ L − 1}, and

store the whole impulse response in the block matrix below:

H = [H(0),H(1), . . .H(L− 1)]. (12)

The range of variation of β is left unspecified for the moment,

whereas that of α is set to {0, 1, . . . , L − 1}2. The reasons

for this choice will become clear in the proof of proposition 2.

This tensor can be stored in a set of NL × NL matrices,

denoted M(b, β). In fact, for any fixed (b, β), the entries of

these matrices are given by:

Mηµ(b, β) = Ta,b(α, β), (13)

with η = α1N + a1, µ = α2N + a2. In short, we shall

denote this matrix storage by M(b, β) in the sequel. Define

‖Diag{A}‖2 =
∑

i |Aii|2, we have the following [9]:

Proposition 2. The contrast J 2
2 can be rewritten as

PAJOD criterion of a set of NL×NL matrices:

J 2
2 (H;x) =

∑

b

∑

γ

∥
∥Diag{HM(b, γ)HH}

∥
∥
2

(14)

with

Mη,µ(b, γ) = Ta,b(α, γ) = Cum[xa1(n− α1),

x∗a2(n− α2), xb1(n− γ1), x
∗
b2
(n− γ2)] (15)

where H is N×NL semi-unitary, i.e, satisfies HH
H = I , and

M(b, γ) is defined as in (13). Here, b varies in {1, . . . , N}2,

and γ in Z2.

Proof. The relations between equalizer inputs and outputs

can be written as:

C
2,y
2 [i, j, ℓ] =

∑

a,b

∑

α,β

Hia1(α1)H
∗
ia2

(α2)Hj1b1(β1)

H∗
j2b2

(β2)Ta,b(α,β + ℓ). (16)

Yet the paraunitary condition H4 on Ğ(z) yields that H̆(z)
is itself paraunitary, which yields the same orthogonality

property as (9):
∑

jℓ

H∗
jr(τ + ℓ)Hjr′(τ

′ + ℓ) = δrr′δττ ′. (17)

Thus, taking the square modulus of (16), making the change

of variables γk = βk+ℓk, and eliminating the unuseful indices

leads to

J 2
2 =

∑

iaa′αα′bb′γγ′

Hia1(α1)Hia2(α2)H
∗
ia′

1

(α′
1)

H∗
ia′

2

(α′
2)Ta,b(α, γ)T ∗

a′,b′(α′, γ′)

·δ(b − b′)δ(γ − γ′), (18)

which can be rearranged into

J 2
2 (H; x) =

∑

ibγ

|Hia1(α1)Hia2(α2)Ta,b(α, γ)|2 . (19)

Lastly, grouping indices aj and αj together in a single

index pj , one can remark that the L matrices H(α) can

be stored in the N × NL matrix H, defined in (12),

with full compatibility with (13), so that eventually J 2
2 =

∑

ibγ |∑p
1
p
2

Hip
1
Hip

2
Mp

1
p
2
(b, γ)|2. Here the paraunitary

property of H(τ) implies that HH
H = I .

Remark 3. The para-unitarity of H̆(z) implies that H is

semi-unitary, but the reverse is not true. In other words, only

part of the information is exploited.

Remark 4. The criterion J 2
2 differs from that proposed

in [2] in several respects: (i) the matrices M(b, γ) are

built completely differently, because of the convolutive

model, (ii) the matrix sought for is not square unitary but

rectangular, which involves quite different calculations, as
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will be subsequently seen.

Proposition 3. If the equalizer is of finite length L,

and the channel of finite length M, then contrasts J 2
2 ,

defined in proposition 2, can be rewritten as PAJOD criteria

of a finite set of at most (2M + L − 2)2N2 matrices,

where H is semi-unitary, b varies in {1, . . . , N}2, and γ in

{−M + 1, . . . ,M + L− 2}2.

Lemma 5 If channel and equalizer are both of finite

length M and L, respectively, then the cumulant tensor

T = {Ta,b(α, γ)}, is null whenever an entry γk of γ falls

outside the interval {−M + 1, . . . ,M + L− 2}.

Proof. In fact, proposition 2 still apply. Consider proposition

2 for instance (q = 2), and let’s prove the lemma. From

definition (11) and input-output channel equations xi(n) =
∑

qm Fiq(m)sq(n − m), we get by multi-linearity of cumu-

lants:

Ta,b(α, γ) =

M−1∑

i,j=0

∑

ℓ

N∑

u,v=0

∑

w∈J

Fa1u(i)F
∗
a2v

(j)

Fb1w1
(ℓ1)F

∗
b2w2

(ℓ2)

Cum[su(t− α1 − i), s∗v(t− α2 − j),

sw1
(t− γ1 − ℓ1), s

∗
w2

(t− γ2 − ℓ2)],

(20)

with ℓ ∈ {0, . . . ,M − 1}2. Yet, from H1, su(n) are i.i.d.

processes, and the expression is null unless α1 + i = α2 +
j = γ1 + ℓ1 = γ2 + ℓ2. Next, from H1, su(n) are mutually

independent, so that the expression is also null unless u =
v = w1 = w2. this yields

Ta,b(α, γ) =

M−1∑

i=0

N∑

u=0

Fa1u(i)F
∗
a2u

(i+ α1 − α2)

Fb1u(i + α1 − γ1)F
∗
b2u

(i + α1 − γ2)C
2
2[su]

(21)

since the support of F (·) is {0, 1, . . . ,M − 1},

the above quantity is null outside the intervals

0 ≤ i + α1 − γk ≤ M − 1, ∀k, 1 ≤ k ≤ 2. The fact

that 0 ≤ α1 ≤ L − 1 proves eventually the lemma. The

proposition 3 then directly follows.

Remark 5. In practice, it is sufficient to vary the entries γk
in the central third of the set {−M + 1, . . . ,M + L − 2},

namely {0, 1, . . . , L − 1}. This choice may be suboptimal,

and could be improved.

IV. NUMERICAL ALGORITHMS

The goal of this section is to demonstrate that the

computation of the equalizer can be carried out within a

limited (polynomial) number of operations. From now on,

we shall assume that (i) the channel length M is known,

(ii) the equalizer has the same length L = M , and (iii)

L = {0, 1, . . . , L− 1}2.

The propositions of the previous section teach us that a

semi-unitary matrix, H, of size N × NL, must be found,

which should diagonalize approximately and jointly the set

of N2L2 matrices, M (b1, b2, γ1, γ2). Each of these matrices

is of size NL×NL. The goal is to maximize the sum of the

squared moduli of the N first diagonal entries of the N2L2

matrices as shown in figure 2.

A. Jacobi sweeping

In order to reach this goal, one looks for a NL×NL unitary

matrix, V, whose leading N × NL submatrix (the first N
rows) will yield matrix H. This unitary matrix can be built

by accumulating Givens rotations, as proposed in the Jacobi

algorithm [11] :

V =
∏

1≤i<j≤NL

Θ[i, j]H, (22)

where Θ[i, j] coincides with the identity matrix except for 4

entries, namely :

Θii[i, j] = Θjj [i, j] = cos(θ[i, j])

and Θji[i, j] = −Θij[i, j]
∗ = sin(θ[i, j])eψ[i,j]

with  =
√
−1. This rotation can indeed always be imposed

to have a real cosine [11]. The cosine, c, and the sine, s, must

be determined so as to maximize, successively for every pair

[i, j] :

J 2
2 =

∑

b,β

N∑

k=1

∣
∣
∣
∣
∣

NL∑

η,µ=1

Θ∗
ηk[i, j]Θµk[i, j]Mηµ(b,β)

∣
∣
∣
∣
∣

2

. (23)

Put in other words, a PAJOD of a set of matrices M(b, β) is

performed, which means that the NL×NL matrix

VM(b, β)VH (24)

has an approximatively diagonal N ×N leading block.

B. Processing every pair

Indices [i, j] do not need to describe all possible pairs from

the set {1, . . . , NL}2. In fact, since k ≤ N in criterion (23),

plane rotations Θ[i, j] will have no effect if i > N and j > i.
Therefore, it suffices to consider rotations for which i ≤ N ,

since j > i by construction.

As a consequence, two cases must be distinguished, depend-

ing on the fact that j ≤ N or not. In the two cases, we have to

find the roots of polynomials (stationary points of a contrast,

a rational function in the unknown). Denote in this section

c = cos(θ[i, j]) and s = sin(θ[i, j])eψ[i,j]:

Θ[i, j] =

(
c −s∗
s c

)

(25)

and drop provisionally (b, β) in M(b, β) for the sake of

convenience.

• Case j ≤ N : One maximizes the sum of the 2 diagonal

terms on which one has some action. For J 2
2 , this is a

classical expression [3]:

J 2
2 =

∑

b,β

∣
∣c2Mii + cs∗Mji + csMij + ss∗Mjj

∣
∣
2
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+
∣
∣ss∗Mii − cs∗Mji − csMij + c2Mjj

∣
∣
2
, (26)

• Case j > N : here only the first diagonal term should be

maximized, so that:

J 2
2 =

∑

b,β

∣
∣c2Mii + cs∗Mji + csMij + ss∗Mjj

∣
∣
2

(27)

with appropriate definitions of matrices M(b, β).

C. Complex framework

One considers in this section complex data, channel, and

equalizer. In this framework, stationary points are defined

by two polynomial equations in two (real) variables, which

makes the solution a little more complicated than real

framework, described in [8]. In the first case (j ≤ N ),

with the help of a change of variables, this rooting can be

converted into the solving of two trinomials of degree 2,

as in [3]. This transformation is not possible in the second

case (j > N ), and the rooting of the eighth global degree

polynomial is mandatory.

We consider a set of 2× 2 sub-matrices, say M(k), and a

plane rotation θ, that we decide to parameterize by the tangent

of its angle, ρ and its complex phase, ψ:

M (k) =

(
αk βk
γk δk

)

(28)

and

Θ =
1

√

1 + ρ2

(
1 −ρe−ψ

ρeψ 1

)

(29)

with ρ = tan θ.

The transformed matrices are expressed as ΘHM(k)Θ.

Define Φ1 (resp. Φ2) as the sum of the squared moduli of

the first (resp. second) diagonal entries of all transformed

matrices. Then we have:

Φ1 =
1

(1 + ρ2)2

∑

k

∣
∣αk + ρe−ψγk + ρeψβk + ρ2δk

∣
∣
2

(30)

Φ2 =
1

(1 + ρ2)2

∑

k

∣
∣δk − ρe−ψβk − ρeψγk + ρ2αk

∣
∣
2

(31)

Of course, by construction, Φ2(ρ, ψ) = Φ1(
1
ρ
,−ψ + π).

Case j > N : here, the unknowns ρ and ψ should be

found so as to maximize Φ1. For this purpose, the variable

t = tanψ/2 is introduced. Then, (1 + ρ2)2(1 + t2)2Φ1 is a

polynomial in t and ρ. Stationary values in ρ and t exactly

cancel both the polynomials below:

P (ρ, t) = (1 + ρ2)3(1 + t2)2
∂Φ1

∂ρ

Q(ρ, t) = (1 + ρ2)2(1 + t2)3
∂Φ1

∂t







(32)

P (ρ, t) contains 22 monomials, whose leading one is ρ4t4,

whereas Q(ρ, t) contains 13 monomials, whose leading one

is ρ2t4. We note that the second one is much simpler, and

that is of degree 2 in ρ.

Considered as polynomials in ρ, P and Q admit a com-

mon solution if and only if their resultant (determinant of a

Sylvester matrix) is null, which yields:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Q4 0 P2 0 0 0
Q3 Q4 P1 P2 0 0
Q2 Q3 P0 P1 P2 0
Q1 Q2 0 P0 P1 P2

Q0 Q1 0 0 P0 P1

0 Q0 0 0 0 P0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(33)

where Qi(t) (resp. Pi(t)) denote the coefficients of

ρi, 0 ≤ i ≤ 4 in Q(ρ, t) (resp. of ρj , 0 ≤ j ≤ 2 in P (ρ, t)).
This determinant is a polynomial in t only, and its roots

contain all the roots of system (32). It turns out that this

polynomial is of degree 24, and that it generally admits no

more than 8 real roots, which is consistent with Bézout
theorem, stating that maximal number of solutions should

be 42. Plugging back these real roots in Q(ρ, t) allows to

compute two candidates for ρ associated with each candidate

for t. The best solution (ρ, t) (i.e. leading to the global

maximum) is then selected by computing the value of the

rational function Φ1(ρ, t).

Case j ≤ N : now, the optimization criterion is J = Φ1 +
Φ2. Because of symmetries, this criterion is much simpler to

maximize [3] [6]. In fact, define
(
ak bk
ck dk

)

= ΘHM (k)Θ. (34)

Then, one can first notice that

J 2
2 =

∑

k

|ak|2 + |dk|2

=
1

2

∑

k

{|ak − dk|2 + |ak + dk|2} (35)

and next, that ak + dk = αk + δk, which is thus constant

with respect to Θ. The maximization of J 2
2 is consequently

equivalent to that of
∑

k |ak − dk|2.

Yet, if ρ = tan θ, one can check out that

ak − dk = (αk + δk) cos θ

+(βk + γk) sin θ cosψ

+(βk − γk) sin θ sinψ (36)

Then, it is easy to show that J 2
2 can be expressed as a

quadratic form:

wTℜ[BBH ]w + constant, (37)

where

w = [cos 2θ, sin 2θ cosψ, sin 2θ sinψ]T , (38)

and where the k-th column of B is:

Bk = [αk + δk, βk + γk, (βk − γk)]
T . (39)

As a consequence, finding the maxima of J 2
2 amounts to

maximizing a real quadratic form in 3 variables.
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It has been possible to arrange criterion J 2
2 in a quadratic

form because some terms in Φ1 and Φ2 have cancelled each

other, in particular those involving: sin2 θ, cos θ, sin θ sinψ,
and sin θ sinψ, which are not present in (37).

Space is lacking to give the exact analytical expressions of

the solutions θ[i, j] and ψ[i, j]; see [7] for further a details.

Once the plane rotation is obtained, it is applied to the set of

cumulant matrices as ΘHM(k)Θ for criteria J 2
2 .

V. COMPUTER RESULTS

One considers a Finite Impulse Response (FIR) complex

mixture of length L = 5 of N = 2 QPSK white processes.

Thus, there are N2L2 = 100 square matrices, each of size

NL = 10, and the goal is to jointly and approximately

diagonalize their 2×2 leading matrix by congruent transform.

With this goal, a 10×10 unitary matrix, V is estimated. Matrix

H corresponds to the first two rows of V. The channel is

paraunitary, to preserve second-order whiteness as explained

is section 2. According to the general decomposition of

paraunitary matrices [21], the channel has been generated as

follows:

F̆ (z) = R(φ0) ·
4∏

m=1

(Z(z)R(φm)) (40)

where

Z(z) =

(
1 0
0 z−1

)

(41)

and

R(φ) =

(
cosφ − sinφe−ψ

sinφeψ cosφ

)

(42)

Because of the 10 free parameters above,we have some

control on the location of zeros of the 4 length-5 SISO

channels. In this section, the 10 angles φi, ψi, 1 ≤ i ≤ 3, are

drawn according to a uniform distribution in [0, 2π) in order

to generate paraunitary random channels. For each randomly

generated channel, blocks of noisy observations are generated

according to:

x(n) =
2∑

k=0

F (k)s(n− k) + ρw(n) (43)

where w(n) is a white circular complex Gaussian noise with

identity covariance, and si(n) are unit covariance QPSK white

sequences. Parameters ρ is introduced in order to control the

Signal to Noise Ratio per bit (SNR), that we may define as

follows:

SNRdB =
Eb
N0

= −20 log10 ρ (44)

In fact, signal and noise parts are both standardized (i.e.

second-order space-time white).

When evaluating performances of blind MIMO equalizers,

a difficulty to overcome stems from inherent indeterminacies.

In fact, equalizer H̆(z), and hence global filter Ğ(z), can

be estimated only up to a multiplicative matrix of the form

D(z) = Λ(z)P , as defined in section 3.1. Let us store the

global impulse response G(n) in a N × N(2L − 1) array

G. then finding the best matrix D(z) amounts to searching

every row of G for the entry of largest modulus, under the

constraint that their column index are different modulo N .

This fixes delay and permutation indeterminacies. The phase

delay is easier to fix because the alphabet is known: it suffices

to compare to 1 the output raised to the fourth power. In

other words, we calculate the error rate of N !N(L+M − 1)
potential estimators, and chose the best. For N = 2 and

L = 5, we have thus explore 18 different cases (9 possible

delays for each row), for each of the 2 permutations.

Results are reported in figure 3 for blocks of 500 an 1000

symbols, as a function of SNR. 45 trials have been run.

For every trial, two blocks of data have been independently

generated, of length 500 (or 1000) and 5000, respectively.

Once the equalizer has been calculated from the the whole

block of length 500 (or 1000), it has been tested on the

other block of 5000 symbols to compute the SER; this is a

hold-out type performance testing that avoids over-fitting. This

procedure has been repeated 45 times, in order to obtain an

average SER; the median of the 45 trials is plotted in figure 3.

As a consequence, the minimal resolution is (45 ∗ 5000)−1 =
4.4×10−6. After a SNR of 13dB, the SER falls below the latter

resolution. These curves demonstrate the good behavior of the

algorithm for short data blocks. As a basis for comparisons,

the performances obtained with the exact inverse channel are

also represented; it corresponds in the present case to the Zero-

Forcing (ZF) equalizer, optimal in the absence of noise.

VI. CONCLUSIONS

The numerical algorithm described in section IV, perform-

ing a Partial Joint Diagonalization of cumulant matrices, was

based on preliminary theoretical results reported in section

III. This algorithm demonstrates that it is possible to equalize

blindly FIR MIMO channels from data records as short as

500 symbols, contrary to what is often believed. In addition,

the block approach we proposed is attractive in all TDMA

transmission modes. Performances of the proposed algorithm

remain quite attractive for random channels up to length 5,

but could probably be improved by refining the paraunitary

constraint. This is the subject of current research.
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Fig. 1. Observation x is equalized by H; the global system is denoted G.
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Fig. 2. The semi-unitary matrix H aims at diagonalizing jointly the N ×

N leading sub-matrices (shaded area) of the N
2
L
2 matrices. In the above

picture, they are stacked one above the other, as slices of a cube.
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Fig. 3. Performances obtained for data blocks of length 500 and 1000
symbols: Symbol Error Rates (SER) are obtained for random paraunitary
channels of length 5, and with a blind equalizer of length 5.


