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Abstract— A polynomial criterion is proposed to perform blind
source separation, extending previous works to MIMO systems.
The criterion is proved to be asymptotically MAP-equivalent in
presence of PSK sources. An efficient minimization algorithm
dedicated to polynomial criteria is then developed, improving
on the fixed-step stochastic gradient previously utilized in this
framework.

I. INTRODUCTION

Even in the blind context, spatial diversity has been demon-
strated to be useful in several problems, including Air Traffic
Control and Mobile Communications [1] [2] [3]. Consider the
following reception model:

y = Ax + w, (1)

where y and w are random vectors of dimension K, the
number of channels (which often corresponds to the number
of antennas times the polarization diversity), A is an unknown
K × P complex mixing matrix, and x is a random vector of
size P , independent of w. It is assumed in the remaining that:
[A1] P ≤ K, and [A2] every source s = xp has a known
discrete distribution in the complex plane, ps(s), of support
C. The goal is to carry out a Discrete Source Estimation (DSE),
solely based on successive observations of y. This model is
valid for instance for narrow-band digital communications over
flat fading channels. But such static mixtures play also a key
role in convolutional mixtures, sometimes implicitly; this has
been noticed by several authors, the earliest reference being
[5].

Blind separation techniques require neither the knowledge
of the array nor learning sequences, and therefore raise in-
creased interest, even if they are often used within a semi-blind
framework [6] [12].

Blind separation algorithms can be based on the indepen-
dence of the sources [1], [4], on the constance of their modulus
[15], or on the discrete character of their distribution [8], [11],
[14], [17]. This work is dedicated to the latter case, where
sources can possibly be nonstationary or correlated.

In [11], both A and x are estimated in the case of BPSK
sources; the optimization criterion is of ML type, and thus
computationally heavy to maximize. This becomes much
worse if the number of constellation symbols increases. In
the present paper, the computational cost is decreased by
estimating separately the rows of A−1 instead, as shown in
section II, and also by resorting to a simpler criterion (6) of
polynomial form. This criterion is similar to the one proposed
in [14]. Another polynomial approach was presented in [16] to
separate zero/constant modulus signals. Compared to [14], our
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contribution is three-fold: (i) we extend its use to the MIMO
case, (ii) we prove its asymptotic MAP-equivalence for PSK
sources, and (iii) a fixed-step stochastic gradient was proposed
in [14] to perform blind SISO equalization, whereas our
special-purpose algorithm, called AMiSRoF, performs even
better than the optimal-step gradient.

Moreover, the AMiSRoF-based algorithm proposed in this
paper is of deflation type [7]. Its core looks similar to the
algorithm proposed in [9], except for the roots computed along
each descent direction, and for the optimization criterion.
Thus, AMiSRoF is applicable to MIMO convolutive mixtures
as well, even if the computer experiments subsequently re-
ported are limited to static mixtures.

II. OPTIMIZATION CRITERION

The optimal solution in the MAP sense is given by:

(x̂, Â)MAP = Arg Max
x,A

px|y,A(x,y, A) (2)

where px|y,A(x,y, A) = px(x) ·pw(y−Ax)/py(y). Contrary
to the so-called deterministic ML approach, the MAP approach
restricts the search for x to the allowed constellation C. Thus
the MAP criterion is the most natural in this context. In
this paper, it is aimed at minimizing this criterion. In a first
stage, the search complexity is reduced by modifying the
optimization problem, and appropriate approximations are then
made in a second stage to allow a polynomial complexity. In
presence of Gaussian noise, it is well known that the MAP
solution rewrites:

(x̂, Â)MAP = Arg Min
x̂∈CP ,Â

||y − Â x̂||2. (3)

Complexity reduction: The first simplification consists of
noticing that, if A is full column rank, one can instead
minimize with respect to a P ×K matrix B:

(x̂, B̂)MAP = Arg Min
x̂∈CP ,B̂

||B̂∗y − x̂||2 (4)

This significantly reduces the computational complexity. In-
deed, denote D the cardinality of constellation C, then a single
pseudo-inverse needs to be computed in (4), whereas DNP of
them need to be computed in (3). Furthermore, it is possible
to look for the rows of B∗ one by one (deflation approach),
so that the optimization problem takes eventually the form
below, if N independent realizations are observed, and still in
the case of white Gaussian noise:

b̂MAP = Arg Min
b̂

N∑
n=1

Min
x̂(n)∈C

|b̂∗y(n)− x̂(n)|2 (5)

The search complexity is now impressively reduced. In fact,
the search for x̂ is now performed in a set of cardinal
P DN , which is much smaller than with (4). Up to now, no
approximation has been made. Unfortunately, it is not easy
to find analytically a (even local) minimum of this reliable
criterion.
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Polynomial criterion: Now, it is shown in appendix that,
under the assumption that the sources are PSK-modulated, the
MAP criterion is asymptotically equivalent to

ΦN (b) =
1

N

N∑
n=1

D∏
j=1

|b∗y(n)− C(j)|2. (6)

where D = Card(C) and C(j) are the elements of C. This
allows to replace a search over the constellation C by a mere
product. Yet, the numerical algorithm proposed in the next
section is precisely dedicated to polynomial criteria. In [13],
it has been shown that the absolute minima of (6) give for large
enough N the correct solutions. In section IV, the robustness
of the criterion with respect to the assumptions made in
appendix are investigated through computer experiments.

III. EXTRACTION ALGORITHM

A. Extraction of a single source

The advantage of the polynomial criterion (6) is that it
can theoretically be analytically minimized. In practice, the
computational burden is acceptable only in one dimension, so
that we are led to construct the following algorithm.

Absolute Minimum Search by Root Finding (AMiSRoF):
1) Set b to the initial value b0, defined as the dominant

eigenvector of the covariance of y. Then, for k = 1, 2, ..
do the following steps

2) Compute the gradient g and Hessian H of ΦN (b) at
bk.

3) Compute the optimal descent direction v = H−1g and
normalize it to ||v|| = 1.

4) Compute the next vector bk+1 = bk + µv, where µ
minimizes ΦN (bk+1).

In step 4, the value of µ is obtained by rooting the first
derivative of ΦN with respect to µ, and then choosing the
stationary point yielding the smallest value. Iterations are
stopped when ΦN doesn’t significantly change any more. A
vector quantization can follow the source extraction. This is
done when Bit Error rates (BER) are evaluated (cf. section
IV).

The search for the absolute minimum in the v-space has
been seen to be useful in the first 5 iterations of most
experiments; it has indeed either allowed a faster convergence,
or opened the way out of a local minimum. On the other hand,
the remaining iterations always led to the closest minimum.

Note that the AMiSRoF algorithm could also be utilized for
a MAP refinement, keeping alternatively C(j) and b fixed.

B. Procedure for extracting successive sources

Uncorrelated Sources Extraction (UDSE) can be performed
as follows.

1) For p = 1, 2, .. execute the steps below
2) Run the AMiSRoF algorithm to obtain sp(n) = b∗y(n).
3) Quantify the signal sp(n) into ŝp(n) according to the a

priori on ps(sp).
4) Remove the contribution of ŝp(n) in the data by linear

regression and subtraction, yielding a new set of data,
y(n)← y(n) −yŝ∗p/ŝpŝ∗p ŝp(n).

SNR 4-QAM 16-QAM
p (dB) Median Variance Median Variance
1 0 0 0 1.3e−2

2 10 0 0 0 1.1e−2

3 0 0 0 2e−3

1 0 1.5e−4 0 2.3e−2

2 8 0 5e−9 0 1.1e−2

3 0 0 0 2e−3

1 0 1e−8 0 5e−3

2 6 0 2.7e−4 0 7.7e−3

3 1.3e−6 3e−10 1.8e−6 2.8e−9

1 1.5e−4 6e−4 7.5e−4 1.1e−2

2 4 1.2e−4 5e−8 5e−4 1.5e−2

3 6.3e−5 2e−8 2.5e−4 5.7e−3

1 1.5e−3 3e−4 7.7e−3 9e−3

2 2 1.5e−3 2.5e−4 5.5e−3 2.1e−2

3 1e−3 2e−7 4.5e−3 2e−6

TABLE I
BER AVERAGED OVER 200 MONTE CARLO REALIZATIONS.

The iterations stop when no more energy is present in the data.
Note that here the number of sources does not need to be

known in advance, and sources do not need to be statistically
independent (but need to be uncorrelated at second order).

Now if sources were correlated, two algorithms could be
envisaged to perform Correlated Discrete Source Extraction
(CDSE), as explained below, but their detailed description is
out of the scope of the present paper.

If the number of sources P is known in advance, it is
possible to estimate all the rows of the P × K matrix B∗

simultaneously. For doing this, the same type of algorithm as
AMiSRoF can be run; it suffices to replace b by vec{B}, so
that there are now PK unknowns. The rest of the procedure
is identical, and the last step is Bk+1 = Bk + µUnvec{v}.

If the number of sources is not known and sources are
correlated, it is necessary to resort to other means to avoid
obtaining several times the same source. The method sug-
gested is simple and consists of including a penalty term in
the new optimization criterion, as soon as one source has been
extracted [10].

IV. COMPUTER RESULTS

Simulations have been carried out using a uniformly spaced
linear array with K = 4 sensors. The element spacing is λ/2,
where λ is the wavelength of the propagating waveforms. P =
3 uncorrelated sources impinge on the array, and the directions
of arrival are θ1 = −30◦, θ2 = −10◦ and θ3 = 20◦. We tested
our algorithm with modulations 4-QAM, N = 2000 and 16-
QAM, N = 1000. Table I shows the median and the variance
of the Bit Error Rate for various SNRs obtained over 200
trials; p denotes the label of the source considered.

The BER median is quite good for 4-QAM or 16-QAM
until the SNR becomes lower than 6dB, but the BER variance
shows that sometimes the algorithm converges to a spurious
minimum. Should this happen, the BER is so bad that a simple
test allows to detect ill convergence, and the algorithm could
be run again with another initial value.

The fact that our algorithm works for 16-QAM signals
can seem surprising. In fact, we separate these signals by
minimizing the criterion that matches 4-QAM constellations.
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Furthermore, this criterion turns out to be efficient for all
constellations that enjoy a symmetry with respect to the origin.
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APPENDIX

Given a number z in the complex plane, consider the the
two optimization criteria Ψ(z) = minj |z − Cj |2 and Φ(z) =∏
j |z−Cj |2, and denote by ε the distance between z and the

closest element of the constellation, Cp. Then Φ(z) can be
written as:

Φ(z) = |z − Cp|2
∏
j 6=p

|z − Cj |2

= Ψ(z)
∏
j 6=p

|Cp − Cj + ε|2

= Ψ(z)
∏
j 6=p

|Cp − Cj |2
∏
j 6=p

|1 +
ε

Cp − Cj
|2

= Ψ(z)K(p)
∏
j 6=p

|1 +
ε

Cp − Cj
|2

= Ψ(z)K(p)
∏
j 6=p

(
1+2Re

[
ε

Cp − Cj

]
+

|ε|2

|Cp − Cj |2

)
= Ψ(z)K(p) (1 + fp(ε))

A constellation C is said to have a constant power if
∃γ/∀c ∈ C, cγ = 1. This property characterizes usual PSK
modulations. For these constellations, K(p) and fp(ε) do not
depend on p, and we have:

Ψ(z) =
1

K(1 + f(ε))
Φ(z).

If ε is small compared to the distance between constellation
symbols (low noise assumption), then |f(ε)| � 1, and a Taylor
expansion is possible and yields:

Ψ(z) =
1

K
Φ(z)(1 + g(ε)) + o(ε).

Now let zn = b∗y(n). Then (5) can be rewritten as
Arg Minb̂

∑
n Ψ(zn), with the notation of this appendix. Next,

(5) takes the form:
1

K
Arg Min

b̂

∑
n

Φ(zn)(1 + g(εn)) (7)

which can be approximated by

1

K
Arg Min

b̂

[
(1 + η)

∑
n

Φ(zn)

]
,

where η =
[
1
N

∑
n Φ(zn)g(εn)

] [
1
N

∑
n Φ(zn)

]−1
keeps

small for bounded N or uniformly small εn. This eventually
shows the MAP equivalence for PSK constellations and for
sufficiently low noise levels.


