
HAL Id: hal-02100006
https://hal.science/hal-02100006

Submitted on 15 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Verified Polyhedron Library: an overview
Sylvain Boulmé, Alexandre Maréchal, David Monniaux, Michaël Périn, Hang

Yu

To cite this version:
Sylvain Boulmé, Alexandre Maréchal, David Monniaux, Michaël Périn, Hang Yu. The Verified Poly-
hedron Library: an overview. 20th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), Universitatea de Vest din Timișoara, Sep 2018, Timișoara, Romania.
pp.9-17, �10.1109/SYNASC.2018.00014�. �hal-02100006�

https://hal.science/hal-02100006
https://hal.archives-ouvertes.fr

The Verified Polyhedron Library: an overview

Sylvain Boulmé Alexandre Maréchal David Monniaux
Michaël Périn Hang Yu

December 30, 2018

Abstract

The Verified Polyhedra Library operates upon a constraint-only
representation of convex polyhedra and provides all common opera-
tions (image, pre-image, projection, convex hull, widening, inclusion
and equality tests. . .). Optionally, the soundness of the results is
checked by a layer certified in Coq.

1 Introduction and motivation

By convex polyhedra we mean the solution sets in Qn, or equivalently Rn,1

of systems of linear inequalities with integer (or rational) coefficients. When
n = 2 they are known as convex polygons; the case n = 3 is probably the
most familiar, but here we are concerned with higher dimensions (n ≥ 10).

VPL, the Verified Polyhedron Library2 is a library for computing over
convex polyhedra in arbitrary dimension. It is implemented in OCaml
(though an optional fast simplification procedure is implemented in C++),
with an optional layer in Coq for verified computations.

In general, convex polyhedra may be specified by strict (e.g. x+ y < 1)
or non-strict (e.g. x+ y ≤ 1) inequalities. In this paper, we shall cover only
the non-strict case, even though VPL also supports strict inequalities. All
our polyhedra shall thus be convex and topologically closed.

Our library provides all operations commonly used in static analysis
and other applications of polyhedra: projection, inclusion testing, equality
testing, convex hull, image and pre-image by a linear map, widening operator

1There is no need to distinguish the real and rational cases, since in such a polyhedron
any real point will also have rational points in its neighborhood. The integer case is very
different and we shall not discuss it here.

2Or alternatively the Verimag Polyhedron Library, or the Verasco Polyhedron Library,
since it originated in the Verasco project.

1

(a) (b)

Figure 1: Representation of polyhedron P : {C1 : x ≥ 0, C2 : y ≥ 0, C3 :
x+ 2y ≤ 6, C4 : 2x+ y ≤ 6}.
(a): Constraint C ′ : x+ y ≤ 4 includes P , because C ′ = 1

3C3 + 1
3C4.

(b): The convex hull of P and P ′ : {C ′1 : x ≤ 4, C ′2 : y ≤ 4, C ′3 : x+ y ≥ 7}
yields new constraints C ′′1 : 3x− y ≤ 9 and C ′′2 : −x+ 3y ≤ 9.

[17, §5.3, p. 56] [2] for enforced convergence of ascending iterations. It is
available at https://github.com/VERIMAG-Polyhedra/VPL

1.1 Static analysis

Our main target application is static analysis by abstract interpretation. In
Floyd-Hoare program correctness proofs, a human provides inductive in-
variants, that is, properties that can be shown by induction to hold for all
program execution steps, for all iterations of a loop, for all recursive calls
of a function, etc. These invariants are then shown to entail the desired
safety properties (e.g. no runtime error, no assertion violation, etc.).3 The
inductiveness step proof was initially done by paper-and-pencil, which is te-
dious and error-prone; since then proof assistants have appeared, but they
make this step only partially automatic. In automated proofs by abstract

3There are also liveness properties, e.g. the program eventually terminates. They are
typically proved by exhibiting a well-founded relation that decreases along iterations. This
decrease is typically shown using inductive invariants.

2

https://github.com/VERIMAG-Polyhedra/VPL

interpretation, an inductive invariant is automatically searched for within a
predefined class of invariants known as an abstract domain. For instance, for
proving that a program will never produce arithmetic overflows, a natural
abstraction is to consider one interval per numeric variable.

Interval arithmetic, especially if combined with certain refinements (e.g.
partitioning of execution traces according to conditions, some limited sym-
bolic propagation. . .), proves many properties. It is however quite weak.
For instance, after a sequence of instructions y := x; z := y − x ran on the
initial condition that x ∈ [0, 1], interval arithmetic computes y ∈ [0, 1] and
z ∈ [−1, 1], whereas one would expect z = 0. This is inevitable for any
non relational abstraction: in order to establish z = 0 one needs to know
a relation between x and y. Relational numeric domains have thus been
proposed, among which convex polyhedra [10, 17].

Unfortunately, the most common approaches for computing over convex
polyhedra tended to be highly inefficient as the number of dimensions in-
creased (“curse of dimensionality”), which discouraged from using convex
polyhedra. This is an issue that we wished to address in VPL.

1.2 Double vs single description

Most libraries for computing over convex polyhedra (NewPolka,4 Parma
Polyhedra Library,5 PolyLib,6 CDD. . . 7) use a double description [32]
of a polyhedron both as the solution set of a system of constraints (inequali-
ties and equalities) and as the convex hull of a system of generators — in the
case of a bounded polyhedron, the generators are its vertices. These descrip-
tions are dual in the sense of convex duality. Some operations are easier on
one description than on the other, and some, such as pruning redundant con-
straints or generators, are easier if both are available. Conversion between
descriptions is done by Chernikova’s algorithm [27].

This approach has many advantages but one major weakness: on cases
very common in program verification, such as when one interval is known
per variable, the generator description has size exponential in the number of
variables. In other words, the hypercube [0, 1]n is defined by 2n inequalities
(0 ≤ vi ≤ 1 for each variable vi) but 2n vertices (choose each vi in {0, 1}).
This specific example can be dealt with by detecting that the polyhedron is

4Bertrand Jeannet’s NewPolka is available as part of the Apron library of abstract
domains, http://apron.cri.ensmp.fr/library/ [19]

5https://www.bugseng.com/ppl [3]
6https://icps.u-strasbg.fr/PolyLib/
7https://www.inf.ethz.ch/personal/fukudak/cdd home/

3

http://apron.cri.ensmp.fr/library/
https://www.bugseng.com/ppl
https://icps.u-strasbg.fr/PolyLib/
https://www.inf.ethz.ch/personal/fukudak/cdd_home/

a Cartesian product of intervals, or more generally of simple polyhedra [18,
34], but this breaks if the polyhedron is almost a Cartesian product. This
was one motivation for using only constraints.

1.3 Certified computation

Static analysis and verification tools may be used for proving properties
of safety-critical software — as an example, the Astrée static analyzer was
aimed at fly-by-wire aircraft controls. Can the tools themselves be trusted?

The same question was asked of compilers. Designers of safety-critical
systems and certification authorities may be unwilling to trust complex op-
timizing compilers; in fact some disable all optimizations so as to be able
to easily match the source and assembly codes. One more satisfying an-
swer is CompCert,8 a compiler for a large subset of the C programming
language such that there are mathematical definitions of the semantics of
the source and target languages and a theorem that the compiler always
preserves the semantics. This theorem is verified in the Coq proof assis-
tant,9 meaning that the compiler and the theorem statements are described
in mathematical terms, then given to Coq along with all steps in the proof,
for verification.

It was then decided to experiment implementing a certified static anal-
ysis tool over CompCert, called Verasco [23, 22, 26]. This implied that all
algorithms whose correctness was relied upon for proving the overall correct-
ness of the analysis tool must be proved correct, thus the need for a verified
library for computing over convex polyhedra used as an abstract domain.
More specifically, it was necessary to prove that the result of each polyhe-
dron operation includes the ideal result that should be computed, which is
used for showing that the analysis does not “forget” reachable states of the
program.

It seemed difficult to use the double description in this context. In or-
der to show that a constraint representation includes the ideal result that
should be computed, it is sufficient to show that each constraint produced
includes that ideal result; this property may be established separately for
each constraint. In contrast, in order to show that a generator representation
includes the ideal result, one must somehow show that the set of generators
produced does not miss any; this is a global property of the generator repre-
sentation. One way would have been to produce a certified implementation
of Chernikova’s algorithm, but it seemed likely that an implementation of

8http://compcert.inria.fr/ https://www.absint.com/compcert/
9https://coq.inria.fr/

4

http://compcert.inria.fr/
https://www.absint.com/compcert/
https://coq.inria.fr/

this algorithm in Coq’s programming language, which suffers from several
limitations compared to usual programming languages, would be inefficient.
Also, the proof effort seemed important.

Another possible approach would have been to use an efficient, but un-
verified, implementation and check a posteriori each result: whether a given
generator representation and a given constraint representation define the
same polyhedron — where the hard part is checking that there is no missing
generator. Unfortunately, this problem is hard [25].

Our choice was thus to compute only on the constraint representation.
Each constraint produced in a result polyhedron would come with a certifi-
cate that this constraint was truly correct in the result. The results and
certificates would be then fed to a simple verification procedure, proved
correct in Coq.

2 Farkas’ lemma and certificates

It is well known that if one has a system of linear inequalities, one obtains
consequences by multiplying both sides of each inequality by the same non-
negative coefficient and summing all resulting inequalities. The converse
is known as Farkas’ lemma10 : any linear inequality (over the rational or
the reals) that is a consequence of a system of linear inequalities can be
expressed as a nonnegative combination of these inequalities, plus possibly
some relaxation of the constant term, corresponding to a combination with
the trivial inequality T : 0 ≤ 1.

Example 1. Consider the polyhedron P on Figure 1(a). All points in P
satisfy x+y ≤ 4. This inequality can be obtained by summing 1

3 of C3 and 1
3

of C4. In other words, the vector of Farkas coefficients w.r.t. (C1, C2, C3, C4)
is Λ =

(
0, 0, 13 ,

1
3

)
.

Thus, to show that a polyhedron Q includes a polyhedron P , it is suffi-
cient to exhibit for each constraint C of Q a vector of nonnegative coefficients
such that applying these coefficients to the constraints of P yields C. These
constitute a certificate of inclusion.

In order to show that a polyhedron Q includes the projection of a poly-
hedron P parallel to variables V , it is sufficient to exhibit such a certificate
of inclusion and check that the constraints of Q do not refer to the variables
in V .

10also known as the strong duality property of linear programming.

5

Example 1 (continuing from p. 5). The projection of P onto the x axis
parallel to y is the segment [0, 3]. Inequality x ≥ 0 is exactly C1, thus
is obtained by Farkas vector (1, 0, 0, 0). Equality C2 being the same as
−y ≤ 0, inequality x ≤ 3 is obtained by summing 1

2 times C2 and 1
2 times

C4, thus by Farkas vector
(
0, 12 , 0,

1
2

)
. Note how the coefficients for y vanish

for projection parallel to y.

In order to show that a polyhedron Q includes the convex hull of a family
Pi of polyhedra, it is sufficient to exhibit for each Pi a certificate of inclusion
of Pi in Q.

Example 1 (continuing from p. 5). Consider the polyhedron P ′ defined by
C ′1 : x ≤ 4, C ′2 : y ≤ 4, C ′3 : x+ y ≥ 7. The convex hull of P and P ′, shown
on Figure 1(b), is defined by P t P ′ = {C1, C2, C

′
1, C

′
2, C

′′
1 , C

′′
2 } where

C ′′1 : 3x− y ≤ 9 and C ′′2 : −x+ 3y ≤ 9.
One can check that P t P ′ includes both P and P ′. For instance, C ′′1

is expressed as 5
2C2 + 3

2C4, which means that C ′′1 includes P . C ′′1 is also
expressed as C ′3 + 4C ′1, hence C ′′1 also includes P ′. Similarly C ′′2 includes
both P and P ′, and so do C1, C2, C

′
1 and C ′2.

Some operations do only need very trivial Farkas certificates. In order to
show that a polyhedron Q includes the intersection of a family of polyhedra
Pi, it is sufficient to check that each constraint of Q is among the constraints
of one of the Pi. Similarly, in order to show that one polyhedron is included
in its “simplification” by removal of redundant constraints, it is sufficient to
check that each constraint in the simplified polyhedron was in the original
polyhedron.

Example 2. Consider the polyhedra P1 and P2 on Figure 2. Consider also
Q = {C1, C

′
2, C3, C

′
4}. Q includes the intersection of P1 and P2 (denoted

P1uP2), since all its constraints belong to P1 or to P2. Similarly, the actual
intersection {C ′1, C2, C

′
3, C4} includes P1 u P2.

The image of a polyhedron P over variables X by an affine linear map
X 7→ AX + B is easily computed by projecting the intersection of P with
the polyhedron X ′ = AX +B onto the variables X ′ (and renaming X ′ into
X).

Example 3. Let P be defined by 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1. Its image by
(x, y) 7→ (x, x + y) is obtained by projecting x′ = x + y ∧ y′ = y ∧ 0 ≤ x ≤
1 ∧ 0 ≤ y ≤ 1 onto x′ and y′ parallel to x and y.

6

Figure 2: Intersection P1 u P2 of
polyhedra P1 : {C1 : x ≥ 1, C2 : x ≤ 5, C3 : y ≥ 1, C4 : y ≤ 5}
and P2 : {C ′1 : x ≥ 3, C ′2 : x ≤ 7, C ′3 : y ≥ 3, C ′4 : y ≤ 7}.

The inverse image of a polyhedron P by an affine linear map X 7→
AX + B is obtained by substituting AX + B into X in the constraints
defining P .

Example 3 (continuing from p. 6). The reverse image of P by (x, y) 7→
(x, x+ y) is 0 ≤ x ≤ 1 ∧ 0 ≤ x+ y ≤ 1.

3 Canonical form

3.1 Empty interior

The affine span of a polyhedron is the least affine subspace containing it.
For instance, that of the polyhedron defined by

x ≤ y + 1 ∧ y ≤ z − 1 ∧ z ≤ x ∧ 0 ≤ x ∧ y ≤ 0 (1)

is the line defined by x = y+ 1 = z. The polyhedron has nonempty interior
(meaning it contains an open ball) if and only its affine span is the full
ambient space.

7

Convex polyhedra with nonempty interior have a canonical representa-
tion as a list of irredundant inequalities (see 3.2 for more about redundancy)
corresponding to the faces of the polyhedron. This representation is unique
up to reordering and scaling of the constraints (that is, 2x + 2y ≤ 2 is the
same as x+ y − 1 ≤ 0). However, this is not true of polyhedra with empty
interior, such as the one defined by (1), which could be also defined by the
system

y ≤ x ∧ x ≤ y + 1 ∧ y + 1 ≤ z ∧ −1 ≤ y ∧ z ≤ 1. (2)

In order to recover canonicity, we first echelonize the system of equalities
defining the affine span: we get x and y as a function of z, x = z and y =
z − 1. Echelon form assumes an ordering of the variables (here, x ≺ y ≺ z),
and canonicity is relative to a specific ordering. We get n− s equations if n
is the dimension of the ambient space and s that of the affine span. Then,
we use these equations as rewriting rules (the variable on the left-hand side
is replaced by the right-hand side): system 1 becomes

z ≤ z ∧ z ≤ z ∧ z ≤ z ∧ 0 ≤ z ∧ z ≤ 1, (3)

thus, after discarding trivial inequalities and adding the equalities, the
canonical representation

0 ≤ z ∧ z ≤ 1 ∧ x = z ∧ y = z − 1. (4)

Note that the system of inequalities (without equalities) defines a polyhe-
dron with nonempty interior with respect to a reduced number of variables.
Since several of our algorithms require an interior point, equations must
be extracted prior to running them. We thus maintain a representation of
polyhedra as a system of equalities and a system of inequalities defining a
polyhedron with nonempty interior.

How do we detect the implicit equalities arising from a system of in-
equalities? If we have an inequality l(x, y, . . .) ≤ b and C1, . . . , Cn the other
inequalities or equalities, then this inequality is actually an equality if and
only if the lower bound on l(x, y, . . .) on C1 ∧ · · · ∧Cn is b, or, equivalently,
if l(x, y, . . .) < b ∧ C1 ∧ · · · ∧ Cn has no solution. Equivalently, during the
search for an interior point, away from the constraints, the constraints that
stay “stuck” are identified as equalities.

For operations such as projection and convex hull, it is possible to com-
pute in advance the affine span of the result. The affine span of the projection
is the projection of the affine span, which is computed by echelonizing with
the variables to be projected being first in the ordering. For instance, (4) is

8

echelonized for x ≺ y ≺ z, so if we wish to project parallel to x onto y and
z we just discard the equation defining x.

The affine span of the convex hull of polyhedra of affine spans A1 and A2

can be obtained by posing x = x1 + x2 ∧ x1 ∈ A1 ∧ x2 ∈ A2 and projecting
out x1 and x2 as above.

3.2 Redundancy elimination

A system of inequalities defining a convex polyhedron may contain redun-
dant inequalities. Some of these are syntactically redundant: trivially true
ones (0 ≤ 1. . .) and those that are immediately subsumed by another (e.g.
x+ y ≤ 3 is subsumed by x+ y ≤ 1; 2x+ 2y ≤ 2 is the same as x+ y ≤ 1).
Such redundancy may be easily eliminated:

1. Discard all trivially true inequalities (and if a trivially false inequality,
e.g. 0 ≤ −1, appears, return that the polyhedron is empty).

2. Move all linear factors to the left-hand side and constants to the right-
hand side.

3. Remove denominators from the linear part of other inequalities, e.g.
1
2x+ 1

3y ≤
1
5 becomes 3x+ 2y ≤ 6

5 .
4. Remove common factors from the left hand side, e.g. 2x + 2y ≤ 1

becomes x+ y ≤ 1
2 .

5. Put the inequalities in a map from left-hand side to right-hand side,
when an existing mapping is encountered, replace it if it is strength-
ened: if x+ y ≤ 1 is present and x+ y ≤ 2 is encountered, ignore the
latter; if x+y ≤ 2 is present and x+y ≤ 1 is encountered, strengthen.

The general case, where an inequality is redundant with respect to several
others, is more difficult. In order to know if Ax ≤ b is redundant with respect
to other inequalities C1, . . . , Cn one can maximize Ax subject to C1, . . . , Cn

(linear programming): the inequality Ax ≤ b is redundant if and only if the
resulting bound b′ is less than or equal to b. One can also solve for a solution
of Ax > b∧C1∧ · · · ∧Cn (linear programming with no objective): Ax ≤ b is
redundant if an only if this system has no solution. Equivalently, by Farkas’
lemma, one may dually search for nonnegative coefficients such that Ax ≤ b
is obtained from C1, . . . , Cn.

In any case, these methods solve n linear programs in order to check
whether each of the constraints is redundant with respect to the n − 1
others, which is expensive. We thus searched for a cheaper method for
solving the “easy” cases. Our insight was that if one has a point x0 in
the interior of a polyhedron, and an arbitrary nonzero vector v, then the
first constraint hyperplane encountered by the ray {x0 + tv | t > 0} is a

9

face of the polyhedron — meaning this constraint is irredundant (the case
where several faces are encountered for the same minimal t is exceptional
and we shall not discuss it here). By trying several v’s our ray-tracing
[29, 28] algorithm often establishes quickly that a number of constraints
are irredundant. Our scheme then establishes redundancy or irredundancy
of other constraints by solving mostly small linear programs that involve
only irredundant constraints, though in the worst case it boils down to the
naive algorithm. We have a new implementation of this scheme where the
redundancy of each constrained is tested in parallel.

This redundancy elimination may be used to implement an inclusion
test: P ≤ Q if and only if all constraints in Q are redundant with respect
to P .

4 Algorithms based on projection

Our first-generation algorithms were based on Fourier-Motzkin projection
and elimination of redundant constraints. These algorithms are described in
more detail, with proofs, in Alexis Fouilhé’s thesis [12] and paper [14].

4.1 Fourier-Motzkin elimination

The Fourier-Motzkin projection [15, 24] of a polyhedron P parallel to a
variable x consists in collecting into a set C+ all constraints of the form
x ≤ f+ where f+ does not involve x, into a set C− all constraints of the form
x ≥ f− where f− does not involve x, and into a set C0 all constraints where
x does not appear. Fourier-Motzkin projection produces the constraints
f− ≤ f+ where f− and f+ range in C+ and C− respectively, to which are
added the constraints from C0.

Example 1 (continuing from p. 5). Let us eliminate y, that is, project onto
x parallel to y, in the system C1 ∧C2 ∧C3 ∧C4 defining P . C+ = {C3, C4},
C− = {C2}, C0 = {C1}. C4 : y ≤ −2x+ 6 and C2 : y ≥ 0 yield 0 ≤ −2x+ 6,
which simplifies into x ≤ 3. C3 : y ≤ −1

2x + 3 and C2 : y ≥ 0 yield
0 ≤ −1

2x + 3, which simplifies into x ≤ 6. Obviously this last constraint is
redundant.

By instrumenting the elimination process, one can attach to each gener-
ated constraint some Farkas coefficients in terms of the original constraints,
which will ultimately constitute a certificate that the result of the projec-
tion process includes the projection. In fact, this is a way of proving Farkas’
lemma.

10

In the worst case, the set of n constraints of P splits evenly into C+

and C− each of size n/2, and thus there are |C+|.|C−| = n2/4 constraints
in the output. Fourier-Motzkin elimination tends to generate many redun-
dant constraints. Some of them, which boil down to 0 ≤ 1, may be elimi-
nated straight away, but for most of them general redundancy elimination
is needed.

When projecting out several variables, one may choose their ordering
arbitrarily. A common heuristic is to project out first the variable that
minimizes |C+|.|C−|, to eliminate redundant constraints, and to continue
the process until all variables to be projected are eliminated.

Since the elimination of a single variable may yield n2/4 constraints from
a polyhedron with n constraints, thus iterating the process over p variables
to project can produce at most n2

p
/42

p−1 constraints. There exist examples
that exhibit such double exponential behavior [24, ex. 1]. However, this dou-
ble exponential relies on redundant inequalities. If redundant inequalities
are eliminated, only single exponential growth is possible [24], due to the
upper bound theorem [30].

4.2 Convex hull by projection

Let P1 and P2 be two polyhedra defined by A1X1 ≤ B1 and A2X2 ≤ B2. X
is in the convex hull of P1 and P2 if and only if there exists 0 ≤ α1, α2 ≤ 1,
α1 + α2 = 1, X1 and X2 such that X = α1X1 + α2X2, A1X1 ≤ B1 and
A2X2 ≤ B2.

Assume now 0 < α1, α2 < 1. By posing Y1 = α1X1 and Y2 = α2X2 we
get the equivalent conditions X = Y1 + Y2, α1 + α2 = 1, A1Y1 ≤ α1B1 and
A1Y1 ≤ α2B2. These inequalities are linear in α1, α2 and the components
of X, Y1 and Y2, thus it is possible to apply polyhedral projection parallel
to α1, α2 and the components of Y1 and Y2 to obtain a polyhedron over
X. This polyhedron is the least closed convex polyhedron including P1 and
P2 [4].11

Note that this approach for computing the convex hull of two polyhedra
in dimension d poses a projection problem from dimension 3d + 1 into di-
mension d. It is thus particularly sensitive to the cost of projection in high
dimension.

11In the case of unbounded polyhedra this may be strictly greater than the convex hull
of P1 and P2, for instance if P1 = {(0, 1)} and P2 = {(x, 0) | x ∈ R}, whose convex hull is
R× [0, 1) ∪ {(0, 1)}, whereas our algorithm produces R× [0, 1].

11

5 Parametric linear programming

We developed algorithms for projection, convex hull and thus all operations
based on parametric linear programming [20, 21]. These algorithms are
described in more detail, with proofs, in Alexandre Maréchal’s thesis [28]
and paper [1].

5.1 Algorithms using parametric linear programming

5.1.1 Projection

Let P be a polyhedron defined by AX + BY ≤ C. If Λ is a nonnegative
column vector, then all points (X,Y) in P satisfy ΛAX + ΛBY ≤ ΛC. If Λ
is chosen so that ΛB = 0, then all points X in the projection of P parallel
to Y satisfy ΛAX ≤ ΛC.

Assume P has a point (X0, Y0) in its interior, and let X 6= X0. Find Λ
such that Λ(C − AX0) = 1 and ΛB = 0 such that Λ(C − AX) is minimal.
Then, (ΛA)X ≤ ΛC defines the face of the projection of P onto X parallel to
Y that one encounters on an infinite ray starting in X0 and pointed towards
X.12

By varying X, we obtain all the faces. Geometrically, there is one poly-
hedral cone per face, pointed at X0, such that if X lies in the cone attached
to a face then the associated optimum described the face. These cones are
quasi-disjoint: they overlap only at their boundaries. They describe the re-
sults of parametric linear programming where X is the parameter, occurring
in the objective function only.

Example 4. Consider P defined by −y ≤ −1, −x ≤ −1, y ≤ 3, x− y ≤ 2,
z − x ≤ 5, −z ≤ −3 with X = (x, y)T and Y = (z). Let the interior point
be (2, 2, 4), and then Λ(1, 1, 1, 2, 3, 1)T = 1, Λ(0, 0, 0, 0, 1,−1)T = 0. By
minimizing Λ(y − 1, x − 1,−y + 3,−x + y + 2, x, 0)T for all values of the
parameters (x, y), we will obtain the projection of P parallel to z: y − 1 ≥
0,−x+ y + 2 ≥ 0,−y + 3 ≥ 0, x− 1 ≥ 0.

5.2 Convex hull

Let P1 be the polyhedron defined by A1X1 ≤ B1, P2 the polyhedron defined
by A2X2 ≤ B2. If Λ1 and Λ2 are nonnegative column vectors, then all points

12There is also a λ0 for the constraint 0 ≤ 1, used when the projection is unbounded in
the selected direction. The same applies to convex hull.

12

X in the convex hull of P1 and P2 satisfy Λ1A1X ≤ Λ1B1 and Λ2A2X ≤
Λ2B2.

Assume the convex hull has a point X0 in its interior, and let X 6= X0.
Find Λ1,Λ2 such that Λ1A1 = Λ2A2, Λ1B1 = Λ2B2, Λ1(B1−A1X0) = 1 such
that Λ1(B1 − A1X) is minimal. Then, (Λ1A1)X ≤ Λ1B1 (or equivalently
(Λ2A2)X ≤ Λ2B2) defines the face of the convex hull of that one encounters
on an infinite ray starting in X0 and pointed towards X. As above, by
varying X we obtain all the faces of the convex hull.

5.3 Solving the parametric linear program

We consider linear programs where the objective function depends linearly
on parameters, e.g. o(x, y) = x(1 + α) + y(α + β) where α and β are
parameters (in a dual variant, the parameters are in the constant part of
the inequalities).

5.3.1 The simplex algorithm by example

We shall not describe in detail the simplex algorithm, since there exist ex-
cellent textbooks covering it [11, 33, 9]. Instead we shall demonstrate it
working on a simple example.

Example 5. Pose z = 6− x− 2y, t = 6− 2x− y. Then P from Example 1
is defined by x, y, z, t ≥ 0 and a system of two equalities, to which we add
an equality defining our objective o = x+ y.

z = 6 −x− 2y

t = 6 −2x− y
o = x+ y

(5)

The variables on the left-hand side are called basic and those on the
right-hand side are called nonbasic; the partition of variables into basic and
nonbasic is called a basis. Nonbasic variables x, y are considered to take 0
as a value13 and thus z = 6, t = 6 and o = 0. Here, by chance, our initial
basis yields a solution of the problem (z and t are also nonnegative) but in
general we would have to run phase I of the simplex algorithm. However, this
solution is nonoptimal: x and y are at their lower bound and by increasing
either of them we can increase the objective from its current value of 0.

13Here we assume all variables to be nonnegative. In generalized versions of the simplex
algorithm, variables may have both a lower and an upper bound, or even be unconstrained.

13

In order to increase x we have to make it basic, and make one of the
basic variables nonbasic, an operation known as pivoting. Let us pivot x
with t: we express x = 3− 1

2y −
1
2 t and replace into the system

x = 3 −1
2y −

1
2 t

z = 3 −3
2y + 1

2 t

o = 3 +1
2y −

1
2 t

(6)

The objective now has value 3. It can still be improved by increasing y.
Let us pivot y with z: we express y = 2− 2

3z + 1
3 t and obtain

y = 2 −2
3z + 1

3 t

x = 2 +1
3z −

2
3 t

o = 4 −1
3z −

1
3 t

(7)

At this point (x, y) = (2, 2) and o = 4. The last line shows that o cannot
be improved upon: one would need to decrease either z or t and both are
already at their lower bound 0. That is, the final basis yields both a solution
point and a proof that it is optimal.

5.3.2 Sign splitting

The simplex algorithm takes decisions according to the signs of coefficients
in the line for the objective in its tableau. If the objective function is made
parametric, then the signs of its coefficients may be indeterminate; the algo-
rithm is then modified to branch on sign conditions. This modified simplex
algorithm then explores a search tree with edges adorned with conditions
(linear inequalities) on the parameters, closing branches when the conditions
accumulated from the tree root are inconsistent (meaning there is no value
of the parameters that can lead to that branch).

We initially experimented that approach, but opted against it since it
tended to branch too much and was thus inefficient.

5.3.3 Generalization

Recall how in Example 5 the final basis yielded both a solution point and
a proof of optimality with respect to a given non-parametric objective. We
shall see here how to generalize this proof to a whole polyhedron of possible
parameters.

Consider a parametric objective C(Λ), which we aim to maximize over
AX ≤ B, meaning we maximize the product C(Λ).X. Pick a Λ0 and run the

14

simplex algorithm. It will eventually stop with an indication that either the
problem is unsolvable (and will be unsolvable for any value of Λ), or it has an
optimal solution, or it is unbounded. In the last two cases, the result can be
verified by examining the signs of the coefficients of the objective function in
the simplex tableau, that is, the expression of the objective function (with
parameter Λ = Λ0) in the last basis explored by the simplex algorithm.

If we now consider C with arbitrary Λ, then these sign conditions become
linear inequalities over Λ, which are met for Λ = Λ0 but also for other values.
The Λ meeting these conditions form a closed convex cone. By eliminating
the redundant constraints from these conditions we obtain a description of
the cone of parameters that lead to an optimum at this particular basis.

Example 5 (continuing from p. 13). Assume now that o = λ1x + λ2y. In
the last basis, o is to be expressed as a function of z and t, thus

o = 4 + (λ1 − 2λ2)z + (−2λ1 + λ2)t (8)

The point (x, y) = (2, 2) is optimal for any (λ1, λ2) satisfying{
λ1 − 2λ2 ≤ 0

−2λ1 + λ2 ≤ 0
(9)

We then explore the space of parameters by choosing Λ1, Λ2 etc. outside
of the cones explored so far, until no Λ left uncovered by a cone is left.

For a parametric linear programming problem in a “general position”,
the cones produced by this algorithm are exactly the description of the
parametric solution: one cone per optimum, and the cones overlap only at
their boundaries. There exist however two kinds of degeneracy: (a) there
may be two optimal vertices for the same objective function; (b) there may
be two bases describing the same optimal vertex. Both kinds of degeneracy
result in cones overlapping non trivially and in inefficiency. Several solutions
are being investigated for this problem.

Example 6. Consider the pyramidal cone defined by x+z ≤ 1, −x+z ≤ 1,
y + z ≤ 1, −y + z ≤ 1 and the parametric optimization direction o(λ, µ) =
λx+µy+z. In other words, we are maximizing o such that a, b, c, d ≥ 0 and

a = 1 −x −z
b = 1 +x −z
c = 1 − y −z
d = 1 + y −z
o = λx+ µy +z

(10)

15

There are four different bases that define the vertex (x, y, z) = (0, 0, 1),
obtained by picking three nonbasic variables out of a, b, c, d. In the basis
where a, b, c are nonbasic,

o = (1− 1
2a−

1
2b) + (−1

2a+ 1
2b)λ+ (12a+ 1

2b− c)µ (11)

Thus, this basis is optimal for any λ, µ such that µ ≥ 0, −λ + µ ≤ 1,
λ + µ ≤ 1. 14 The other three bases are obtained symmetrically and have
regions of optimality
• µ ≤ 0, −λ− µ ≤ 1, λ− µ ≤ 1;
• λ ≥ 0, −µ+ λ ≤ 1, µ+ λ ≤ 1;
• λ ≤ 0, −µ− λ ≤ 1, µ− λ ≤ 1.

Almost all points in the ±λ ± µ ≤ 1 square belong to the interior of two
such regions.

6 Certified results

Our library provides two kinds of certified results:
1. VPL provides a certified layer in Coq, but for an execution outside of

Coq: this layer is extracted to OCaml and linked to the OCaml VPL
code. It provides certified services: each function on polyhedra comes
with a proof of soundness, e.g. the polyhedron result of the convex hull
operators is shown to contain all points in the polyhedron operands.
This Coq layer can thus be applied to certify in Coq a larger software
package including VPL, as it was done for the Verasco certified static
analyzer [23, 22].

2. VPL provides a tactic for interactive proofs in Coq, aimed at sim-
plifying goals involving equalities and inequalities over Q, sometimes
completely proving them. The (possibly non-linear) equalities and in-
equalities over Q are “reified” into linear ones, where non-linear sub-
terms are abstracted by variables. The resulting polyhedron is con-
verted into canonical form using VPL, and the constraints produced
by this simplification replace the original ones in the Coq goal. In
particular, if the equalities and inequalities in the hypotheses form an
empty polyhedron, that is, are contradictory, the goal is proved (ex
falso quodlibet). See details in [6].

14This is a polyhedral region of optimality but not a cone because o is not homogeneous
due to the constant coefficient on z.

16

Let us point out a major difference between these two. In the second kind,
for each polyhedral computation, VPL builds a full Coq proof that the com-
putation is correct (by computational reflection from Farkas certificates).
On the contrary, in the first kind, VPL provides a Coq proof that each poly-
hedra computation using the Coq layer is correct (when it does not abort).
This generic Coq proof is not built/instantiated at each run, since the com-
putations are performed outside of Coq.

Below, we mainly focus on the first kind of certified results, but we also
mention how our mechanisms for the first kind are reused for the second
kind.

6.1 Explicit Farkas certificates

In its first release, VPL introduced an abstract syntax of certificates inspired
by Farkas coefficients for inclusion proofs, inspired by [5]. For each compu-
tation of a polyhedron P , the untrusted OCaml operators were returning a
certificate allowing the Coq layer to rebuild a correct-by-construction ver-
sion of P (modulo some additional defensive checks)15. Such a certificate
for building P corresponds in theory to a “Farkas matrix” (e.g. one Farkas
vector for each constraint of P). However, we needed special support for
equalities, in order to keep the polyhedra of the Coq layer in canonical form
– even if the canonicity is not formally proved. Thus, our certificates were
actually defined as ad-hoc expressions with some let-binders that allow to
share intermediate derived equalities between computations of P constraints.

The benefit of this approach was to avoid converting both P and the
Farkas matrix from the OCaml layer to Coq. Because Coq and OCaml used
different representation for numbers, such conversion of whole polyhedra at
each operation would induce a significant overhead. See [13, 12] for details.

This approach involved tedious renumbering of constraint names in cer-
tificates (while handling of our let-binders). Hence, lighter approaches were
investigated, as detailed below.

6.2 LCF-style certificates

The OCaml code attaches to each constraint a certificate ensuring that
it is a consequence of a given polyhedron (or several certificates for sev-
eral polyhedra, as in convex hull). A certificate encodes the fact that

15For the projection P eliminating a variable y from a polyhedron P0, the Coq layer
builds P from P0 using Farkas vectors, hence ensuring that P includes P0, and checks that
y does not appear in P .

17

H1, . . . ,Hn ` C, which means “constraint C is a consequence of constraints
H1, . . . ,Hn”. From the Coq point of view, the certificate includes a proof
of H1, . . . ,Hn ` C. This proof is a term belonging to a type in the Prop
universe of propositions.

The Coq code then provides to the OCaml code functions for deduction
steps, capable of operating over certificates, i.e.:
Plus takes certificates for H ` C1 and H ` C2, outputs one for H ` C1+C2

Scale takes a certificate for H ` C and λ ≥ 0, outputs one for H ` λC
The Coq certificates are seen from the OCaml library as belonging to

an opaque type: this kind of certificates is known as “LCF-style” (ie the
style of the LCF proof assistant). The only way the OCaml code may
create new certificates is by calling the deduction steps provided from Coq.
This enforces that the OCaml code may only perform legitimate deduction
steps.16

One weakness of this approach is that H (the set of initial polyhedral
constraints) must be carried throughout, and that for the plus operator it
is necessary to check that the two sets H match. It would be more efficient
to simply carry the information about C. Unfortunately, doing it without
precaution would allow mixing between different operations: a bug in the
OCaml library could possibly lead it to consider H1 ` C1 and H2 ` C2

where H1 and H2 are two distinct sets of initial constraints and to attempt
deducing C1 + C2. The way we avoid such “cheating” is by making the
OCaml code polymorphic in the type of the certificate.

6.3 Polymorphic LCF-style certificates

In our final implementation, the OCaml code sees the certificates through
polymorphic types and operations supplied for performing deduction steps.
Intuitively, a certificate for H ` C just contains the constraint C, but its
Coq type – depending on H – is generalized for the OCaml layer into a
(universally quantified) type variable α.

Example 7. Assume an OCaml library that computes over an internal rep-
resentation of inequalities. It handles certificates polymorphically, through
functions provided to it by a record:

type i n e q u a l i t y type r a t i o n a l
type α ops = {

16This, as well as everything following in this section, assumes that the OCaml code
does not call primitive functions that examine internal structures and allow distinguishing
them by type, e.g. in the Obj module.

18

plus : α → α → α ;
s c a l e : α → r a t i o n a l → α ;
e x t r a c t : α → i n e q u a l i t y ; }

val p r o j e c t i o n : α ops → α l i s t → i n t → α l i s t

An OCaml code with such an interface can handle the certificates only
through the functions provided to it. Moreover, this code cannot store
a certificate for H ` C, into a reference (e.g. inside a hash table) and
extracting it later in another context H ′, for showing H ′ ` C. The typing
of polymorphic references [16] forbids such an unsoundness.

That approach proved much simpler to debug than computing Farkas
certificates as terms, both in the OCaml and Coq layers. Furthermore, it
is still possible to rebuild the certificates as terms using the polymorphic
oracles if needed (e.g. for our Coq tactic). See [8, 28] for details.

6.4 Formal Reasoning on Imperative Abstract Domains

While our OCaml code is meant to give deterministic results, it seems un-
desirable to rely on this unchecked property for soundness: a bug in the
handling of their hidden state could make VPL functions appear as non-
deterministic. Furthermore, in our current developments the OCaml code
can call high performance C++ code for which we have no such guaran-
tee. We have thus developed approaches for formally reasoning on such
non-deterministic functions in Coq. In particular, the theory of abstract
interpretation handles operators of abstract domains as pure functions. We
have thus proposed a relaxed framework – based on data-refinement dia-
grams – for compositional reasoning on non-deterministic operators of a
given abstract domain. See [7] for more details.

7 Linear approximations of semi-algebraic sets

Let us consider the solution set S of a system of polynomial (linear or non-
linear) constraints P1(X) ≥ 0, . . . , Pm(X) ≥ 0 where X lies in Rn. Any
product P k1

1 · · · · ·P km
m ≥ 0 is also a valid constraint over S, thus is also any

nonnegative linear combination of these products.
We consider a heuristically selected collection of these products. Non-

linear monomials are then considered as fresh variables; e.g. for n = 4, a
monomial X3

1X2X
1
4 is replaced by a variable M3,2,0,1 (the subscript is the

vector of degrees of the monomial in the X variables). This relaxes the
problem by discarding the nonlinear relations between the monomials. The

19

Figure 3: Over-approximations of the intersection of the quarter plane x−
1/2 ≥ 0, y − 1 ≥ 0 and the disc 4 − x2 − y2 ≥ 0: each Pd is obtained by
truncating all polynomials involved to degree d.

system of constraints then describes a convex polyhedron in higher dimen-
sion.

This polyhedron is then projected onto the variables X, parallel to the
variables M . This projection is an over-approximation of S (Figure 3).

8 Recent work and perspectives

We have worked on improving the performance of the parametric linear pro-
gramming algorithm. We currently use the simplex algorithm implemented
in arbitrary precision rational arithmetic. In contrast, most highly optimized
implementations of that algorithm work using floating-point arithmetic. We
have implemented a system that computes a solution using such a floating-
point implementation, then reconstructs both the solution vertex and the
objective function in exact arithmetic. If the solution is incorrect or nonop-
timal, an exact implementation of the simplex algorithm is then run.

Furthermore, in the VPL, the exploration of the regions of the parametric
linear program is serial. We have designed a parallel algorithm.

20

References

[1] David Monniaux Alexandre Maréchal and Michaël Périn. “Scalable
Minimizing-Operators on Polyhedra via Parametric Linear Program-
ming”. In: Static analysis (SAS). Ed. by Francesco Ranzato. Springer,
2017. doi: 978-3-319-66706-5 11. hal: hal-01555998.

[2] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella.
“Precise widening operators for convex polyhedra”. In: Sci. Comput.
Program. 58.1-2 (2005), pp. 28–56. doi: 10.1016/j.scico.2005.02.003.

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma
Polyhedra Library: Toward a Complete Set of Numerical Abstractions
for the Analysis and Verification of Hardware and Software Systems”.
In: Science of Computer Programming 72.1–2 (2008), pp. 3–21. doi:
10.1016/j.scico.2007.08.001. arXiv: cs/0612085.

[4] Florence Benoy, Andy King, and Frédéric Mesnard. “Computing Con-
vex Hulls with a Linear Solver”. In: Theory and Practice of Logic Pro-
gramming 5.1-2 (2005). arXiv: cs/0311002.

[5] Frédéric Besson, Thomas P. Jensen, David Pichardie, and Tiphaine
Turpin. “Certified Result Checking for Polyhedral Analysis of Byte-
code Programs”. In: Trustworthy Global Computing (TGC). Vol. 6084.
Lecture Notes in Computer Science. Springer, 2010, pp. 253–267. hal:
inria-00537816.

[6] Sylvain Boulmé and Alexandre Maréchal. “A Coq Tactic for Equal-
ity Learning in Linear Arithmetic”. In: Interactive Theorem Proving
(ITP). Vol. 10895. Lecture Notes in Computer Science. Springer, 2018,
pp. 108–125. doi: 10.1007/978-3-319-94821-8 7. hal: hal-01505598.

[7] Sylvain Boulmé and Alexandre Maréchal. “Refinement to Certify Ab-
stract Interpretations, Illustrated on Linearization for Polyhedra”. In:
J. Automated Reasoning (Nov. 2018). doi: 10.1007/s10817-018-9492-2.
hal: hal-01133865. url: https://hal.archives-ouvertes.fr/hal-01133865.

[8] Sylvain Boulmé and Alexandre Maréchal. Toward Certification for
Free! Preprint. July 2017. hal: hal-01558252.

[9] Vašek Chvátal. Linear Programming. Series of books in the Mathe-
matical Sciences. W. H. Freeman, 1983.

21

http://dx.doi.org/978-3-319-66706-5_11
http://hal.archives-ouvertes.fr/hal-01555998
http://dx.doi.org/10.1016/j.scico.2005.02.003
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://arxiv.org/abs/cs/0612085
http://arxiv.org/abs/cs/0311002
http://hal.archives-ouvertes.fr/inria-00537816
http://dx.doi.org/10.1007/978-3-319-94821-8_7
http://hal.archives-ouvertes.fr/hal-01505598
http://dx.doi.org/10.1007/s10817-018-9492-2
http://hal.archives-ouvertes.fr/hal-01133865
https://hal.archives-ouvertes.fr/hal-01133865
http://hal.archives-ouvertes.fr/hal-01558252

[10] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of Lin-
ear Restraints Among Variables of a Program”. In: ACM SIGACT-
SIGPLAN Symposium on Principles of programming languages (POPL).
Ed. by Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski.
ACM Press, 1978, pp. 84–96. doi: 10.1145/512760.512770.

[11] George Dantzig and Munkund N. Thapa. Linear Programming. Intro-
duction. Vol. 1. 2 vols. Springer, 1997. 480 pp. isbn: 0-387-94833-3.

[12] Alexis Fouilhé. “Revisiting the abstract domain of polyhedra : constraints-
only representation and formal proof”. PhD thesis. Grenoble Alpes
University, France, 2015. tel: tel-01286086.

[13] Alexis Fouilhé and Sylvain Boulmé. “A Certifying Frontend for (Sub)polyhedral
Abstract Domains”. In: Verified Software: Theories, Tools and Ex-
periments (VSTTE). Vol. 8471. Lecture Notes in Computer Science.
Springer, 2014, pp. 200–215. doi: 10.1007/978-3-319-12154-3 13. hal:
hal-00991853.

[14] Alexis Fouilhé, David Monniaux, and Michaël Périn. “Efficient Gen-
eration of Correctness Certificates for the Abstract Domain of Poly-
hedra”. In: Static analysis (SAS). 2013. isbn: 978-3-642-38855-2. doi:
10.1007/978-3-642-38856-9 19. hal: hal-00806990.

[15] Joseph Fourier. “Histoire de l’Académie, partie mathématique (1824)”.
In: Mémoires de l’Académie des sciences de l’Institut de France. Vol. 7.
Gauthier-Villars, 1827, xlvij–lv. url: https://gallica.bnf.fr/ark:/12148/
bpt6k32227/f53.

[16] Jacques Garrigue. “Relaxing the Value Restriction”. In: Functional
and Logic Programming, 7th International Symposium (FLOPS). Ed.
by Yukiyoshi Kameyama and Peter J. Stuckey. Vol. 2998. Lecture
Notes in Computer Science. Springer, 2004, pp. 196–213. doi: 10.1007/

978-3-540-24754-8 15. url: https://caml.inria.fr/pub/papers/garrigue-
value restriction-fiwflp04.pdf.

[17] Nicolas Halbwachs. “Détermination automatique de relations linéaires
vérifiées par les variables d’un programme”. French. PhD thesis. Uni-
versité Scientifique et Médicale de Grenoble & Institut National Poly-
technique de Grenoble, Mar. 1979. hal: tel-00288805.

[18] Nicolas Halbwachs, David Merchat, and Laure Gonnord. “Some ways
to reduce the space dimension in polyhedra computations”. In: Formal
Methods in System Design 29.1 (2006), pp. 79–95. doi: 10.1007/s10703-

006-0013-2. url: https://doi.org/10.1007/s10703-006-0013-2.

22

http://dx.doi.org/10.1145/512760.512770
http://worldcat.org/isbn/0-387-94833-3
http://tel.archives-ouvertes.fr/tel-01286086
http://dx.doi.org/10.1007/978-3-319-12154-3_13
http://hal.archives-ouvertes.fr/hal-00991853
http://worldcat.org/isbn/978-3-642-38855-2
http://dx.doi.org/10.1007/978-3-642-38856-9_19
http://hal.archives-ouvertes.fr/hal-00806990
https://gallica.bnf.fr/ark:/12148/bpt6k32227/f53
https://gallica.bnf.fr/ark:/12148/bpt6k32227/f53
http://dx.doi.org/10.1007/978-3-540-24754-8_15
http://dx.doi.org/10.1007/978-3-540-24754-8_15
https://caml.inria.fr/pub/papers/garrigue-value_restriction-fiwflp04.pdf
https://caml.inria.fr/pub/papers/garrigue-value_restriction-fiwflp04.pdf
http://hal.archives-ouvertes.fr/tel-00288805
http://dx.doi.org/10.1007/s10703-006-0013-2
http://dx.doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2

[19] Bertrand Jeannet and Antoine Miné. “Apron: a Library of Numerical
Abstract Domains for Static Analysis”. In: Computer Aided Verifi-
cation, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. Ed. by Ahmed Bouajjani and
Oded Maler. Vol. 5643. Lecture Notes in Computer Science. Springer,
2009, pp. 661–667. doi: 10 . 1007 / 978 - 3 - 642 - 02658 - 4 52. url: https :
//hal.archives-ouvertes.fr/hal-00786354.

[20] Colin. Jones, N., Eric C. Kerrigan, and Jan M. Maciejowski. “On Poly-
hedral Projections and Parametric Programming”. In: J. Optimization
Theory and Applications 138.2 (2008), pp. 207–220.

[21] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. “Lexi-
cographic perturbation for multiparametric linear programming with
applications to control”. In: Automatica (43 2007). doi: 10 . 1016 / j .

automatica.2007.03.008.

[22] Jacques-Henri Jourdan. “Verasco: a Formally Verified C Static An-
alyzer”. PhD thesis. Université Paris Diderot - Paris vii, May 2016.
tel: tel-01327023.

[23] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,
and David Pichardie. “A Formally-Verified C Static Analyzer”. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, In-
dia, January 15-17, 2015. ACM, 2015, pp. 247–259. doi: 10 . 1145 /

2676726.2676966. url: https://doi.org/10.1145/2676726.2676966.

[24] Leonid Khachiyan. “Fourier–Motzkin Elimination Method”. In: Ency-
clopedia of Optimization. Ed. by Christodoulos A. Floudas and Panos
M Pardalos. 2nd ed. Springer, 2009, pp. 1074–1076. isbn: 978-0-387-

74760-6.

[25] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni,
and Vladimir Gurvich. “Generating All Vertices of a Polyhedron Is
Hard”. In: Discrete & Computational Geometry 39.1-3 (2008). Also as
DIMACS TR 2005-21 http://archive.dimacs.rutgers.edu/pub/dimacs/
TechnicalReports/TechReports/2005/2005- 21.pdf, pp. 174–190. doi:
10.1007/s00454-008-9050-5.

[26] Vincent Laporte. “Verified static analyzes for low-level languages”.
Theses. Université Rennes 1, Nov. 2015. tel: tel-01285624.

[27] Hervé Le Verge. A note on Chernikova’s Algorithm. Tech. rep. 635.
IRISA, 1992. hal: inria-00074895.

23

http://dx.doi.org/10.1007/978-3-642-02658-4_52
https://hal.archives-ouvertes.fr/hal-00786354
https://hal.archives-ouvertes.fr/hal-00786354
http://dx.doi.org/10.1016/j.automatica.2007.03.008
http://dx.doi.org/10.1016/j.automatica.2007.03.008
http://tel.archives-ouvertes.fr/tel-01327023
http://dx.doi.org/10.1145/2676726.2676966
http://dx.doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/2676726.2676966
http://worldcat.org/isbn/978-0-387-74760-6
http://worldcat.org/isbn/978-0-387-74760-6
http://archive.dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2005/2005-21.pdf
http://archive.dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2005/2005-21.pdf
http://dx.doi.org/10.1007/s00454-008-9050-5
http://tel.archives-ouvertes.fr/tel-01285624
http://hal.archives-ouvertes.fr/inria-00074895

[28] Alexandre Maréchal. “New Algorithmics for Polyhedral Calculus via
Parametric Linear Programming. (Nouvelle Algorithmique pour le Cal-
cul Polyédral via Programmation Linéaire Paramétrique)”. PhD the-
sis. Grenoble Alpes University, France, 2017. tel: tel-01695086.

[29] Alexandre Maréchal and Michaël Périn. “Efficient Elimination of Re-
dundancies in Polyhedra by Raytracing”. In: Verification, Model Check-
ing, and Abstract Interpretation (VMCAI). Ed. by Ahmed Bouajjani
and David Monniaux. Vol. 10145. Lecture Notes in Computer Science.
Springer, 2017, pp. 367–385. doi: 10.1007/978-3-319-52234-0 20. hal:
hal-01385653.

[30] Peter McMullen and Geoffrey C. Shepard. Convex polytopes and the
upper bound conjecture. Vol. 3. London Mathematical Society lecture
note series. Cambridge University Press, 1971. isbn: 0-521-08017-7.

[31] Theodore S. Motzkin. Selected papers. Ed. by David Cantor, Basil
Gordon, and Bruce L. Rothschild. Birkhäuser, 1983. isbn: 3 - 7643 -

3087-2.

[32] Theodore S. Motzkin, Howard Raiffa, Gerald L. Thompson, and Robert
M. Thrall. “The double description method”. In: Contributions to the
theory of games. Ed. by Harold W. Kuhn and Albert W. Tucker. Vol. 2.
Annals of Mathematics Studies 28. Princeton University Press, 1953,
pp. 51–74. isbn: 0691079358. Reprinted as [31, Ch. 2].

[33] Alexander Schrijver. Theory of Linear and Integer Programming. Wi-
ley, 1998. isbn: 0-471-98232-6.

[34] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. “A prac-
tical construction for decomposing numerical abstract domains”. In:
Proceedings of the ACM on Programming Languages (PACMPL) 2.POPL
(2018), 55:1–55:28. doi: 10.1145/3158143.

24

http://tel.archives-ouvertes.fr/tel-01695086
http://dx.doi.org/10.1007/978-3-319-52234-0_20
http://hal.archives-ouvertes.fr/hal-01385653
http://worldcat.org/isbn/0-521-08017-7
http://worldcat.org/isbn/3-7643-3087-2
http://worldcat.org/isbn/3-7643-3087-2
http://worldcat.org/isbn/0691079358
http://worldcat.org/isbn/0-471-98232-6
http://dx.doi.org/10.1145/3158143

	Introduction and motivation
	Static analysis
	Double vs single description
	Certified computation

	Farkas' lemma and certificates
	Canonical form
	Empty interior
	Redundancy elimination

	Algorithms based on projection
	Fourier-Motzkin elimination
	Convex hull by projection

	Parametric linear programming
	Algorithms using parametric linear programming
	Projection

	Convex hull
	Solving the parametric linear program
	The simplex algorithm by example
	Sign splitting
	Generalization

	Certified results
	Explicit Farkas certificates
	LCF-style certificates
	Polymorphic LCF-style certificates
	Formal Reasoning on Imperative Abstract Domains

	Linear approximations of semi-algebraic sets
	Recent work and perspectives

