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Abstract—Licensed Shared Access (LSA) is a complementary solu-
tion allowing Mobile Network Operators (MNOs) to access to another
incumbent’s frequency spectrum after obtaining a proper license from
the regulator. This license contains all conditions of sharing, which
ensures a certain quality of service for MNOs. In this context, using
auctions to allocate those LSA-type licenses is a natural approach
toward an efficient use of spectrum. In this paper, we review the existing
mechanisms taking into account radio interference, and propose new
ones. We also investigate extensions of those mechanisms, when the
management of interference among base stations is more subtle than
partitioning base stations into groups, and when several base stations
are controlled by a common entity. For those extended contexts, we
show that we can maximize social welfare and preserve the truthfulness
by properly applying Vickrey-Clarke-Grove auction scheme.

1 INTRODUCTION

Accommodating exploding mobile data traffic is among the
great challenges for the fifth generation (5G) networks [1].
Dealing with that traffic indeed requires an optimal utiliza-
tion of spectrum, but currently some holders of a licensed
spectrum (e.g., militaries, satellites, some commercial users)
do not always use all their frequencies—usage varies with
time and geographical location—, hence there is some room
for improvement, which has given rise to the proposal of
the concept of dynamic spectrum access (DSA) [2].

DSA refers to the situation in which a primary user, who
has an exclusive right to use the band, shares his bandwidth
with a secondary user. Secondary users must allow the
primary user to use his spectrum without disrupting it.
For this, these systems use cognitive radio [2]: secondary
users—-Mobile Networks Operators (MNOs) in our context—
can intelligently detect communication channels that are in
use and those that are not, and move to unused channels.
However, for MNOs this approach is risky because neither
the access to spectrum nor the quality of service (protection
from interference) are guaranteed.

In November 2011, the Radio Spectrum Policy group
(RSPG) has proposed a new sharing concept called Licensed
Shared Access (LSA) [3]. That concept involves three stake-
holders: the incumbent user, the secondary user which is
called LSA licensee, and the regulator [4]. Contrary to DSA,

under the LSA approach, the secondary user needs to obtain
a license from the regulator before accessing the spectrum of
the incumbent. The license includes the conditions of shar-
ing, in particular in terms of time, frequency and geographic
region. The LSA concept guarantees to the incumbent and
the LSA licensee a certain level of QoS specified in the LSA
license [4].

Deploying an LSA system requires the introduction of
two new architectural building blocks [5], as shown in Fig. 1:
the LSA repository and the LSA controller. The LSA repos-
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Fig. 1: Overview of the LSA concept (taken from [4])

itory is a database which contains information about LSA
spectrum bands together with their conditions of sharing.
It is controlled by the regulator and the incumbent, and is
required to deliver the information on spectrum availability
based on the incumbent spectrum use and associated condi-
tions for sharing. The LSA controller resides in the network
operator’s domain and controls the access to the incum-
bent’s spectrum by following the instructions received from
the LSA repository. Each MNO has to have his own LSA
controller. Several trials of the LSA approach have taken
place in Europe [6]-[8], and have shown its applicability.
LSA is now under the final stages of standardization and
field validation [9].

A key objective for LSA is to allocate the spectrum in the
most efficient way, i.e., so as to maximize the resulting value
to the market. Since the LSA ecosystem involves several
actors (incumbent and MNOs) with nonaligned objectives,
one needs to define allocation and pricing schemes that are



robust to manipulation; hence the focus on auctions for that
task [10].

This paper aims at analyzing and comparing auction
schemes introduced in the literature ([10]-[12]) for the
specific LSA context under different scenarios (as will be
detailed in Sections 4 and 5), as well as benefiting from
more general results on auctions ([13], [14]) to propose
alternative mechanisms. To compare mechanisms, we apply
the commonly used efficiency and fairness measures ([14],
[15]), in addition to the fulfillment of properties such as
incentive compatibility and individual rationality.

The rest of this paper is organized as follows: in Section 2
we define what an auction mechanism is and describe
some of its desirable properties, while the system model
we consider is introduced in Section 3. Section 4 contains
the main contributions of this paper: under the assumptions
made in the literature, we review the proposed mechanisms,
adapting one to ensure truthfulness. We adapt them to
include a per-buyer reserve price set by the auctioneer while
maintaining incentive properties, and compare those mech-
anisms in terms of efficiency, revenue, and fairness. Section 5
investigates the relaxation of some key assumptions in the
model: while the mechanisms partition the base stations into
separate groups and allocate spectrum among groups, we
consider allowing overlapping groups (groups still covering
all base stations, but not necessarily in a partition); also,
several base station bids being coordinated by a common
entity (an MNO) is investigated. Finally, we provide some
concluding remarks and suggest some perspective for future
work in Section 6.

2 AUCTION MECHANISMS AND DESIRABLE PROP-
ERTIES

In this section, we provide the definition of an auction mech-
anism, and of possible properties (goals) that a regulator
may want the mechanism to satisfy. Note that each designer
of an auction mechanism may be interested in a particular
subset of properties.

2.1 Auction mechanisms

We consider N strategic agents (“players”, or “bidders”)
wishing to acquire some—possibly divisible-goods.

An auction mechanism takes some bids b = (by,..,bn)
submitted by the players under a predetermined format,
and based on those bids, returns:

o an allocation of the good(s) among the bidders,
e a payment vector p = (p1,..,pn), where p; is the
(possibly negative) price that player ¢ is charged.

In this paper, we limit ourselves to direct auction mech-
anisms, i.e., mechanisms where the bid format contains all
the information to build the bidder’s utility function. This
is actually without loss of generality, due to the Revelation
Principle [16], and for our model will translate into bidders
declaring the price they are willing to pay per unit of
spectrum.

The objective of each player ¢ is to maximize his own
objective function, which we call his utility and denote by
u; [17]. Since that utility depends on allocations and prices
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(computed based on bids), it is reasonable to assume that
players will try to bid strategically to maximize their utility,
hence the need for the mechanism to take that behavior into
account.

2.2 Desirable properties for an auction scheme

In this paper, we will consider the following properties that
a mechanism may satisfy, which are the most used in the
literature [18], [19].

As for any multi-constraint problem, it is not possible to
jointly satisfy all properties, hence the auction designer has
to set a trade-off between them.

2.2.1 Revenue maximization
the revenue of the regulator, Rev, is the sum of payments of

all players:
N
Rev = Z i
i=1

A mechanism maximizing that metric is desirable from
the seller’s point of view; such mechanisms are studied in
particular in [16].

2.2.2 Efficiency

Social Welfare SW is defined as the sum of the utilities of all
stakeholders, i.e., the utilities of all bidders and the utility
of the seller, which is given by his revenue. That metric
can be interpreted as the overall value of the allocation.
A mechanism is said to be efficient if it maximizes social
welfare.

2.2.3 Truthfulness

A mechanism is truthful or incentive compatible if and only
if for each player i, declaring truthfully one’s preferences
maximizes one’s utility, whatever the other players do.

2.2.4 Individual rationality

That property means that a player has a bidding strategy
that ensures him to get a non-negative utility, hence he is
always better off participating in the auction than staying
out of the mechanism.

2.2.5 Fairness of the allocation

There exist several measures of fairness [20]. In this paper,
we will use Jain’s index which is given by:

N
(X ai)®
J(a) = %a
N Y of
i=1

with o; the quantity of good allocated to player 4. This index
is a continuous function of the allocations, with values in
[+, 1]: it achieves its maximum 1 if all players obtain the
same amount, and is minimum and equal to % if one and
only one player obtains some good. As another reference, a
situation in which a% of users receive equal allocation and
the remaining (100 —a)% receive zero [21] gives a Jain index
of a/100. Motivated by those features we will use this index

to measure the fairness of a mechanism’s allocation.



2.2.6 No price discrimination

A pricing scheme that charges buyers different prices for
identical good(s) is said to perform price discrimination [22],
which may seem unfair from the point of view of buyers and
should therefore be avoided.

2.3 Truthfulness and minimal price

Truthfulness is very important because it reduces the com-
plexity of the game for players, since the strategies to play
are very simple (just declare one’s preferences). In particular,
that property induces some fairness in participation, in
the sense that wealthier players cannot get an edge over
competitors by implementing costly measures to optimize
their bidding strategy. Also, that property is desirable from
the auctioneer point of view: if one objective is efficiency, it
is simpler to base the allocation optimization on real utilities
rather than unfaithful ones.

Luckily, when bidders’ allocation is one-dimensional,
that property can be guaranteed in a quite general set-
ting: Myerson indeed showed in a lemma [16] that an
allocation rule «;(by,...,bx) is implementable (there is a
truthful payment rule that can be associated to it) if and
only if it is monotone. An allocation rule is monotone
if for each player i, a;(b;,b_;) is monotone in b;, where
b_; = (b1,..,bi—1,bit1,..,bn). In addition, if we add the
constraint that a zero bid implies a zero payment, the
payment rule is unique.

Roughgarden details that payment rule in a case that is
particularly relevant for us [23]: given a piecewise constant
monotone allocation curve as shown in Fig. 2a, each player
1 should pay a price as a function of the corresponding
breaking points (points at which ¢’s allocation changes) in the
range [0, b;]. Specifically, if there are X breaking points (z;)
then the payment is given by:

X
pi(bi,b_i) = sz - (jump in o(.,b_;) at z;) . (1)
j=1
This price corresponds to the greyed surface in Fig. 2a (X =
3). In particular, if there is one and only one indivisible item,
i.e., the allocation is either 1 or 0 as shown in Fig. 2b then
there is one and only one breaking point for each player, that
is his minimum bid to win the auction. As an example, in
the second-price auction the breaking point for each player
is the maximum bid of the other players.

In addition, without losing truthfulness and in order
to protect himself from low revenues, the auctioneer may
introduce a “reserve price per bidder”, imposing in the
allocation rule that bids strictly below that price be allocated
no resource [24]. By applying Myerson’s result above (since
the allocation is still monotone), this involves that the per-
unit revenue from each player is at least that reserve price:
any bid strictly below it leading to a null allocation, the
breaking point(s) for each winning player must at least
equal that reserve price.

3 SYSTEM MODEL FOR LSA AUCTIONS

In this section, we instanciate the general auction framework
to the specific context of LSA auctions. More specifically, we
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Fig. 2: Some piecewise constant monotone allocation curves
(solid curves). The grey area represents the price paid when
the bid b; has value b;.

describe our model for bidders (here, operators) preferences,
and explain how the interference among coverage areas is
managed, through the definition of groups of base stations.
We then describe the general working of an LSA auction
scheme in that context.

3.1 Preferences of operators

We consider N base stations in competition to obtain spec-
trum under the LSA scheme. A given quantity of available
spectrum is auctioned, which we normalize to 1 wlo.g.,
and which we assume can be arbitrarily split among base
stations. We suppose that each base station i = 1,...,N
has a quasi-linear utility function, with a constant marginal
valuation v; for spectrum: if it obtains a fraction o; > 0 of
the available bandwidth and pays p;, his utility is:

wi(biyb—i,v;) = a;(bi, b_i)v; — pi(bi, b_;).

Otherwise his utility is zero. Notice that we have assumed
indistinguishable channel properties [25], [26], i.e., base
stations are only sensitive to the amount of bandwidth—and
not to the specific bands-they can use.

Under those assumptions, the preferences of base station
1 are completely characterized by the value v;, hence if each
base station is controlled by a different player (operator),
a direct auction mechanism would simply ask each one
to declare one’s v;. The truthfulness property would then
translate into players not being able to do better than
proposing a bid b; = v;, i.e.,

wi (Vi b—i, v5) > ui(bs, b_j,v;) V by, by,

Also, the social welfare measure SW is given by:
N N N
SW =3 (a; —pi)+ Y _pi= ) s
i=1 i=1 i=1

3.2 Grouping operators before the auction

Two base stations can use the same bandwidth simultane-
ously if they do not interfere with each other. This can be
captured in a model by using an interference graph. Fig. 3
shows an example of an interference graph: base stations
are represented by vertices, an edge between two vertices
means that those base stations interfere. For example, in
Fig. 3 base stations {3,5} can use the same fraction of



bandwidth simultaneously. The competition between the N
base stations is transformed into a competition between M
groups in such a way that two base stations in the same
group k (the set of base stations in that group is denoted
by gr) do not interfere, hence the spectrum allocated to
a group is used by all the members of the group. The
group creation is performed by the auctioneer from the
interference graph before the actual auction takes place. An
example of group constitution for the interference graph
of Fig. 3 is: ¢1 = {1,2,4,6} and g2 = {3,5}. Another
possible configuration is g1 = {1,2,4,6}, g2 = {1,2,5,6}
and g3 = {3,5,6}.

While the group formation has a non-negligible impact,
in this paper (as in [10]-[12], [27] that also relies on groups)
we assume that the groups are formed by the auctioneer,
and advertised to bidders, before any bids are submitted.
We indeed focus here on how to allocate the resource among

groups, based on the submitted bids.
£1 i
& & B

Fig. 3: Some base stations with their coverage areas (left), the
corresponding interference graph (center), and two possible
group configurations (right).

3.3 Steps of the auction

The main steps of all the auction schemes considered in this
paper are the same, and summarized as follows.

1) Group construction: from the interference graph,
the regulator constructs groups under the constraint
“two base stations in the same group do not inter-
fere with each other”;

2) Bid collection: bidders are asked to declare their
valuation;

3) Allocation: each base station is allocated some frac-
tion «; of the available spectrum (specific to the
mechanism used);

4) Payment: each player 7 is charged a price p; (specific
to the mechanism).

4 AUCTIONING FOR LSA SPECTRUM AMONG BASE
STATIONS

Different auction mechanisms have been proposed as can-
didates in the LSA context. We start by reviewing those in
the literature, then we present our recently proposed PAM
mechanism [27], and we propose two new mechanisms
derived from LSAA [10], one of the reviewed mechanisms.

Note that in this section, we make two key assumptions,
initially introduced by the schemes proposed in the litera-
ture. Those assumptions are the following:
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Assumption A. The grouping is made such that each base
station belongs to one and only one group.

Assumption B. Each base station is controlled by a different
player, i.e., we assume non-coordination among bids submitted by
base stations.

In Section 5, we investigate the consequences of relaxing
those assumptions.

4.1 State of the art

In the following, we present some auction mechanisms
that have been proposed for LSA. In each case the allo-
cation to each group is based on its “groupbid”, which
is a mechanism-specific quantity. All the notations used
throughout the paper are given in Table 1. Note that for
all the mechanisms in this subsection, the bandwidth is
allocated to one and only one group: for each player i, a; is
either 1 (if ¢ is a winning player) or 0.

R minimum per bidder price set by the auctioneer
M number of groups
N number of base stations
v; true valuation of base station ¢ per bandwidth
unit
b; bid of base station
b_; | bids of all base stations except ¢
Ik group k (a set of base station indices)
o fraction of spectrum allocated to a base station ¢
By, sum of bids of g
B = > b
1€k
Brot | sum of the total bids of all groups,

M
Brot = > By
k=1

Bg* | sum of bids of groups which i belongs to except
) M
i’s bid, B;Z = ( Z Bk]liEgk.) — nibi
k=1
Bry, | sumof the]\?otal bids of all groups except i’s bid.
Bl = (X By) —nib;
k=1
TABLE 1: notations
4.1.1 TAMES

TAMES [11] computes the groupbid of each group k as
(lgx|—1) min;eg, b;, where |gy| is the cardinal of group k. All
players of the highest-groupbid group are winners, except
the one with the lowest bid of that group. Each winning
player pays the same price, that is the lowest bid in their

group.

4.1.2 TRUST

TRUST [12] works quite similarly to TAMES. It computes
the groupbid as: |gx| min;e,, b;. All players of the group
with the highest groupbid are winners. Winners pay eq-
uitably the second-highest groupbid (each winner pays a
proportion 1/|gx| of it).

4.1.3 LSAA

In LSAA [10], bids in each group are sorted in a non-
ascending order. The groupbid of a group g is computed



as: max;eg, rank(b;)b;, where rank(b;) is the rank of player
1’s bid in the group. The authors define an index j such that:

J = max {rank(bl)J € arg max(rank(b,-)bi)} . @

1€gk

If g;, is the winning group, then only players with rank
below or equal to j are winners. Winners pay the second
highest groupbid equally.

For TAMES and TRUST, the allocation is based on the
bidder with the lowest bid. This can extremely harm the
social welfare and the revenue. For LSAA, we have shown in
[27] that this mechanism is not always truthful, we therefore
adapt it in two different fashions in the next subsection.

4.2 Proposed mechanisms

This subsection introduces several alternative mechanisms
that we suggest could be applied to auction LSA spectrum.

421 VCG

In [24], we propose to adapt the Vickrey-Clarke-Groves
(VCG) ([28]-[30]) mechanism to the LSA context. The prin-
ciple of VCG is to allocate resources to maximize the “de-
clared” social welfare (since computed based on submitted
bids) and charge each bidder the loss of declared welfare
his presence causes to the others. A way to implement
VCG would be to compute the groupbid of a group g;, as
>~ b;; the winning group is then the group with the highest

1€

grgokupbid. If a player belongs to a losing group he pays 0
because whether he is present or not the winning group is
the same. If a player belongs to the winning group gyin with
group bid Byi, then we can distinguish two cases: if his
presence does not change the outcome, i.e., B, ' > Biocond

win

(with Bgecond the second-highest groupbid) then he pays 0

otherwise he pays Bsccond — B, 10 sSummarize:
pYCG [Bsccond - B\;iin]jL- (3)

That mechanism is known to be efficient, individually ratio-
nal, and truthful [14].

4.2.2 Proportional Allocation Mechanism (PAM)

In [27] we proposed PAM, which allocates to each group
k a fraction oy of the bandwidth in proportion to the
bids submitted by players belonging to that group i.e.,

Vi = z;ng . Each player ¢ pays an amount computed to
ensure truthfulness given by:
b, + B¢ . )
P =R (Bi; - B;)
b BTot (4)
b + B B
(ln( + Tot)+R+ Tot_l)’
R+ BTot b + BTot

where R is a reserve price per bidder set by the auctioneer,
that ensures that the per-unit price paid by each bidder is at
least .

In [24], we have extended all the aforementioned mech-
anisms by introducing a reserve price R per bidder; the
general method is detailed in Proposition 3.

4.2.3 TLSAA and TLSAA?2 (extensions to LSAA)

As pointed out previously, the initial design of LSAA was
not truthful. We propose here two variants that are truthful,
and that can also be extended by adding a reserve price,
when seeking to optimize auctioneer’s revenue.

4231 TLSAA: we preserve LSAA’s method of
groupbid computation, but propose a new payment rule
which ensures a truthful bidding: since the allocation rule
is monotone, we can implement the truthful payment rule
given in (1). This gives

p; = min{b; s.t. ;(b;) = 1}. 5)

We illustrate that rule with an example: suppose we have
two groups with bids respectively {20,10,9,6,3} and
{20, 8, 7}. The first group wins the auction since it has the
highest groupbid (with value 27). Let us compute the pay-
ment of the first player (the one with bid 20): by proposing
a bid lower than 5.25 player 1 would be a losing player
because the groupbid of his group would then be below
the second groupbid 21, and by proposing a bid higher
than 5.25 group 1 wins the auction. So Player 1 should
pay 5.25. Note that for the second and the third player the
same reasoning can be made and each one should pay 5.25,
however the fourth player should pay 0 because his group
is a winning group whether he is present or not (there is no
breakpoint for him).

In LSAA, the revenue is given by the second highest
groupbid. A question which may arise regards the revenue
of this modified version of LSAA. We show below that truth-
fulness comes at a cost, since revenue may decrease with
respect to the initial version (assuming truthful bidding).

Proposition 1. The revenue of TLSAA cannot be higher than the
second-highest groupbid.

Proof. We denote by g,, the winning group. Let us define j’
such that:

j' = max {rank(b;),i € gy, and rank(b;)b; > Bsecond} - (6)
Consider a player 7 in the winning group:

o if rank(b;) is strictly above j’ then that player pays
0, because his group always wins whatever his bid
(there is no breaking point for him);

o if rank(b;) is below j’ then we can distinguish two
cases:

1) if his group remains the winning group with-
out ¢’s bid, that player pays 0.

2) if his group is a loosing group if ¢ is not there
(winning group only with his presence), his
breaking point is exactly M

Hence the maximum revenue is M - 7' = Bsecond- O

One may then wonder whether we can find an allocation
rule that ensures the same revenue as TLSAA. To reach that
goal, we propose TLSAA2, in which the bidgroup is defined
as in LSAA, but we modify the allocation rule and still apply
the payment rule ensuring truthful bidding, given in (1).



4232 TLSAA2: The proposed rules are as follows.
Allocation: A winning player should not only belong to the
winning group but also bid at least as high as player j’
(see (6)).

Payment: Each winning player pays
BSG {e) el
pi = —eeond, @)
J
Proposition 2. TLSAA2 is truthful with revenue equal to
Bsecond-

Proof. For the revenue, it is clear that it is equal to
Bsccond J' = Bsecond. This payment rule ensures a truthful
bicfding because the allocation rule is monotone (the alloca-
tion rule of TLSAA2 is just the allocation rule of TLSAA with
constraint given by (6)), and the payment rule corresponds

to Equation (1). O
Mech. Groupbid Allocation Payment
group with each
the highest winning
. roupbid layer pays
TAMES | (lgx| — 1) minicg; bs egxcep}i the pthey lovgeg’t
one with the bid of his
lowest bid group
winners pay
group with the second
TRUST |gx| min;e g, b; the highest highest
groupbid groupbid
equally
group with
VCG S b the highest see Eq. (3)
i€gk groupbid
each group
obtains a
fraction in
PAM igg:k b; proportion see Eq. (4)
) to its
groupbid
group with
TLSAA max;eg, rank(b;)b; the highes see Eq. (5)
groupbid
players (of
the group
with the
TLSAA2 | max;eg, rank(b;)b; highest see Eq. (7)
€9k e groupbid) q
and with
rank below
7’ see (6)

TABLE 2: Illustration of truthful mechanisms

All candidate mechanisms are summarized in Table 2.
Note that, in order to increase VCG’s revenue, authors in
[31] have introduced a reserve price per bidder. In our
work in [24], we have extended that approach for other
mechanisms. In the following proposition, we generalize
[24] for any mechanism with a monotone and all-or-nothing-
allocation rule.

Proposition 3. Consider a mechanism denoted by MEC with a
monotone and all-or-nothing-allocation rule (c; is either 0 or 1
for each player i). We denote by p' the corresponding truthful
payment rule. For any nonnegative value R, the mechanism
MEC’ defined as follows is truthful:

o the allocation rule o is simply the rule «, ignoring all
bids strictly below R;

o the payment rule consists in charging player i a price

R,pj(bi)}, ifof =1
(b)) = max{R,p;(b;)}, / g
P;(bi) {07 ol =0, ©
with pF(b;) the price given by the original mechanism
rule where bids strictly below R are ignored.

Additionally, that modification ensures that the per-unit price paid
by players is at least R.

Proof. The allocation rule o is still monotone, therefore
there must exist a payment rule p’ which renders the mech-
anism truthful.

Let us fix a player ¢ with valuation v;. If v; < R, bidding
truthfully ensures a utility equal to 0 otherwise he obtains
either a negative utility or a utility equal to 0.

We distinguish two cases for a winning player with v; > R:

o pf'(v;) > R: this situation corresponds to the origi-
nal mechanism facing only bidders with valuations
above R, hence proposing a bid b; = v; maximizes
his utility.

e 0 < pf(v;) < R: bidding truthfully generates a
utility v; — R, any other bid b; leads to a lower utility
since the bidder would either get no resource (hence
utility 0), or still be a winner and pay at least 1.

For a losing player, the outcome corresponds to the original
mechanism MEC (now facing only bidders with valua-
tions above R). Since MEC is truthful, and MEC’ only has
larger payments than MEC, bidding truthfully—and losing—
remains a best strategy. O

Hence, we can introduce to TLSAA and TLSAA2 a
reserve price per bidder and the payment rule for each
mechanism is given by (8).

4.3 Performance evaluation

This section compares the performance of the previous
mechanisms. The performance evaluation is based on sim-
ulations. We are particularly interested in average social
welfare and fairness metrics, as well as in the average
revenue of the auctioneer.

4.3.1 Simulation settings

For those simulations, we have fixed two groups from the
interference graph of Fig. 3: g1 = {1,2,4,6} and g = {3,5}.
The marginal valuations of base stations are drawn from
the uniform distribution over the interval [0,100]. For each
extended mechanism and for each reserve price R, we have
computed the average (with respect to each metric) over
10.000 draws.

4.3.2 Results

The objectives of those simulations is to help the regulator to
choose a particular mechanism given a fixed configuration
of groups: simulation results (Fig. 4) show that PAM out-
performs the other schemes in terms of fairness. In terms of
revenue, Fig. 5 shows that TRUST could offer the highest
revenue by playing on the reserve price. In terms of social
welfare, VCG is efficient by construction. Note that the
regulator could trade-off the allocation fairness, the auction
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Fig. 5: Average Revenue as a function of the reserve price R

revenue and the social welfare by setting weights on those
criteria, and select the best-performing mechanism.

In TLSAA2, TAMES and TRUST each winning player
pays the same amount so there is no price discrimination,
however for the other mechanisms we do not have any
guarantees.

5 EXTENSIONS WHEN RELAXING ASSUMPTIONS

In this section, we consider relaxing the key assumptions
made previously.

In Subsection 5.1, we relax Assumption A, by treating
the case when the base station (BS) grouping allows a base
station to belong to several groups, which should improve
the social welfare of the allocation but complicates the mech-
anism analysis (ensuring truthfulness becomes harder).

Then in Subsection 5.2, we assume that several base
stations can be controlled by a common entity (an MNO),
thereby relaxing Assumption B. Again, one has to be careful
to maintain the schemes’ properties.

5.1 Aplayer is a base station which can belong to more
than one group

The assumption of allowing each BS to be a member of only
one group may appear to be restrictive because by removing

200 - |—— PAM
- - TAMES
....... TRUST
100 |- | TLSAA
TLSAA2
---— VCG
oL \ L

0 50 100

Fig. 6: Average social welfare as a function of the reserve
price R
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this assumption, i.e. allowing a base station to belong to
more than one group, we increase social welfare: suppose
that there is a base station which is not causing interference
to any other base station, clearly this base station should
belong to all groups. In the following, we investigate the
truthfulness of the previous mechanisms when removing
this restriction, by addressing the following question: given
the allocation rule and the hypothesis that a player (BS) can
belong to more than one group, is there a payment rule such
that those mechanisms are still truthful? We add a star to the
original mechanism to denote the new version. Note that the
difference between Mechanism and Mechanism* (if it exists)
resides only in the payment rule.

5.1.1

We show in the following that we can adapt all previous
mechanisms except TAMES and TLSAA2.
Before that, let us introduce the following proposition.

Candidate mechanisms are not all adaptable

Proposition 4. Given a monotone allocation rule, if a player
belongs to all groups then he pays 0.

Proof. Direct application of Myerson’s lemma (there is no
breaking point for this player because he is always a win-
ning player). O

o TAMES:
Under TAMES, all players of the group with the
highest groupbid are winners except the player with
the lowest bid. With the assumption that a player
can belong to more than one group, the allocation
rule is non-monotone. Indeed, consider a player with
valuation equal to 15, belonging to two groups with
bids respectively {15,20,25} and {8,9,15,20}. Bid-
ding truthfully leads to a utility equal to 0 because he
is a loosing player. However, any bid lower than 12
leads to a higher utility because in that situation this
player is a winning player. Since the allocation rule
is not monotone anymore, we cannot find a truthful
payment rule.

o TRUST*
Under TRUST* all players of the group with the high-
est group bid are winners. Clearly, the allocation rule
is monotone. Thus we can find a truthful payment
rule. The breakpoint for player ¢ is given by the
minimum bid that allows ¢ to win the auction: for
each group k which i belongs to, we compute the
minimum bid, if it exists, which allows him to win
the auction.
Example: consider four groups with bids respectively
{2,3,4,8},{0.5,8} {5,3,8} and {4}. The payment of
player i with valuation 8 in bold is min{1, 3} = 1.
Indeed, by proposing a bid b; = 1, the first group
wins the auction. For the second group, player 4
cannot change the outcome (there is no breaking
point), for the third group, the breaking point is
given by b; = 3. Thus the payment of player i is
min{l, 2} = 1.

. VCG*:
We propose to adapt VCG in this context. The win-
ning group is the group with the highest groupbid.
We denote by B, the highest groupbid of groups

max



to which ¢ does not belong. If the player belongs to
the winning group ¢win with groupbid By, then we
can distinguish two cases: if i’s presence does not
change the outcome i.e.,, By}, > B!, then he pays

win max
. _ 5 L
0 otherwise he pays B!, — B_;,. To summarize:

— Bl ©)

win

P/ 7" = [Brax
o PAM*
we denote by n; the number of groups which 1
belongs to. The initial version of PAM in [27] was ac-
tually designed under this assumption. The payment
rule is given by:

_ n;b; + Bq_l Brfgt — Bq_Z
bi b + B . n; ' (10)
<ln nibi + B’l_“;t 'fliR + BEc:t _ 1> .
n; R+ B’ljolt n;b; + B’ljolt
e TLSAA*:

Under TLSAA* all players of the group with the
highest group bid are winners. Clearly, the alloca-
tion rule is monotone. Thus we can find a truthful
payment rule. The breakpoint for player 7 is given by
the minimum bid that allows ¢ to win the auction:
for each group k which i belongs to, we compute the
minimum bid, if it exists, which allows him to win
the auction.
o TLSAA2:

We cannot find a truthful payment rule since the
allocation rule is non-monotone, which can be seen
on the following example, with two groups with
bids respectively {15, 5,3} and {7,5,4}. Clearly the
player with the bid in bold (5) is a losing player
(the first group wins the auction and only the first
player is a winning player and he pays 12). However,
if player i proposed b; = 2.5 instead of 5 then he
would be a winning player because in this situation
all players of the first group would be winners and

pay 2.

In the following we evaluate the impact of Assump-
tion A. we compare Mech and Mech* (without considering
TAMES and TLSAAZ2 since as we have shown they can not
be extended) preserving truthfulness.

5.1.2 Performance Evaluation

We have done the following simulations: we have fixed two
possible group configurations from the interference graph
of Fig. 3: In the first configuration C, we have two groups
g1 = {1,2,4,6} and g2 = {3,5}. For the second configura-
tion C we have three groups g1 = {1,2,4,6}, g2 = {1,2,5}
and g3 = {3,5, 6}. The marginal valuations of base stations
are drawn from the uniform distribution over the interval
[0,100]. For each mechanism and for each reserve price R,
we have computed the average (with respect to each metric)
over 10000 draws. Results are shown on Fig. 7 to 10

The objective of those simulations is to help the regu-
lator to choose group configurations: if his objective is to
maximize his revenue, then C is better than C5 in terms of
revenue. In the other hand, if his objectives are to maximize
social welfare and the fairness of the allocation then by
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Fig. 7: Average revenue (left), fairness (center) and social
welfare as a function of the reserve price.
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Fig. 8: Average revenue (left), fairness (center) and social
welfare (right) as a function of the reserve price.

choosing C5, he can get a higher social welfare and improve
fairness.

5.2 Base stations’ bids coordinated by a single entity
(operator)

In this section, we define a player as an operator who
coordinates several base stations and we investigate the
applicability (truthfulness) of the previous mechanisms.

5.2.1 Assumption

In the literature and in our previous work, we define a
player as a base station. In this section, we redefine a player
as an operator who coordinates several base stations. We
suppose that each base station can belong to only one group
and the utility Ur of an operator I which has N; base
stations is:

Nr
Ur = E QiV; — Pr,
i=1

where ¢; is the fraction of spectrum allocated to base station
1 of operator I and wv; its valuation. Note that we will
not change the system model, i.e. the regulator collects a
bid from each base station. The question which may arise
is: under the new definition of a player, do the previous
mechanisms preserve truthfulness?

In this new definition of players, truthfulness means that
for each operator I who has N; base stations, proposing
a bid vector equal to the valuation vector, i.e., proposing
(b1, ..,bn,) = (v1, .., N, ) maximizes his utility.

Before discussing the applicability of the previous mech-
anisms in this context let us introduce the following proposi-
tion (note that this holds only when a player is an operator).



——PAM - - PAM*

T T T T T 200 [ ]

100 N
150 |- . .
50 100 -
50 |- B
0 H oL | L]

0 50 100

Fig. 9: Average revenue (left), fairness (center) and social
welfare (right) as a function of the reserve price.

’—TLSAA— — TLSAA*

100 0.6 200
0.4

50 100
0.2

0 | 0 0

a
0 50 100

Fig. 10: Average revenue (left), fairness (center) and social
welfare (right) as a function of the reserve price.

Proposition 5. If a mechanism is truthful with the additional
constraint that a base station must belong to one and only one
group then, given the allocation rule, there also exists a truthful
payment rule without that constraint i.e., each base station can
belong to more than one group.

Proof. Let us fix an operator I with Ny base stations with a
vector of valuations Vi = (vy, .., vy, ) under the assumption
that a base station can belong to more than one group. The
utility of the operator is given by

Ny
Ur = ai(Br)v; — Pr(Br)
i=1

where By = (b1, .., by, ) is the bid vector. Our objective is to
find P;(By) which elicits truth telling. If we consider each
base station ¢ which belongs to n; groups as n; different
base stations with the same bid and the same valuation as
base station ¢ then we obtain the same allocation for groups

Nip
(in total we have Nj = > n; base stations). We denote by

i
B7 and V7 the bid and valuation vectors of those N base
stations. We have:

Ni Ny
Zai(B[)UZ‘ = ZO[Z(B;)’UZ (11)
i=1 i=1

By assumption, we can find the payment rule P; which
ensures truthful bidding (B; = V). Then, by construction

P;(By) = Pf(B7;) must ensure a truth telling. Indeed:

Ny
Ur=Y_ ai(Br)v — Pf(B})
i=1

Nix*
=Y ai(Bj)vi — P (Bj)
=1

meaning that U; is maximized for By = V}, by setting
B = Vi we obtain that maximum utility. O

5.2.2 Most candidate mechanisms are not truthful

In the following proposition, we show that all the previous
mechanisms, except VCG, could not applied.

Proposition 6. For all the previous mechanisms except VCG,
there is no payment rule ensuring truthful bidding.

Proof. We show the non-existence for each of the other
schemes.

o TRUST: consider two groups, and suppose that op-
erator I has two base stations with valuations in
bold and which are in two groups with valuations
respectively {30, 3} and {5, 4}. By bidding truthfully
the second group wins the auction so the utility of
the operator I is 5 — py, however if that operator
proposes a bid vector {30,0} then we are back to the
situation where a base station is a player (since each
operator has one and only one base station): group
one wins the auction and in this situation the utility
of the operator 7 is 30 — 2 = 28 which is strictly better
than the previous one.

e PAM: consider an operator I with two base stations
in two different groups. The first group is composed
by two base stations of different operators and the
second contains only one base station. We denote by
v1,1 the valuation of the first base station and by vy o
the valuation of the second. Suppose that vy 1 > vy 2
and the reserve price per bidder is zero. The utility
of the operator is given by:

Ur=a1vr1+ (1 —ai)vis —pr. (12)
But proposing any bid b; = (br.1,0) ensures a max-
imum utility which is equal to vr; because in this
situation, a player is a base station and we have only
one group thus the payment is zero (see [27]).

e TLSAA: we consider two groups with bids respec-
tively {16,20} and {15,30}. By bidding truthfully,
operator I gets a utility lower than 16. However, if
he reports only his bid for the second base station
then he obtains a utility 30 — 10 = 20.

As illustrated in Table 3, when an operator is considered as
a player, only VCG can be applied. O

5.2.3 A truthful mechanism

We apply the VCG mechanism in our context and under the
assumption that a player is an operator, we denote by VCG**
the implementation of VCG in this context. The bandwith



is allocated to the group with the highest groupbid. The
payment of a player I is given by

Ny
SW_I — (SWI — Zbiai),
i=1

where SW™ is the social welfare when operator I is absent,
SW/ is the social welfare when the operator I is present.

Example: Consider two groups with bids respectively
{5,30} and {12,8,25}. The payment of operator I (which
has base stations with bold-written bids) is:

30— (45— (12+8)) =5

As we have shown before, VCG can be applied when an
operator is considered as a player. In the following we focus
on the revenue. In particular we analyse two different ways
of implementing a reserve price in this particular scenario.
523.1 Revenue investigation for VCG*: VCG**
can yield very small revenue, even no revenue in some
situations. To avoid this situation, we have introduced in
a previous work [24] a reserve price per base station: each
base station has to bid above that reserve price and will pay
at least that amount if he is a winning player. In this section
we investigate the applicability of what we have proposed
before i.e., do we preserve the truthfulness when applying
a reserve price per base station, when several base stations
are assumed to be coordinated by a single entity (operator)?
In our context, applying an homogeneous reserve price
R per base station could consist, as before, in ignoring bid
below R, and having each winning base station pay at

least 1. In other words, each operator would pay at least
Nrp
> a;R. A possible way to adapt the same idea to this
i=1
scenario is to modify the final payment of each operator

Ny
as max{py““** 3" a;R}. However, this leads to loosing

truthfulness, as e;ainpliﬁed here: consider two groups and
two operators, the first group with a base station of the first
operator and the second group with two base stations of the
second operator. Suppose that the valuations of base stations
are {7} and {6, 3}. If the reserve price is 4, then by bidding
truthfully, the second operator looses the auction (since his
second base station will be excluded as the groupbid of
the second group is 6 < 7). However by proposing a bid
vector {6,5}, he would win the auction and get a utility
9 — max{7,8} = 1.

Another alternative to adapt a reserve price could be to
apply a reserve price R* per operator, i.e., if an operator is
a winning player then he should pay at least that amount.
The final payment therefore [31] is max{R*, py ©“**}.

Since each operator may have only a set of winning base
stations (base stations of the winning group), a question that
may arise is how to apply that reserve price. A natural
approach can be to apply a reserve price per group: if
an operator has some base stations in a group then the
sum of bids of those base stations must be greater than
R*. Unfortunately this also leads to loose the truthfulness:
consider an operator with two base stations with valuations
{4,7} on two groups: {8,4} and {3,7}. Suppose R* = 3,
then by bidding truthfully the utility of the operator is

10
Candidate truthful mecha-
nisms

TAMES, TRUST, TLSAA,
TLSAA2, VCG, PAM

Scenario

A player is a base station, that
belongs to one and only one group
(Assumptions A and B)

A player is a base station which | TRUST*, TLSAA*, VCG*,
can belong to more than one group | PAM

(Assumption B)

A player is an operator that coor- | VCG**

dinates several base stations

TABLE 3: Candidate truthful mechanisms depending on the
assumptions made.

4 — max{3,0} = 1. However if he proposes (0,7) then its
utility is 7 — max{3,5} = 2.

Both our attempts to improve the revenue using reserve
prices (per base station, or per operator) lead to losing truth-
fulness, hence we do not recommend using the associated
methods. Finding other ways to introduce reserve prices
while maintaining truthfulness, when a player controls
several base stations, is an interesting direction for future
works.

6 CONCLUSION

In this paper, we have designed new truthful auction mech-
anisms aimed at allocating spectrum in the context of LSA.
Those mechanisms have different properties so the regulator
can choose one with respect to his preferences. We have
also studied the impact of the hypothesis “each base station
must belong to one and only one group” on truthfulness
and we have extended previous studied mechanisms to this
scenario by finding the corresponding payment rule (if it
exists) eliciting truthful bidding. We have also defined a
player as an operator who coordinates several base stations,
and shown that under this assumption, only VCG can be
applied and elicit truthful bidding.

In this paper we have focused on sealed auctions i.e., all
bidders simultaneously submit sealed bids. In future works,
we will focus on ascendant open auctions and we will study
the case in which the regulator has more than one block to
allocate which complicates the auction analysis.
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