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Abstract The operational workspace of parallel robots is often re-
duced by the presence of singularities. Recently, it has been proven
that Type 2 singularities can be crossed in a way such that the
dynamic model of the robot never degenerates. This discovery has
been the starting point of several works on multi-model Computed
Torque Control (CTC) that allow crossing of Type 2 singularities.
In this paper, we propose a further improvement thanks to adaptive
control. The major contribution of the paper is in the control law
synthesis, which uses only linear methods, in contrast to usual ap-
proaches based on Lyapunov theory. This theoretical development
will be validated both in simulation and experimentally.

1 Introduction

It is often said that parallel manipulators have the edge on their serial
counterparts in terms of cycle time and rigidity. However, the size of their
workspace is a serious drawback. In general, this workspace is further split
by Type 2 singularities (Gosselin and Angeles, 1990). This is especially
annoying as joint control usually computes divergent setpoints in the neigh-
borhood of those singularities, meaning that crossing them is not a solution.

A lot of propositions revolve around the idea of getting rid off singular-
ities. Optimal design allows to eliminate them or to reduce their impact
(Gogu, 2004). Actuation redundancy or variable actuation modes (Rako-
tomanga et al., 2008) allows to cross them at a supplementary cost.

Contrary to these approaches, some researchers have proved that Type 2
singularities do not always induce the degeneracy of the inverse dynamical
model of parallel robots (Ider, 2005), (Briot and Arakelian, 2008). The
expression of these non-degeneracy conditions and their use in multi-model
control law will be explained further on.

While being fairly reliable, this method does not ensure success in singu-
larity crossing, mainly because of trajectory tracking error induced by the
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control law. Then, in some cases, the desired trajectory is not respected
and the robot is unable to cross the singularity. Therefore, more advanced
control is needed in order to ensure a perfect crossing of the singularity.

Adaptive control is widely used when robot dynamic models are not per-
fectly known or change over time (Zhang and Wei, 2017). Our application
falls into the first case, as the dynamic model has poor precision and cross-
ing trajectories need high accelerations. To simplify implementation and
tuning, we propose a control law derived from linear algebra, contrary to
usual Lyapunov-based approaches.

The paper is organized as follows: previous work on singularity crossing
is recalled in section 2. Main contribution lies in section 3, where the linear
adaptive control law is presented. Its efficiency is proved in section 4, with
simulations and experiments carried out on a planar parallel robot.

2 Previous Work on Singularity Crossing

2.1 Dynamical Non-Degeneracy Rule

It has been proven by Ider (2005) and Briot and Arakelian (2008) that
parallel singularities do not always induce degeneracy of parallel robot’s
dynamic model. The rule for non-degenerating motion planing is the fol-
lowing: in singular configurations, the wrench exerted on the end-effector
(by inertia and external forces) must be orthogonal to the direction of the
uncontrollable motion.

This result can be used to generate a crossing trajectory that ensures the
non-degeneracy of the dynamic model as explained in (Pagis et al., 2015).

2.2 Control Scheme for Singularity Crossing

Multi-model Computed Torque Control law is recalled as explained in
(Pagis et al., 2015).

The control error to minimize is e = qd−q where qd is the desired joint
value and q the measured joint value. Parallel robot IDM can be generally
written as :

τ = Mq̈ + h = Mv + h (1)

with the mass matrix of the robot M(q) and the vector of centrifugal effects
h(q, q̇). The intermediate control input v allows to perform input-output
linearization and is defined by 3rd-order dynamics :

v = q̈d + Kvė + Kpe + Ki ∫ e (2)

where gain matrices Kv, Kp, Ki impose the dynamics of articular error.
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However, in singular configurations, IDM (1) cannot be computed. Yet,
as explained in (Pagis et al., 2015), the IDM in singularity has a new non-
degenerating expression. Transition between the two models can be achieved
using a logistic function σ. Consequently, a multi-model control scheme was
implemented in (Pagis et al., 2015) with the following dynamic models:
• Model 1 - complete model (σ = 0)

τ = Mq̈ + h (3)

• Model 2 - non-degenerating model around singularities (σ = 1)

τ = M′q̈ + h′ (4)

3 Linear Synthesis of Adaptive Control Law

To improve tracking performances, a more advanced control algorithm scheme
is required. Adaptive control of robotic manipulators is well-known and has
been the subject of many works, recently reviewed in (Zhang and Wei, 2017).
Adaptation of dynamic parameters is needed to reduce modeling error, re-
sulting in a better trajectory tracking. This could be especially useful when
using the less precise non-degenerating model around the singularities. In
this paper, contrary to usual approaches, the presented law for parameter
adaptation is based on linear techniques.

3.1 Modeling Error

This section presents the usual computation of the error between the
(nd×1) vector of real dynamic parameters χ and its estimate χ̂.

The real dynamic model of the robot and the one used for control are

τ = M(χ)q̈ + h(χ) and τ = M̂(χ̂)v + ĥ(χ̂) (5)

with v defined in (2). Modifying (5) allows to get the classical result :

ë + Kvė + Kpe + Ki ∫ e = M̂−1((M− M̂)q̈ + h− ĥ). (6)

Full computation of (6) can be found in (Khalil and Dombre, 2001). Since
the dynamic model is linear with regards to parameters χ, one can write

τ = Φχ = Mq̈ + h (7)

where Φ is a (n × nd) matrix. Consequently, the differential equation on
articular error is linked to dynamic parameter error, that is the difference
χ̃ = χ− χ̂ between real and estimated value:

ë + Kvė + Kpe + Ki ∫ e = M̂−1Φχ̃. (8)
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3.2 Adaptation Law based on State Feedback

Equation (8) can be put under the form of a state-space model, where
state vector X is a vector of articular error, its integral and its derivative:

X =




∫
e

e
ė


⇒ Ẋ =




0n 1n 0n

0n 0n 1n

−Ki −Kp −Kv


X +




0n

0n

1n


 M̂−1Φχ̃.

(9)

The state-space model (9) can be written as:

Ẋ = AX + Bw with w = M̂−1Φχ̃ (10)

where state matrix A and input matrix B are used to check the controllabil-
ity of the system using Kalman criterion. Then, instead of using Lyapunov
theory (Khalil and Dombre, 2001), we stick to linear control methods and
use classical state feedback

w = −LsX. (11)

where the gain matrix Ls is computed by using pole placement methods
in order to ensure that closed-loop state matrix F − GLs is a Hurwitz
one. Then, state vector is ensured to exponentially converge towards zero.
Finally, the estimated dynamic parameters χ̂ are obtained by imposing a
first order dynamic evolution on the estimation error χ̃:

˙̃χ = −Gχ̃ , G > 0. (12)

By combining (10), (11) and (12), one can obtain

˙̃χ = −GΦ−1M̂LsX. (13)

The stability of the control law (13) is ensured by the linear methods used
to synthesize it ((11) and (12)). Finally, dynamic parameters are estimated
by numerical integration of (13), resulting in the adaptive control scheme
presented in Fig. 1.

4 Case Study on DexTAR Robot

4.1 DexTAR Dynamic Modeling

To check the efficiency of the proposed approach, experiments are car-
ried on a five-bar parallel robot, the DexTAR manufactured by Mecademic,
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Figure 1: Proposed multi-model adaptive control scheme
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Figure 2: DexTAR ge-
ometry

Figure 3: zz adaptation in simulation

which has two degrees of freedom. Its geometry is presented on Fig. 2. The
end-effector of the robot is E, which vector of Cartesian coordinates is x.
The robot is in a Type 2 singularity when distal elements B1E and B2E
are aligned.

The inverse dynamic model used in the multi-model control law (see
(Pagis et al., 2015)) is :

τ = ZZq̈ + Fssign(q̇) + ff + (1− σ)JTmẍ (14)

It is well known that parameters to adapt have to be chosen carefully. The
choice can be further helped by a sensitivity analysis (see (Pagis, 2015)).
Based on this analysis, the two parameters zz11 and zz21 of the matrix ZZ
(see (14)) are adapted. They are expected to have a strong impact on torque
setpoint computation, since high articular accelerations are needed to cross
the singularities.
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Figure 4: Testing trajectory

4.2 Simulation Results

In order to verify that the proposed adaptive control scheme works as
intended, wrong initial values of zz11 and zz21 are fed to the algorithm.
Simulations on Matlab/Simulink have been carried out on a standard tra-
jectory that does not cross singularities. As a result, it can be seen in Fig. 3
that estimates of inertia converge back to the real values. This means that
the proposed control law is stable and robust. Moreover, articular error is
drastically reduced by the proposed control law.

4.3 Experimental Results

Now that theoretical stability and performance are verified on simula-
tion, we want to see if adaptive control can help singularity crossing. For
this purpose, a trajectory where the singularity is crossed four times was
generated, obviously abiding to the non-degeneracy rule (see Fig. 4).

The difficulty induced by singularity crossing is that the robot has to
find a configuration where distal legs are fully extended in order to cross
the singularity. Articular errors can either lead to crossing failure (not
extending enough) or peaks in torque setpoint (trying to extend more than
robot geometry allows to).

The adaptive scheme proposed will be judged on several criteria: artic-
ular error, setpoint torque values and setpoint torque smoothness.

Experiments are run with unbiased initial values, which correspond to
the identified ones (ẑz11 = 0.0134 and ẑz21 = 0.0142 kgm2). Afterwards,
initial values are changed by adding or subtracting 0.01 kgm2. Logically,
introducing biased parameters is expected to favor adaptive control. The
improvement obtained with adaptive control is summarized in Table 1.
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Figure 5: Articular error comparison

Table 1: Experimental results

data ẑz = zz ẑz = zz + 0.01 ẑz = zz − 0.01
no adapt adapt no adapt adapt no adapt adapt

RMS error (mrad) 2.82 3.70 3.26 3.07 14.20 5.53
peak error (mrad) 9.03 10.63 10.24 8.91 46.99 17.05
RMS torque (V) 1.37 0.96 2.26 1.71 1.61 0.89
peak torque (V) 8 3.18 8 8 5.87 3.18

peak t. derivative (V/s) 1680 715 2209 1949 1079 302

It can be seen that in all cases, adaptive control reduces input torque
peaks and improves smoothness, which is our first goal. Articular error is
reduced only if initial parameters are biased. With initial parameters set as
zz − 0.01, error reduction is particularly impressive, as witnessed on Fig 5.

Overall, the proposed control scheme works as intended and is a good
alternative for smoothing of torque setpoints, even when the initial values
of parameters are precise. Articular error is kept low before reaching the
singularity, which is crucial for the success of the crossing.

5 Conclusion

Crossing singularities is a potential improvement for the use of parallel
robots. It allows to increase the size of operational workspace, which is
one of their main downsides. An approach based only on optimal trajectory
generation and dedicated control was proposed to achieve singularity cross-
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ing. For the crossing to succeed, it is crucial that the trajectory is precisely
tracked around singularities. To do so, an advanced control solution was
developed using adaptive control algorithm. The originality of our work is
the synthesis of the adaptation law based solely on linear methods.

The proposed control law proved to be stable and robust. It was shown
experimentally that it is beneficial in terms of trajectory tracking, torque
values and smoothness. Future work consists in transposing the proposed
control scheme to predictive control, in order to improve the estimation of
dynamic parameters and expected to yield better anticipation of singularity
crossing.
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