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Abstract 1 

The ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral atmosphere, often 2 

refered to as the mesosphere-lower-thermosphere (MLT) are challenging and costly to probe in-situ. 3 

Therefore, remote sensing techniques have been developed over the years. One of these is based on 4 

VLF (Very low frequency, 3-30 kHz) electromagnetic waves generated by various natural and man-5 

made sources. VLF waves propagate within the Earth-ionosphere waveguide, and are extremely 6 

sensitive to perturbations occurring in the D-region along their propagation path. Therefore, 7 

measurements of these signals serve as an inexpensive remote sensing technique for probing the 8 

lower ionosphere and the MLT region.  9 

This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) 10 

in the study of the D-region and the MLT for over 90 years. The fields of research span time scales 11 

from microseconds to decadal variability, and incorporate lightning-induced short term perturbations; 12 

extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower 13 

atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual 14 

oscillation; the solar cycle; and finally, the potential use of VLF NB measurements as an 15 

anthropogenic climate change monitoring technique.   16 
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1. Introduction 1 

The atmosphere-ionosphere system has drawn plenty of attention in recent decades, due to the 2 

growing understanding of the important coupling between the neutral and charged parts of the 3 

atmosphere. In addition, the sensitivity and tight connection of this system to various atmospheric 4 

and space weather phenomena result in a growing interest in this large field of study. More and more 5 

evidence regarding the mutual influence of the atmosphere and the ionosphere are being published, 6 

thanks to an increasing number of satellites and other in-situ and remote sensing techniques. 7 

However, the spatial and temporal coverage of some of these techniques are still limited, thus 8 

influencing the reliability of the rapidly improving numerical models.  9 

Measurements of the ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral 10 

atmosphere, often refered to as the mesosphere-lower-thermosphere (MLT), are particularly limited, 11 

as currently this altitude range cannot be measured in-situ, apart from scarce rocket experiments, 12 

which obtain very narrow spatial and temporal coverage. Weather balloons do not reach this altitude 13 

range and satellites fly above it. Therefore, remote sensing techniques are mostly used to study the 14 

region. The relative complexity of the D-region physics [e.g., Hargreaves, 1992; Kelley, 2009; 15 

Pavlov, 2014] demands a vast number of measurements, in order to properly model its chemistry and 16 

dynamics. Very low frequencies (VLF – 3-30 kHz) radio signal measurements are one of the 17 

techniques used to gather these required observations, performed either from the ground, from the 18 

air, or from space [e.g., Kelly et al., 1981; Barr et al., 2000; Parrot et al., 2008]. 19 

VLF electromagnetic (EM) signals are generated in Earth's atmosphere both by natural and 20 

anthropogenic sources, dominated by lightning discharges and man-made VLF transmitters [Barr et 21 

al., 2000]. The signals propagate within the Earth-ionosphere cavity, since the long wavelength of 22 

these waves causes them to be reflected off the base of the ionosphere, within the D-region, and 23 

because of Earth's high ground conductivity [Budden, 1988]. The D-region reflection height is 24 
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related to the electron number density, and therefore depends on ionization sources, as well as 1 

dynamical and chemical forcing [e.g., Thomson, 1993; Thomson and Clilverd, 2000; Thomson et al., 2 

2007]. In addition, the strength of the VLF signal attenuation depends mainly on ionospheric and 3 

ground properties [e.g., Wait, 1957a, 1957b; Hargreaves, 1992; Silber et al., 2015]. Nevertheless, the 4 

attenuation within this frequency range is considerably low, reaching ~2 dB·Mm
-1

 [e.g., Wait, 1957a, 5 

1958; Croom, 1964; Barr, 1971], thus allowing the generated signals to propagate thousands of 6 

kilometers within the cavity.  7 

The low attenuation in conjunction with the relatively large skin depth in sea water [e.g., Wheeler, 8 

1958; Benhabiles et al., 1996; Barr et al., 2000] enable the communication with submarines 9 

submerged in water. Therefore, several man-made powerful VLF transmitters, operated by a few 10 

military bodies are distributed around the globe at fixed positions.  Each transmitter broadcasts at a 11 

constant power (for very long periods) and at an unchanging frequency band, as seen in the 12 

spectrogram presented in Figure 1. Consequently, measurements of the transmitted signal's 13 

amplitude and phase are widely performed around the world. This type of measurements is 14 

commonly referred to as narrowband (NB) measurements. Since the ground (mainly sea surface) 15 

conductivity is relatively constant in time and its variation effects on VLF signals are small [e.g., 16 

Wait, 1957b; Watt, 1967; Hauser et al., 1969], changes in the recorded amplitude and phase of the 17 

received VLF NB signals reveal information on the D-region's properties and variations along the 18 

transmitter-receiver great circle propagation path (TRGCP), thus allowing the monitoring of the D-19 

region. This monitoring can be performed at different time scales, and everywhere on Earth's surface, 20 

thus allowing these measurements to achieve high spatial resolution. These advantages together with 21 

the inexpensive costs of VLF receivers make VLF measurements in general and NB measurements 22 

in particular, a powerful tool to probe the D-region, in comparison with many other (expensive) 23 

spatially and temporally limited remote-sensing instruments. Therefore, VLF NB signals are widely 24 

used to study the D-region and its response to both dynamical and chemical forcing, originated both 25 
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from inside and outside Earth's atmosphere. The coupling of the D-region with the neutral 1 

atmosphere grants an additional method to study this fascinating part of the atmosphere. 2 

The purpose of this paper is to review the main fields of research, which exploit VLF NB 3 

measurements, in order to gather a better understanding of Earth's atmosphere and ionosphere. The 4 

sections of this paper progress from short to long time scales, with a separation into general topics. 5 

Section ‎2 deals with perturbations induced by lightning discharges; Section ‎3 focuses on the 6 

connection of VLF NB measurements to extraterrestrial forcing; Section ‎4 examines the use of VLF 7 

NB measurements to detect oscillations within the D-region, which are originated in the lower 8 

atmosphere; finally, Section ‎5 deals with the utilization of VLF NB measurements to study annual 9 

and long-term oscillations and changes in the MLT and the D-region.  10 

2. Lightning-induced perturbations 11 

VLF NB measurements can be used in order to detect and investigate lightning-induced 12 

perturbations. Lightning is known to influence the temperature and conductivity of the atmosphere 13 

above thunderstorms.  These perturbations include lightning-induced electron precipitation effects 14 

(ref), and short-term VLF perturbations known as 'early' events (ref), which are possibly generated 15 

by the lightning quasi-electrostatic (QE) field (ref), a lightning discharge EM pulse (EMP) (ref), or 16 

by red sprites and other transient luminous events (TLEs) [e.g., Pasko et al., 2012; Siingh et al., 17 

2015]. 18 

Figure 2 depicts lightning-induced perturbations in the NSY (Sicily, 45.9 kHz, 37.12º N, 14.43º E) 19 

transmitter signal amplitude on November 11, 2013. These perturbations were recorded by the TAU 20 

(Tel-Aviv University, Israel, 32.11º N, 34.80º E) VLF UltraMSK receiver [see Clilverd et al., 2009] 21 

at 1 Hz integration frequency. As can be seen, these NB perturbations in the ~2 Mm TRGCP have 22 

recovery times of up to ~2 min. The bottom panel shows in red circles the associated lightning 23 

discharges' location, as detected by the World Wide Lightning Location Network (WWLLN) 24 
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[Dowden et al., 2002; Rodger et al., 2004], together with the TRGCP (yellow curve). These 1 

associated discharges were located up to ~185 km away from the TRGCP. The presented 2 

perturbations are hard to classify, due to the relatively low sampling frequency, the lack of phase 3 

data, and the absence of associated WWLLN detections in two of the presented events, which are 4 

possibly due to the limited WWLLN detection efficiency [e.g., Rudlosky and Shea, 2013]. The first 5 

two arguments will be discussed below. Nevertheless, for a more comprehensive discussion on this 6 

section's topics, see Inan et al. [2010], Rodger [2003], Barr et al. [2000] and references therein. 7 

It should be mentioned that in addition to the phenomena described above, lightning discharges can 8 

also produce terrestrial gamma ray flashes (TGFs) [e.g., Dwyer et al., 2012]. However, TGFs are 9 

studied using VLF broadband measurements (that record the entire VLF band) and not NB 10 

measurements, and therefore they are beyond the scope of this paper.  11 

2.1. Lightning-induced electron precipitation 12 

Lightning discharges occur in almost every location on Earth. Most of their generated EM energy is 13 

radiated within the VLF and ELF (extremely low frequencies) bands (peaking between 5-10 kHz) 14 

[Cummer, 1997; Rakov and Uman, 2003]. As mentioned earlier, these generated EM waves 15 

propagate within the Earth-ionosphere cavity. However, a small portion of the EM energy can 16 

penetrate through the ionosphere into the magnetosphere, and propagate as a whistler mode wave 17 

[Helliwell, 1965], where it can interact with radiation belt electrons, causing them to scatter and 18 

precipitate into altitude ranges of 60-120 km. Subsequently, the incoming electron surge produces 19 

electron density enhancements in this altitude range [Helliwell et al., 1973; Inan et al., 2010]. 20 

Consequently, VLF NB measurements can monitor these temporary D-region electron density 21 

enhancements. The VLF signature of these events (often referred to as VLF 'Trimpi' events) 22 

commonly show an amplitude decrease together with a phase increase [e.g., Inan and Carpenter, 23 

1987; Clilverd et al., 1999b]. However, opposite behavior (which is probably initiated by modal 24 
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interference of the VLF waves in the Earth-ionosphere cavity) was observed as well [e.g., Dowden 1 

and Adams, 1989]. Trimpi events can be powerful enough to cause up to ~6 dB amplitude difference 2 

and ~20º of phase shift [e.g., Helliwell et al., 1973; Dowden et al., 2001]. They have a typical VLF 3 

rise times of up to 1 s, which occur ~1-2 s after the whistler's parent lightning (that are usually 4 

observed as sharp pulses in VLF broadband measurements, known as 'sferics'). These perturbations 5 

may appear in regions distant from the parent lightning (due to the whistler wave's generation and 6 

propagation nature) , and have decay periods smaller than 100 s [Rodger, 2003; Inan et al., 2010]. 7 

Since the first report that connected between abrupt perturbations in VLF NB amplitude and phase 8 

measurements and lightning-induced whistler waves [Helliwell et al., 1973], many VLF studies have 9 

tried to answer diverse questions regarding lightning-induced electron precipitation (LEP) events. 10 

Among different topics regarding the LEP, these questions were focused on the electron precipitation 11 

flux intensity based on the LEP driven VLF perturbation amplitudes  [e.g., Inan et al., 1985b; Tolstoy 12 

et al., 1986; Inan and Carpenter, 1987; Clilverd et al., 2004], the LEP event sources and 13 

mechanisms [e.g., Inan et al., 1988b; Burgess and Inan, 1990; Dowden and Adams, 1990; Poulsen et 14 

al., 1993; Clilverd et al., 2004; Peter and Inan, 2004; Gołkowski et al., 2014], and the precipitating 15 

electron energies [e.g., Helliwell et al., 1973; Lohrey and Kaiser, 1979; Inan et al., 1988a].  16 

2.2. Early VLF events 17 

With the improvement of VLF receivers over the years, higher temporal-resolution measurements 18 

were possible. This allowed researchers to distinguish between the relatively long delay of LEP 19 

events from the parent lightning and other VLF NB events with a very short delay (typically <50 ms) 20 

from the parent lightning [Rodger, 1999]. The first description of this type of event was given by 21 

Armstrong [1983]. They were later termed 'early' events by Inan et al. [1988b], due to their short 22 

time delay from the parent lightning. Moreover, these events are commonly referred to as 'early/fast' 23 

events due to their fast VLF NB amplitude rise times [e.g., Inan et al., 1988b; Corcuff, 1998; Moore 24 
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et al., 2003]. Nevertheless, Haldoupis et al. [2004] observed 'early' events with long onset of up to 1 

~2.5 s, granting them the term 'early/slow' events. 2 

It is known that 'early' events are usually produced up to 50 km away from their associated cloud-3 

ground (CG) lightning [e.g., Inan et al., 1993; Johnson et al., 1999; Rodger, 2003], although farther 4 

lightning discharges (up to a few hundred kilometers) can produce 'early' events as well [e.g., Salut et 5 

al., 2013].  A lot of effort is still invested in explaining the origin of these disturbances. The main 6 

two mechanisms for the 'early/fast' events are the scattering of VLF signals from red sprite 7 

conducting columns [e.g., Dowden et al., 1994, 1996; Dowden and Rodger, 1997; Rodger, 1999]; 8 

and D-region conductivity perturbations caused by QE field heating (that also initiates red sprites), 9 

which is generated by the associated lightning discharges [e.g., Inan et al., 1995, 1996; Barrington-10 

Leigh et al., 2001]. The current explanation for 'early/slow' events is that the lightning EMP that also 11 

create photon emission patterns known as 'elves', and is generated by CG and intra-cloud (IC) 12 

lightning, produce ionization powerful enough to be detectible with VLF receivers [e.g., Marshall et 13 

al., 2008, 2010; Marshall and Inan, 2010].  14 

While several papers have shown one-to-one correlation between TLEs and VLF 'early' events [e.g., 15 

Haldoupis et al., 2004, 2010], others did not observe these one-to-one correlations [e.g., Marshall et 16 

al., 2006]. This might be due to the importance of simultaneous observations of VLF NB amplitude 17 

and phase. Kotovsky and Moore [2015] analyzed a few tens of 'early' events using both parameters. 18 

They concluded that some observed 'early' events can be deceptive when examining only one of the 19 

parameters (amplitude or phase), as was performed in many previous works. They proclaimed that 20 

the full analysis required for a correct characterization of 'early' events, i.e., whether they are 'fast' or 21 

'slow', is essential for the understanding of the fundamental physical mechanisms behind 'early' 22 

events. Undoubtedly, 'early' events are still a topic of active research, and many aspects of these VLF 23 

NB perturbations are yet to be discovered. 24 
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2.3. Long recovery events 1 

One of the new fields of 'early' event research is the study of 'long recovery early events' (LOREs). 2 

LOREs are 'early' events where the VLF NB amplitudes have a relatively long recovery period, 3 

which can exceed 30 min [e.g., Haldoupis et al., 2012; NaitAmor et al., 2013; Gordillo-Vázquez et 4 

al., 2016]. Figure 3 illustrates an example of two consecutive LORE events in the NSY transmitter 5 

signal amplitude on November 25, 2013, recorded by the TAU VLF receiver. The total recovery time 6 

spans a staggering 31 min. The bottom panel shows in red circles the two associated lightning 7 

discharge locations, as detected by WWLLN. These associated discharges were very intense (based 8 

on the dozen WWLLN receivers that detected them), and were located ~150 and ~160 km away from 9 

the TRGCP,  10 

LOREs were first classified by Cotts and Inan [2007], although observed earlier [e.g., Inan et al., 11 

1988b; Dowden et al., 1997]. Lehtinen and Inan [2007] used a simplified D-region chemistry model 12 

[Glukhov et al., 1992] and suggested that gigantic jets could be associated with LOREs, as they can 13 

generate enduring ionization of heavy negative ions below ~70 km.  However, Marshall et al. [2014] 14 

used gigantic jets data recorded by the Imager of Sprites and Upper Atmospheric Lightnings 15 

(ISUAL) space-based instrument, and found that only 4 out of the 9 detected gigantic jets (which 16 

occurred within 100 km of the TRGCPs) were accompanied with VLF early events, none of which 17 

were LOREs, thus putting the gigantic jet mechanism in question. 18 

Haldoupis et al. [2009] used the same model as Lehtinen and Inan [2007] and concluded that LOREs 19 

in VLF measurements can be initiated when the electron density enhancements at the higher altitudes 20 

of the D-region, i.e., near 85 km where VLF signals are reflected, are weak in comparison with the 21 

background electron density. Haldoupis et al. [2012] identified 10 LOREs in their data, from which 22 

8 were associated with sprite-elve pairs, rather than with sprite or elve alone. They postulated that 23 

some sort of a coupling mechanism between the two TLEs (which are driven by the EMP and QE 24 
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fields) is responsible for the LORE signature in VLF measurements. Analysis of nearly 50 detected 1 

LOREs made by Salut et al. [2012] has shown that LOREs can be observed when the associated 2 

lightning discharges are farther from the TRGCP than in other types of 'early' events. In addition, 3 

they noticed that ~87% of the events were triggered from lightning discharges above sea, as was also 4 

noted in other papers [e.g., Haldoupis et al., 2012; Kumar and Kumar, 2013; Schmitter, 2014; 5 

Kotovsky et al., 2016]. 6 

Similar to the observations made by Salut et al. [2012], Haldoupis et al. [2013] examined large VLF 7 

NB datasets and found that LOREs were generated when the associated lightning discharges were 8 

located up to 300 km from the TRGCP. In addition, they concluded that LORE occurrence strongly 9 

favors powerful CG discharges with peak currents above ±250 kA (which accounts for less than 10 

0.5% of the total number of lightning discharges), thereby explaining some of the observations made 11 

by Haldoupis et al. [2012]. Nevertheless Salut et al. [2013] and Gołkowski et al. [2014] have shown 12 

that the induced LORE amplitudes were not directly related to the peak current strength and 13 

proximity to the TRGCP, and that in more than 75% of their occurrence, these VLF disturbances are 14 

produced by positive lightning discharges. Moreover, NaitAmor et al. [2013] have concluded that the 15 

occurrence of LOREs mainly depends on the modal structure of the VLF signal, the VLF NB 16 

scattering process, and the distance of the transmitter and receiver from the disturbed region, while 17 

the occurrence of TLEs and the lightning peak current only play a secondary role. 18 

Recently, Kotovsky and Moore [2016] used a photochemical model in order to understand the 19 

mechanism behind LOREs. They concluded that LOREs occur when strong electron density 20 

enhancements (at altitude levels of 76 km or above) are regulated by slow recombination processes. 21 

These conclusions were supported by the kinetic modeling of Gordillo-Vázquez et al. [2016], who 22 

emphasized that the strong electron density enhancements needed for the LOREs should occur above 23 

~79 km, where the electron lifetime is determined by recombination with H
+
(H2O)n and NO

+
 ions. 24 

These two papers yet again reinforce the association of LOREs with high peak current lightning 25 
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flashes. Nevertheless, Kotovsky et al., [2016] argued that intense initial breakdown and fast first 1 

leaders are important properties of lightning discharges that produce LOREs, thus complicating the 2 

essence of the different LORE-producing mechanisms, and the relationship between them. While 3 

plenty of progress has been achieved during the last decade, the VLF NB LORE signature demands 4 

further investigation, together with other 'early' event aspects.  5 

3. Space weather phenomena and eclipses 6 

3.1. Extraterrestrial X-ray and gamma ray bursts 7 

X-ray and gamma (γ) ray bursts from extraterrestrial sources are known to affect the ionosphere on 8 

time scales of seconds up to several hours. The effect of gamma ray bursts from cosmic origins, i.e., 9 

magnetars or neutron stars (also known as soft gamma repeaters - SGRs) on the ionosphere was first 10 

observed by Fishman and Inan [1988], and was based on VLF trans-equatorial NB measurements. 11 

They reported a disturbance in VLF amplitudes that occurred simultaneously with the gamma ray 12 

burst detection by the Prognoz-9 satellite. Inan et al. [1999] attributed huge periodic amplitude and 13 

phase perturbations (that reached 24 dB and 65º, respectively) to an SGR's massive periodic gamma 14 

ray burst. By using quantitative analysis, the authors concluded that these VLF periodic 15 

perturbations, which lasted for ~5 min, were mostly origninated in 3-10 keV low energy photons. 16 

Inan et al. [2007] observed even stronger perturbations of 26.5 dB of 328º, caused by a giant gamma-17 

ray flare from an SGR, which lasted for an hour. These enormous perturbations corresponded to 3 18 

orders of magnitude electron density enhancement at ~60 km, and even larger relative enhancements 19 

at lower stratospheric altitudes (down to 20 km). Other observations of (weaker) VLF NB amplitude 20 

and phase perturbations from around the world, triggered by gamma ray bursts from different SGRs 21 

have been reported as well [e.g., Tanaka et al., 2008, 2010; Chakrabarti et al., 2010a; Mondal et al., 22 

2012; Raulin et al., 2014; Nina et al., 2015; Solovieva and Rozhnoi, 2015]. 23 
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However, most of the reports on extraterrestrial radiation effect on the ionospheric D-region are 1 

originated in solar flares. During these flares, X-ray flux received at the Earth strongly intensifies 2 

within a few minutes and decays in up to several hours, while strongly affecting ionization processes 3 

in the ionosphere [e.g., Mitra and Rowe, 1972; Hunsucker and Hargreaves, 2002; Khan et al., 2005; 4 

Clilverd et al., 2009]. 5 

 The effects of solar storms on VLF measurements and the ionosphere were discussed almost a 6 

century ago [e.g., Pickard, 1927; Austin, 1932; Bailey and Thomson, 1935], but the connection 7 

between VLF NB disturbances and X-ray bursts were observed only after the emergence of the 8 

satellite era and space-borne X-ray detectors [e.g., Kreplin et al., 1962]. Chilton et al. [1965]  were 9 

the first to directly correlate VLF NB sudden phase anomalies (SPA) and X-ray flux measured by 10 

satellites, although mutual occurrences were reported earlier [e.g., Kreplin et al., 1962]. They 11 

concluded that VLF SPAs accompany (during small zenith angle conditions) almost all X-ray bursts 12 

in the 0.5-4 Å band. In addition, they used their observations in order to derive the effective 13 

recombination coefficient. These conclusions and applications were strengthened and supported in 14 

subsequent papers [e.g., Jones, 1971; Deshpande et al., 1972; Ananthakrishnan et al., 1973; Bain 15 

and Hammond, 1975; Basak and Chakrabarti, 2013].  16 

Nevertheless, several studies were made in order to find X-ray flux thresholds needed for the 17 

generation of a VLF NB SPA [e.g., Kaufmann and de Barros, 1969; Muraoka et al., 1977; Pant, 18 

1993; Khan et al., 2005]. Similarly, Kaufmann et al. [2002] studied numerous solar flare events that 19 

did not produce SPAs. Raulin et al. [2006] examined several hundred solar flare events and 20 

concluded that the probability of observing a SPA during weak solar flares (class C2 or lower) is 21 

higher during solar minimum, while stronger flares (higher X-ray flux) are independent of the solar 22 

activity conditions, implying that the D-region has different sensitivities to X-ray flux intensity, 23 

being more sensitive during solar minimum. Pacini and Raulin [2006] retrieved a quantitative 24 

minimum X-ray flux threshold (in the 0.5-2 Å range) needed in order to produce SPAs as a function 25 
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of solar activity. In addition, Raulin et al. [2010] retrieved these thresholds for the 0.1-0.8 Å X-ray 1 

flux range, based on several hundred VLF NB SPA events.  2 

The effect of a flare's X-ray burst on ionospheric parameters can also be inferred from VLF NB 3 

measurements. Thomson and Clilverd [2001] used VLF NB amplitudes together with the Naval 4 

Ocean Systems Center (NOSC) Long Wave Propagation Capability (LWPC) model [Ferguson and 5 

Snyder, 1987; Ferguson, 1989, 1998] and deduced 8 km and 0.06 km
-1

 reflection height (h') and 6 

electron density slope (β) changes, respectively, due to M5 class solar flares (which enhanced the 7 

amplitudes by ~8 dB). Using these two parameters (also known as the 'Wait' parameters), the vertical 8 

electron density profile can be evaluated [e.g., Thomson and Clilverd, 2001; McRae and Thomson, 9 

2004; Grubor et al., 2008] based on the work of  Wait and Spies [1964]. McRae and Thomson [2004] 10 

studied an X5 solar flare using phase and amplitude measurements of long trans-equatorial TRGCPs. 11 

They found that VLF phase and reflection height changes do not have a linear proportion to the 12 

logarithm of the solar X-ray flux, in agreement with some studies [e.g., Selvakumaran et al., 2015], 13 

in contradiction to others [e.g., Pacini and Raulin, 2006; Singh et al., 2014; Pandey et al., 2015]. By 14 

using the LWPC model they determined that such a strong flare can be explained by 13 km and 0.13 15 

km
-1

 reflection height and electron density slope changes, respectively. Moreover,  Thomson et al. 16 

[2005] used a similar methodology and inferred a staggering 17 km and 0.18 km
-1

 reflection height 17 

and electron density slope change, respectively, as a result of the great solar flare of November 4, 18 

2003, which saturated the GOES satellite's X-ray detectors, and was strong enough to be detected on 19 

dawn (half lit) long TRGCPs. That flare's magnitude was approximated to be X45 [Thomson et al., 20 

2004], based on the conclusions of McRae and Thomson [2004]. Other studies have also examined 21 

the reflection height, electron density slope, and vertical profile modifications, due to various classes 22 

of solar flares, and obtained different parameter values, possibly due to different latitude range and 23 

lengths of the TRGCPs [e.g., Kaufmann and Mendes, 1968; Kamada, 1985; Žigman et al., 2007; 24 

Grubor et al., 2008; Schmitter, 2013; Kolarski and Grubor, 2014, 2015; Singh et al., 2014; Pandey 25 
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et al., 2015; Šulić et al., 2016]. These calculated values had a large variance, and a few of them [e.g., 1 

Kamada, 1985; Grubor et al., 2008] reached magnitudes which were comparable to those deduced 2 

by Thomson et al. [2005]. 3 

3.2. Solar proton events 4 

In addition to the solar flare X-ray radiation impacts on the D-region, solar proton events (SPEs), 5 

also known as polar cap absorption events and solar energetic particles (SEP) events, are also an 6 

active topic in VLF research. SPEs are generated when protons originating from the Sun are 7 

accelerated to relativistic energies by X-ray radiation produced during a solar flare or by the coronal 8 

mass ejection (CME) shock [e.g., Krucker and Lin, 2000]. These energetic particles can reach the 9 

Earth from a few minutes (relativistic particles) up to hours (lower energy particles) from the time of 10 

acceleration [Shea and Smart, 1990]. SPEs can persist up to several days, while affecting mainly the 11 

polar atmosphere (at magnetic latitudes higher than 60º), due to the partial guidance of these charged 12 

particles by the geomagnetic field [Rodger et al., 2006]. 13 

Similar to X-ray bursts, VLF NB perturbations could be attributed to SPE intensity only after the 14 

deployment of proton detectors on-board satellites, although the connection between VLF 15 

perturbations and SPEs was speculated before [e.g., Pierce, 1956; Bates, 1962; Bates and Albee, 16 

1965]. Potemra et al. [1967] were the first to combine VLF and satellite detector data. They found 17 

that the VLF NB phase deviation due to a SPE was comparable to 67% of the normal diurnal 18 

variation, and (by using a simplified exponential ionospheric model) that a flux of 150 relativistic 19 

protons per cm
2
 can result in a 10 km change in the daytime reflection height. The consistency of 20 

their simplified model for SPE studies was further investigated by Potemra et al. [1970].  21 

Potemra et al. [1969] used a similar methodology and derived the electron density profile during 22 

disturbed conditions. They also concluded that VLF NB measurements are more sensitive to 23 
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ionization processes produced by SPEs than riometers (that measure the ionospheric high frequency 1 

absorption), as was also comprehended by other studies [e.g., Crary and Diede, 1969]. 2 

Westerlund et al. [1969] studied several SPEs using multiple TRGCPs, and concluded that a linear 3 

relationship exists between the VLF phase anomaly and the double logarithm of the proton flux.  4 

Kossey et al. [1983] found a linear correlation between the VLF reflection height and energetic 5 

proton flux with energies <20 MeV. 6 

In addition to the linear relation found in their study, Westerlund et al. [1969] also found that the 7 

phase anomalies always advance during a SPE, with larger anomalies occurring with increasing 8 

TRGCP geomagnetic latitude, decreasing signal frequency, and decreasing ground conductivity. 9 

Furthermore, they have speculated that the proton precipitation is bounded to the geomagnetic 10 

latitude of 62.5º. Subsequently, Mendes and Ananthakrishnan [1972] calculated the relative parts of 11 

the examined TRGCPs affected by the SPEs (based on two events), as well as the VLF reflection 12 

height change (that reached an enormous 23 km in one of the TRGCPs), due to these events.  13 

 Beloglazov et al. [1990] examined a single SPE that occurred during 1984 using VLF NB, riometer, 14 

and satellite data, and concluded that the electron density at an altitude of 45 km steeply rose to 1000 15 

km
-1

 during the event. In addition, they demonstrated the existence of two regions and mechanisms 16 

responsible for the ionization produced by the protons; the direct impact zone in the polar cap's 17 

center, and the day-evening auroral sector affected by SPE-driven precipitation of quasi-trapped 18 

magnetospheric electrons. However, other studies have indicated SPE events where the energetic 19 

electron precipitation (EEP) influence on ionization was insignificant in comparison with the 20 

energetic proton effect [e.g., Clilverd et al., 2005]. Mendes da Costa and Rizzo Piazza [1995] also 21 

studied several SPEs and their subsequent energetic electron precipitation (EEP). They concluded 22 

that the associated nighttime VLF reflection height lowering and electron density slope decrease  23 

reached ~9 km and 0.24 km
-1

, respectively. 24 
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Clilverd et al. [2005] examined VLF NB amplitude measurements during a SPE in November, 2001, 1 

and deduced that the observed disturbances in the VLF data are mainly produced by fluxes of 2 

protons with energies higher than 50 MeV. In addition, using the VLF data they showed that the 3 

utilization of the Sodankylä Ion Chemistry (SIC) model [Verronen et al., 2002] in conjunction with 4 

the LWPC model can successfully reproduce the ionization variations (with the highest sensitivity at 5 

an altitude range of 50-60 km during a SPE). Clilverd et al. [2006] used the SIC and LWPC models 6 

as well to study several other SPEs and showed that different TRGCPs show different amplitude 7 

behavior (based on the TRGCP's length) during the same SPE. They advocated the methodology's 8 

capability to solve the inverse problem, i.e., the D-region behavior in response to a SPE, based on 9 

VLF NB measurements. Thus, this methodology also enabled the study of SPEs effect over the 10 

neutral atmosphere as well. 11 

Consequently, Verronen et al. [2005] used this methodology together with satellite data in order to 12 

investigate mesospheric ozone depletion variations during SPEs. Seppälä et al. [2008] examined a 13 

series of strong SPEs which produced a 10 dB VLF amplitude decrease. They concluded that the 14 

energetic protons generated an enormous (more than 400%) increase in mesospheric odd nitrogen 15 

(NOx) and a significant decrease (at least 30%) in mesospheric ozone concentrations at 70º in both 16 

hemispheres, while much more moderate changes were produced in the stratosphere. 17 

3.3. Energetic electron precipitation 18 

As mentioned earlier, transient events of magnetospheric EEP can be triggered by whistler mode 19 

waves. Man-made EM waves can induce electron precipitation as well [e.g., Inan et al., 1985a, 20 

2007b; Tolstoy et al., 1986]. However, large and persistent EEP events at high geomagnetic latitudes 21 

of 55º-72º are generated as one of the main outcomes of different processes during geomagnetic 22 

storms, which are generated by perturbations or intensifications of solar activity (through solar flare 23 

radiation, SPEs, etc.) [Thorne and Kennel, 1971; Rodger et al., 2007; Andersson et al., 2012]. 24 
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Potemra and Rosenberg [1973] presented the first direct correlation between VLF NB (nighttime 1 

phase) measurements and EEP, which was suggested by earlier studies as a source for observed VLF 2 

perturbations [e.g., Belrose and Thomas, 1968; Doherty, 1971], and concluded that VLF NB 3 

measurements are a useful tool, sensitive enough to detect low-energy electron precipitation. They 4 

used Bremsstrahlung X-ray riometer at L-shell value of L ≈ 4 as a proxy for the EEP and VLF NB 5 

TRGCPs located mainly in the region between L-shell values of  L ≈ 2 and L ≈ 4. Larsen et al. 6 

[1977] studied VLF phase measurements from similar TRGCPs during an EEP on December, 1971. 7 

They inferred VLF reflection height changes of up to 10 km, and deduced the ion production rate 8 

profile. 9 

Abdu et al. [1981] studied VLF NB phase perturbations from a low L-value TRGCP located in the 10 

South Atlantic magnetic anomaly (SAMA) region, and concluded that the disturbances were 11 

originated from EEP that generated enhanced ionization at an altitude range of 70-110 km. Pinto et 12 

al. [1990] analyzed VLF phase data from the same TRGCP and found that the VLF phase advances 13 

in the SAMA region's TRGCP are proportional to a logarithm function of the EEP flux, thus 14 

allowing the estimation of the precipitation flux based on VLF NB measurements.  15 

Similarly, Kikuchi and Evans [1983] found a linear correlation between VLF phase advances of 16 

TRGCPs located in the auroral (60º-70º) geomagnetic latitudes and logarithm functions of the EEP 17 

flux. They advocated that precipitating electrons with energies above 300 keV are the main 18 

ionization source in the D-region which influences the VLF signals. However, Cummer et al. [1997] 19 

studied several EEP events using VLF NB amplitude data and suggested that the VLF perturbations 20 

are produced by electrons with a lower energy threshold of 100 keV. 21 

Clilverd et al. [2006b] showed using VLF NB amplitudes and satellite detector data that an observed 22 

10 min sudden EEP flux in both hemispheres (at L ≈ 5) accounted for no more than 10% of the (>2 23 

MeV) geosynchronous electron loss flux. Nevertheless, they also suggested that continuous 24 
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precipitation between L ≈ 4 and L ≈ 6 which was measured for more than 2 hours accounted for 1 

~50% of total geosynchronous electron loss flux. Clilverd et al. [2010] used ~4.5 years of VLF NB 2 

amplitudes (of a TRGCP spanning between L ~ 3-7) and utilized the LWPC model, in order to 3 

calculate the precipitating electron flux. In addition, they observed up to 3 orders of magnitude 4 

variations in the electron flux during a geomagnetic storm. Neal et al. [2015] elaborated that study 5 

based on more than 9 years of VLF NB data and advocated that their methodology is at least one 6 

order of magnitude more sensitive to low precipitating electron flux than satellite measurements. 7 

This conclusion about VLF NB measurements as a sensitive technique for monitoring EEP events 8 

was strengthened by Rodger et al. [2012] who examined the sensitivity of a riometer, GPS-based 9 

VTEC (vertical total electron content), and VLF NB measurements to EEP events. They concluded 10 

that VLF measurements are the most sensitive technique (by up to several orders of magnitude) for 11 

detecting radiation belt EEP, and EEP events with energies above 200 keV. 12 

Similar to SPE research, VLF NB measurements enables the examination of EEP effects on the 13 

neutral atmosphere. Rodger et al. [2007] analyzed midday and midnight VLF NB amplitude data 14 

from three TRGCPs at L > 2, together with satellite data and the SIC and LWPC models, in order to 15 

study the ionization changed during and after the major geomagnetic storm in September, 2005. 16 

They observed 2.4 dB midday increase and 14 dB midnight decrease in VLF amplitudes during 17 

relativistic energies electron precipitation (REP) at L ≈ 3. By utilizing the models, they calculated the 18 

>150 keV electron flux, which was later corrected by Rodger et al. [2010]. In addition, they found 19 

that the midday precipitation flux was ~20 times larger than the midnight flux during the 6 days 20 

following the storm, and thereby concluded the plasmaspheric hiss [e.g., Thorne et al., 1973; Bortnik 21 

et al., 2008] role as the driver for the electron loss in the inner zone of the outer radiation belts. 22 

Subsequently, Rodger et al. [2010] studied the effects of the same event on the neutral atmosphere's 23 

ozone, odd hydrogen (HOx), and NOx concentrations, by utilizing VLF NB measurements, and the 24 

LWPC and SIC models. They showed that the large increases of the HOx and NOx (>300%) 25 
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generated by the EEP did not lead to significant ozone depletion on that event, largely due to the 1 

relatively low latitude where the electrons were deposited.  2 

3.4. Solar eclipse 3 

In addition to their sensitivity to EEP events, VLF NB signal measurements are sensitive to changes 4 

in the D-region, caused by solar eclipses. The first measurements of VLF NB perturbations produced 5 

as a result of a solar eclipse were presented by Bracewell [1952]. He showed that the partial (30% 6 

obscurance) solar eclipse (PSE) of April 28, 1949 induced 35º phase difference, which were 7 

equivalent to 1 km VLF reflection height change.  8 

Subsequently, VLF NB studies continued to investigate the influence of total solar eclipse (TSE) on 9 

VLF phase anomalies [e.g., Decaux and Gabry, 1964; Albee and Bates, 1965; Kaufmann and Schaal, 10 

1968; Hoy, 1969]. Crary and Schneible [1965] examined the phase anomaly during the passage of a 11 

TSE through the 400 km TRGCP, and found that the large 144º anomaly was equivalent to ~11 km 12 

change in reflection height. These observations also allowed them to calculate the D-region 13 

recombination coefficients during the event.  14 

Noonkester and Sailors [1971] used a VLF propagation and D-region aeronomy model to predict 15 

VLF phase change due to solar eclipse. However, they managed to accurately predict only one out of 16 

two events. Lynn [1981] concluded that the VLF phase response to the solar obscuration during a 17 

solar eclipse is non-linear, and that a 4 min delay exists between solar eclipse maximum and VLF 18 

response. However, other studies have noted other response delay values [e.g., Mendes Da Costa et 19 

al., 1995], that reached up to 8 min [e.g., Cheng et al., 1992]. 20 

Sen Gupta et al. [1980] observed a 1.4 dB VLF NB amplitude change due to a PSE (65% 21 

obscurance) passing through a 6 Mm TRGCP, from which a 3 km reflection height change was 22 

deduced, a value which was also obtained by other studies (that investigated different TRGCPs and 23 

eclipse events) [e.g., Cheng et al., 1992; Guha et al., 2010; Pal et al., 2012]. Nevertheless, the 24 
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reflection height change due to solar eclipse events can be quite variable [e.g., Mendes Da Costa et 1 

al., 1995; Chakrabarti et al., 2012].  2 

The amplitude deviation as a result of a solar eclipse event may be variable as well, depending onthe 3 

TRGCPs length, location, and the geometry of the obscured region with regards to the TRGCP. 4 

Clilverd et al. [2001] studied the TSE of August 11, 1999 influence on VLF NB measurements from 5 

19 TRGCPs, spanning from 90 km up to 14 Mm. They observed negative phase perturbations in all 6 

TRGCPs, while the amplitude changes were positive (negative) on TRGCPs shorter (longer) than 2 7 

(10) Mm, respectively. However, somewhat different behavior were observed in subsequent studies 8 

[e.g., Pal et al., 2012]. The typical perturbations were ~3 dB (in amplitude) and ~50º (in phase), 9 

while the deduced effective reflection height (electron density profile slope) changes due to the TSE 10 

reached 8 km (0.07 km
-1

), respectively. These modifications were smaller as the TRGCP's length 11 

increased. This conclusion was strengthened by other studies [e.g., Crary and Schneible, 1965; Hoy, 12 

1969; Phanikumar et al., 2014], although very large phase deviation (115º) due to a TSE in a 13.3 13 

Mm TRGCP was reported by Kaufmann and Schaal [1968]. Similar to Clilverd et al. [2001], Guha 14 

et al. [2010] examined amplitude changes during a partial passage (90% obscurance) of a TSE, 15 

though they deduce smaller changes in the two 'Wait' parameters, from which an 80% reduction in 16 

electron density at 71 km was concluded, similar to some studies [e.g., Singh et al., 2012], but 17 

different from others [e.g., Phanikumar et al., 2014]. 18 

Pal et al. [2012] studied the TSE of July 22, 2009 which was seen above India, and showed using the 19 

LWPC and VLF NB data from several TRGCPs that the assumption of 4 km ionospheric base (i.e., 20 

effective reflection height) increase in regions where the eclipse's totality passes through the TRGCP 21 

matches well with the observations. Similar to Lynn [1981], they also endorsed the conclusion that 22 

the ionospheric parameter changes are not linearly dependent on the solar obscuration percentage, in 23 

contradiction to some linearity found in other studies [e.g., Clilverd et al., 2001; Singh et al., 2012]. 24 

Recently, Chakraborty et al. [2016] used a D-region ion-chemistry model alongside the LWPC 25 
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model, in order to improve the inferred ionospheric profile (and its 'Wait' parameters) during the 1 

passage of a TSE, which they compared to the results of Pal et al. [2012]   2 

In addition to the gradual ionospheric variations during a solar eclipse passage through a TRGCP, 3 

gravity wave signatures were also observed during this type of events using VLF NB measurements. 4 

Turbulence effects in the D-region and VLF NB measurements during a solar eclipse event were 5 

already speculated a few decades ago by Meisel et al. [1976]. More recently, Chernogor [2010] 6 

reported an intensification of oscillations with time periods of 10-15 and 18 min based on spectral 7 

analysis of VLF NB amplitude and phase data during a solar eclipse. Maurya et al. [2014] described 8 

wave like signatures with periods of 16-40 min during TSE passage through TRGCPs, and 30-80 9 

min oscillations in TRGCPs under PSE influence. They advocated that these oscillations arise from 10 

the sharp electron density gradient created in the obscured region, and gravity waves induced by the 11 

solar eclipse process. These findings were also supported by Pal et al. [2015], who deduced similar 12 

wave patterns during TSE passage through a few TRGCP.  13 

4. Waves originating in the lower atmospheric 14 

The dynamics of the lower atmosphere cause it to function as a "factory" for pressure waves on 15 

various time scales, from a few tenths of a second (acoustic waves, also known as infrasound) up to 16 

several days (planetary waves). Each of these wave types has its own typical generating sources and 17 

mechanisms, wavelengths, time periods, and frequency range, as shown in Table 1. These waves can 18 

penetrate into the MLT, depending on their amplitude, as well as the other factors, e.g. the vertical 19 

wind profile (gravity and planetary waves), temperature profile (acoustic waves), etc. [Fritts and 20 

Alexander, 2003; Blanc et al., 2010]. Under ideal conditions the amplitudes of the waves increase 21 

exponentially as the density drops [e.g., Blanc et al., 2009], and hence waves that reach the MLT can 22 

trigger very large temperature fluctuations. In addition, these waves produce perturbations in the 23 

concentrations of atmospheric species [Smith, 2004]. These modifications of the MLT can induce 24 
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changes in the electrical characteristics of the D-region, by affecting the ionization processes as well 1 

as the free electron collision frequency [e.g., Forbes, 1981]. Therefore, these variations in the neutral 2 

and charged atmosphere can be detected using VLF NB measurements. 3 

Already several decades ago, lunar tides were detected with VLF NB measurements. Brady and 4 

Crombie [1963] analyzed one year of NB measurements, and deduced that the semi-diurnal lunar 5 

tide affects the D-region, producing 0.11 km difference in the VLF effective reflection height. 6 

However, Bernhardt et al. [1981] used a different methodology which involved the combination of 7 

phase and amplitude measurements and found 0.39 km reflection height change due to the semi-8 

diurnal lunar tide. They claimed that the difference from  Brady and Crombie [1963] emerged from 9 

the different TRGCP, as well as the longitudinal difference between the transmitter and the receiver, 10 

because the lunar tidal influence maximizes at the same local time. In addition, they observed a 0.26 11 

dB amplitude perturbation caused as a result of the semi-diurnal lunar tide.  12 

Similar to the atmospheric tide forcing on VLF measurements, planetary wave signatures were also 13 

observed in VLF analysis more than four decades ago. Cavalieri et al. [1974] and Cavalier and 14 

Deland [1975] found indications of travelling planetary waves in the D-region, by using VLF NB 15 

daytime phase measurements (ranging above 100º of longitude), and performing an auto-correlation 16 

analysis. Both of these studies concluded that VLF NB measurements are a useful tool to study the 17 

stratosphere-ionosphere coupling, and the upward propagation of waves into the ionosphere. 18 

Recently, Schmitter [2011] analyzed one and a half years of VLF NB amplitude data together with 19 

the LWPC model and found signatures of planetary wave activity as well, by calculating the 20 

difference in amplitude between midday and midnight, and comparing the results with satellite data. 21 

Spectral analysis of the data showed that a quasi 16-day oscillation was the most dominant 22 

oscillation in the data, especially during wintertime. This finding was supported by Schmitter [2012] 23 

and Pal et al. [2015]. 24 
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The propagation of planetary waves into the mesosphere and their impact on VLF NB measurements 1 

has also been used in order to explain apparent precursors of earthquakes observed in VLF NB 2 

measurements, a growing field in VLF research [e.g., Hayakawa, 1996, 2011; Hayakawa et al., 3 

1996; Molchanov and Hayakawa, 1998; Rozhnoi et al., 2004; Pulinets and Boyarchuk, 2005; Sasmal 4 

and Chakrabarti, 2009; Chakrabarti et al., 2010; Ray et al., 2011]. However, this field of study is 5 

still strongly debated [e.g., Rodger et al., 1996; Clilverd et al., 1999; Cohen and Marshall, 2012], 6 

and is outside the scope of this paper.  7 

Unlike atmospheric tides and planetary waves, signatures of acoustic and gravity waves in VLF 8 

measurements were only reported in recent years, making this topic and methodology a new evolving 9 

field. Nina and Čadež [2013] presented a new methodology to detect acoustic and gravity wave 10 

signatures in the D-region via the analysis of VLF NB amplitudes at 90 min windows around sunrise 11 

and sunset, when the solar terminator travels along the TRGCP. Based on their analysis, they 12 

concluded that acoustic and gravity waves with periods shorter than 20 min are the main origin of the 13 

medium-scale traveling ionospheric disturbances in the D-region. Rozhnoi et al. [2014] examined 14 

VLF data (both phase and amplitude) during the passage of tropical cyclones under the TRGCP. 15 

They found negative anomalies in the VLF amplitude in 75% of their examined cases and a 16 

correlation with a few atmospheric parameters during some of these events. Similar to Nina and 17 

Čadež [2013], they spotted gravity wave signatures in the VLF data with apparent time periods of 7-18 

16 min. However, signatures of 15-55 min oscillations were reported by them as well. 19 

Marshall and Snively [2014] observed periodic fluctuations in VLF NB nighttime amplitude data 20 

(these fluctuations were not clearly detected in the phase data). Due to the short 1-4 min periodicity 21 

of the fluctuations, they attributed these oscillations to acoustic waves generated by convective and 22 

lightning activity in the region. They supported their conclusions by combining the output of a 23 

compressible fluid acoustic and gravity wave propagation model, together with an EM propagation 24 
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model. The study also concluded that a large source (>100 km radially) is needed in order to produce 1 

perturbations of 0.5 dB, which were observed in the data. 2 

Figure 4a portrays short period gravity wave signatures in the NSY transmitter signal amplitude, as 3 

measured by the TAU VLF receiver on October 22, 2013. These oscillations reached amplitude of 4 

~0.25 dB and lasted for ~30 min. Figure 4b illustrates the Lomb-Scargle (LS) periodogram [Lomb, 5 

1976; Scargle, 1982; Press and Rybicki, 1989] spectral analysis of the amplitude time series (black 6 

curve). The blue (red) dashed curves represent the 95% (99.9%) statistically significance thresholds, 7 

respectively. As seen, a 6 min oscillation dominates the time series. This periodicity matches high 8 

frequency gravity waves.  Figure 4c shows lightning discharge location, as detected by the WWLLN 9 

receivers up to 3 hours prior to the identified gravity wave signatures (the discharge location colors 10 

are based on time of occurrence). A large thunderstorm occurred ~1750 km north of the NSY 11 

transmitter. Since intense thunderstorms may produce strong gravity wave signatures, and the 12 

occurrence time of the thunderstorm matches the time of the observed VLF signatures (based on 13 

gravity wave phase velocity), and because high frequency gravity waves can generally propagate 14 

large distances in a ducted mode [Fritts and Alexander, 2003], this thunderstorm in northern Europe 15 

might be the origin of the observed oscillations in the VLF NB data. 16 

Similar to Figure 4, Figure 5 depicts acoustic wave signatures observed on September 9, 2013. 17 

Similar to the gravity wave example, the wave signatures had amplitudes of ~0.2 dB and continued 18 

for ~30 minutes. The LS periodogram clearly shows a dominating ~2.5 min oscillation. These low 19 

frequency acoustic waves can generally be produced by lightning as well as deep convection, and 20 

propagate over large distances, both horizontally and vertically with relatively low attenuation [Blanc 21 

et al., 2010; Evers and Haak, 2010]. Examination of the WWLLN lightning detection map indicates, 22 

based on acoustic wave propagation velocity (i.e., the speed of sound), that the time of occurrence of 23 

the thunderstorm located ~700 km west of the NSY transmitter matches the time of the observed 24 

signatures, making it a plausible candidate for the source of the measured amplitude wave signatures. 25 
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5. Annual and long-term effects 1 

5.1. The 'winter anomaly' and long-term meteorological effects 2 

On time scales longer than several days, the D-region is disturbed, both on an instantaneous and 3 

oscillatory manners. One of the major phenomena that can affect the D-region on these time scales 4 

are sudden stratospheric warming (SSW) events. SSW results from the interaction of planetary 5 

waves with the zonal flow in the winter stratosphere. This interaction produces a breakdown of the 6 

winter polar vortex, and the reversal of the typical westerly stratospheric winds into easterly winds, 7 

accompanied by an increase in stratospheric temperatures [Matsuno, 1971; Hsu, 1980]. SSW events  8 

are able to enhance the D-region electron density by affecting the ionization rate through changing 9 

transport patterns and temperatures, thus forcing the D-region to behave more similar to its summer 10 

pattern [e.g., Shapley and Beynon, 1965; Sechrist et al., 1969; Offermann, 1979; Solomon et al., 11 

1982; Taubenheim, 1983; Garcia et al., 1987]. This disturbance of the D-region influences radio 12 

wave absorption measurements, where it is also called the 'winter anomaly'. 13 

The winter anomaly has been extensively studied using VLF NB measurements. The connection 14 

between VLF measurements and SSW was first reported by Belrose [1967]. He described a change 15 

in VLF NB phase during February and March, 1952, and attributed it to the SSW that occurred in the 16 

course of that period. Larsen [1971] analyzed VLF NB daytime phase and amplitude changes during 17 

a SSW event, and found only a phase change (without an amplitude change). By using a full wave 18 

computer model he concluded that a 3 km increase in reflection height can explain the observations.  19 

Cavalier and Deland [1975] have correlated VLF daytime phase measurements with SSW strength 20 

as well. Similarly, Muraoka [1979] analyzed VLF NB phase measurements for TRGCPs spanning 21 

~100º of longitude, and found a change in phase during a winter anomaly event. He concluded that a 22 

planetary wave influence exists during both daytime and nighttime, at VLF nighttime reflection 23 

altitudes of ~80 km. Muraoka [1983] studied the winter anomaly effect on VLF NB measurements 24 



26 
 

and the D-region, by examining mode conversion effects, which occur at the day-to-night 1 

discontinuity of the D-region, when the terminator is migrating along the TRGCP. He concluded that 2 

the D-region electron density at 75-90 km is enhanced during SSW events, resulting in a notable 3 

lowering of the VLF nighttime reflection height. Subsequent studies [e.g., Muraoka, 1985; Muraoka 4 

et al., 1986] strengthened these findings, while noting that the winter anomaly occurrence is 5 

associated with a mesospheric planetary wave with zonal wave number 1.  6 

The connection between VLF NB amplitude variations and meteorological effects were also studied 7 

on extensive data sets. Correia et al. [2011] associated the dynamics (mainly the 16-day wave) and 8 

several stratospheric parameters to VLF NB midday amplitudes using a 5-year dataset. They 9 

concluded that this connection is clearest during wintertime (at the receiver), and low solar activity 10 

periods. Silber et al. [2013] found a link between mesopause temperatures (altitudes of ~80-90 km) 11 

and VLF NB midday amplitudes in several datasets. They explained this connection by the free-12 

electron production dependence on the ambient temperatures, and by modal interference effects 13 

caused by thermal contraction of atmospheric layers. By using the VLF measurements and 14 

performing a principle component analysis (PCA), they concluded that the variations in the incoming 15 

total solar irradiance accounts for ~72% of the mesopause temperature variations, while 28% of these 16 

variations are of other origin, most likely due to waves propagating from below. Recently, Pal and 17 

Hobara [2016], have correlated two years of VLF NB midnight amplitudes with stratospheric total 18 

column ozone and temperatures (at 31 km altitude), thus emphasizing the connection between the 19 

ionospheric base and the middle atmosphere. They concluded that each of these parameters can 20 

describe more than 33% of the VLF midnight amplitude variability. 21 

5.2. Oscillations of an annual scale 22 

As noted above, long datasets of VLF NB measurements can be examined, thus making them 23 

suitable to monitor oscillations of an annual scale. The annual cycle in VLF measurements was 24 
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already measured during the 1920's through short-length (<1000 km) and trans-oceanic NB 1 

transmissions [e.g., Espenschied et al., 1926; Hollingworth, 1926; Ishii and Sakurazawa, 1964]. 2 

However, the season of maximum amplitude in these works was not constant (the annual cycle 3 

maxima occurred in some TRGCPs during summer, while taking place during winter in others). This 4 

180º shift can be explained using the waveguide 'mode theory' [Jackson, 1962; Budden, 1988; Inan 5 

and Inan, 2000], given that the total measured amplitude is the sum of several waveguide modes 6 

[e.g., Rodger and McCormick, 2006]. Nevertheless, it was broadly concluded by several studies that 7 

the effective daytime VLF reflection height is higher (lower) during winter (summer), respectively 8 

[e.g., Bracewell et al., 1951; Hargreaves and Roberts, 1962; Ferguson, 1980]. 9 

Some papers focused on VLF NB signals on an annual time scale, while utilizing short-length 10 

TRGCPs, and using the waveguide 'ray theory'. 'Ray theory' presumes that (generally) in short 11 

distance propagation only the ground wave and the first (and sometimes second) sky-wave affect the 12 

resultant wave amplitude and phase, due to the intense attenuation of waves that are reflected several 13 

times from the ionosphere at very low incident angles (i.e., strong accumulating power loss) [e.g., 14 

Laby et al., 1940; Schonland et al., 1940; Inan and Inan, 2000]. These studies found an annual as 15 

well as semi-annual variation in daytime VLF reflection height, which was not observed during 16 

nighttime measurements of the same type [e.g., Bracewell et al., 1951, 1954; Bain et al., 1952; 17 

Straker, 1955]. Nevertheless, Pintado et al. [1987] have deduced an annual and a semi-annual 18 

oscillation in the day-night difference in reflection height, which were extracted from VLF NB 19 

amplitude and phase measurements. They concluded that the origin for these observations is in 20 

changes in the nighttime electron density due to the effect of neutral minor constituents in the 21 

mesosphere, probably atomic oxygen. However, recently Silber et al. [2016] observed a dominant 22 

(>3.3 dB from peak-to-peak) semi-annual oscillation in VLF NB midnight amplitudes of two long 23 

(>1900 km) TRGCPs (located in both hemispheres). Each of these datasets spanned over more than 4 24 

years. By utilizing the LWPC model, they concluded that the peak-to-peak amplitude of the semi-25 
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annual oscillation is equivalent to ~1.5 km change in the nighttime VLF reflection height, and more 1 

than doubling of the electron density at an altitude of ~85 km. Unlike Pintado et al. [1987], they 2 

suggested that NOx transport from the lower thermosphere is the main driver of this oscillation in the 3 

D-region. The disagreement between Silber et al. [2016] and the studies that utilized the waveguide 4 

ray theory for short TRGCPs [e.g., Straker, 1955] with regards to the semi-annual oscillation during 5 

nighttime can be explained by the different methodologies, and the discrepancy in the probed 6 

region's altitude, due to the different transmitter-receiver distance, and hence the wave's incident 7 

angle [e.g., Hargreaves and Roberts, 1962; Inan and Inan, 2000; Hunsucker and Hargreaves, 2002].  8 

5.3. Long-term oscillations and trends 9 

In addition to the annual oscillations, it is well known for several decades that VLF NB 10 

measurements are suitable for monitoring the 11-year solar cycle of the D-region electron density, 11 

mainly by correlating the VLF measurements with active sunspot number [e.g., Austin and Wymore, 12 

1928; Austin et al., 1930; Austin, 1932; Ishii and Sakurazawa, 1964]. Moreover, Thomson and 13 

Clilverd [2000] analyzed 11 years of VLF NB midday amplitudes from several TRGCPs and found 14 

that 0.3 dB amplitude difference exists between solar minimum and maximum. They assumed that 15 

the greater attenuation rate during solar minimum arises from the combination of smaller solar 16 

Lyman-α flux and higher cosmic ray intensity, resulting in smaller electron density profile slope at 17 

the bottom of the D-region, followed by a stronger attenuation of VLF signals. In addition to 18 

monitoring the solar cycle during midday, Raulin et al. [2011] have demonstrated that the solar cycle 19 

can also be examined in phase effect measurements of the C-region, a transient reflecting layer 20 

located at an altitude range of ~63-69 km [e.g., Sechrist, 1968; Rasmussen et al., 1980], which 21 

develops during sunrise, and produces a phase delay in VLF NB data for ~1-2 hours [Kuntz et al., 22 

1991; Bertoni et al., 2013].  23 
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Finally, on time scale of several decades, VLF NB measurements might be suitable for monitoring 1 

climate change effects in the mesosphere and the D-region, as the intensified anthropogenic 2 

greenhouse gas (GHG) emissions are expected to influence not only the troposphere, but also the 3 

middle and upper atmosphere. Roble and Dickinson [1989] predicted that these regions of the 4 

atmosphere will experience a strong cooling, due to the increased radiative emissions by rising GHG 5 

concentrations. As a result of this cooling, thermal contraction of atmospheric layers (like some 6 

ionospheric layers) is expected to occur [Laštovička et al., 2006]. Such a long-term trend of 7 

downward displacement of the D-region has been previously reported, though its amplitude is 8 

currently considered rather moderate [e.g., Taubenheim et al., 1997; Peters and Entzian, 2015]. It 9 

should be mentioned that these studies were not performed using VLF methods. However, it can be 10 

assumed that long-term VLF NB studies will be reported in the future, due to their high sensitivity to 11 

D-region trends and perturbations.  12 

6. Summary 13 

VLF NB signals were already used during the first quarter of the 20
th

 century for ionospheric studies 14 

[e.g., Austin and Wymore, 1928; Bailey and Thomson, 1935]. Nevertheless, this measurement 15 

technique is still relevant nowadays, with an increasing number of pertinent applications. The great 16 

sensitivity of the measurements to small perturbations, the relative inexpensive costs of VLF 17 

receivers, the minimum receiver maintenance requirements, and the straightforward employment of 18 

the antennas allow broad coverage monitoring of the D-region and MLT parts of the atmosphere. 19 

VLF NB measurements help in expanding the current knowledge of the D-region dynamical and 20 

chemical processes, while also granting the possibility of studying the chemistry and dynamics of the 21 

neutral atmosphere (in many occasions with the support of wave propagation and MLT chemistry 22 

models). 23 
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The high temporal resolution and the robustness of measurements enable the examination of various 1 

phenomena on different time scales, from the instantaneous lightning-induced short term 2 

perturbations to the long-term effect of anthropogenic driven climate change. In this paper, a 3 

summary of the different VLF NB based research fields was given. The ongoing studies, the 4 

countless questions answered in VLF studies and the numerous unsolved questions in these fields, 5 

which can be answered using VLF measurements, show the relevance of VLF NB research now and 6 

almost certainly in future. 7 
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Figure 1: One minute measurement of the VLF band as received at the Sde-Boker receiver, 2 

Israel. (Top) spectrogram and (bottom) raw-waveform time series. Note the numerous vertical 3 

spikes (sferics) from lightning discharges, and the horizontal signals originating from man-4 

made VLF transmitters (a few transmitter call-signs are marked in the spectrogram).  5 
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Figure 2: (Top) Lightning-induced perturbations in the NSY (Sicily) transmitter signal 2 

amplitude, as measured by the Tel-Aviv University (Israel) VLF receiver on November 11, 3 

2013, (bottom) associated lightning discharges' location (red circles), as detected by the 4 

WWLLN receivers. The yellow curve depicts the TRGCP.  5 
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Figure 3: Same as Figure 2, but for 'long recovery early events' on November 25, 2013.  2 
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Figure 4: (a) short period gravity wave signatures in the NSY (Sicily) transmitter signal 2 

amplitude, as measured by the Tel-Aviv University (Israel) VLF receiver on October 22, 2013, 3 

(b) Lomb-Scargle periodogram of the amplitude time series (black curve). The blue (red) 4 

dashed curves represent the 95% (99.9%) statistically significance thresholds, respectively (c) 5 

lightning discharges' location, as detected by WWLLN up to 3 hours prior to the identified 6 

gravity wave signatures (the discharge location colors are based on time of occurrence). 7 
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Figure 5: Same as Figure 4, but for acoustic wave signatures on September 9, 2013.  2 
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Table 1: Pressure waves in the atmosphere. 1 

Wave type Frequency range* Time period 

Horizontal 

wavelength scales 

Typical sources References 

Acoustic 

waves / 

Infrasound 

(infrasonic 

waves) 

fa – 20 Hz, 

fa – acoustic cut-off 

frequency – typically 

3.3 mHz 

50 ms – ~5 min 

meters – 10s of 

thousands of 

kilometers 

Volcanic eruptions, earthquakes, 

ocean swells, thunderstorms, bolides, 

man-made explosions and rockets. 

[Francis, 1975; 

Drob et al., 2003; 

Blanc et al., 2010; 

Evers and Haak, 

2010; ReVelle, 

2010] 

Gravity 

waves 

fb - fc, 

fb – Brunt-Väisälä 

frequency – typically 

2.9 mHz 

fc – Coriolis frequency 

(Coriolis parameter) 

~6 min – (fc
-1), 

fc
-1 equals to 12 h at the 

poles 

 

few kilometers – 

thousands of 

kilometers 

Flow over topographic terrain or 

thermal "obstacles", convection (by 

thunderstorms, weather fronts, etc.), 

wave-wave interactions, and 

geostrophic adjustments. 

[Hines, 1960; 

Fritts and 

Alexander, 2003; 

Blanc et al., 2010] 

Atmospheric 

tides 

 

hours – 24 hours 

(harmonics of a full solar 

day, for both the migrating 

and non-migrating 

components) 

thousands of 

kilometers - 10s of 

thousands of 

kilometers (2πRe at 

the equator, where 

Re – Earth's radius) 

Tropospheric and stratospheric solar 

insolation absorption by H2O and O3 

molecules generates the migrating 

component (an additional O2 and N2 

absorption effect exists within the 

thermosphere), solar insolation 

absorption by water in clouds and 

weather systems generates the non-

migrating component. 

In addition, gravitational effect from 

the Sun and the moon. 

[Lindzen and 

Chapman, 1969; 

Forbes and 

Garrett, 1979; 

Forbes, 1982, 

1995] 

Planetary 

waves 

 Few days – few weeks 

thousands of 

kilometers - 10s of 

thousands of 

kilometers 

Earth's rotation (Coriolis effect) 

together with topographic, thermal, or 

convective obstacles. 

[Forbes, 1995; 

Holton and 

Hakim, 2004] 

*Not given for atmospheric tides and planetary waves as their frequencies (in Hz) are extremely low, thus it is more convenient to examine only their time periods. 2 


