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Abstract—The Polynomial Modular Number Sys-
tem (PMNS) is an integer number system designed
to speed up arithmetic operations modulo a prime p.
Such a system is defined by a tuple B = (p, n, �, ⇢, E)
where E 2 Z[X] and E(�) ⌘ 0 (mod p). In a PMNS,
an element a of Z/pZ is represented by a polynomial
A such that: A(�) ⌘ a (mod p), deg A < n and
kAk1 < ⇢. In [6], the authors mentioned that
PMNS can be highly redundant but they didn’t
really take advantage of this possibility. In this
paper we use, for the first time, the redundancy of
PMNS to protect algorithms against Side Channel
Attacks (SCA). More precisely, we focus on elliptic
curve cryptography. We show how to randomize the
modular multiplication in order to be safe against
existing SCA and we demonstrate the resistance of
our construction. We describe the generation of a
PMNS while guaranteeing, for all elements of Z/pZ,
the minimum number of distinct representations
we want. We also show how to reach all these
representations.

Keywords-Polynomial Modular Number System,
Side Channel Countermeasure, Modular Artith-
metic.

I. I�����������
Most protocols in public key cryptography re-

quire modular arithmetic operations over large
integers, like for instance RSA [28] or Elliptic
Curve Cryptography (ECC) [21]. In practice, these
operations must be fast and secure. In order to
speed up modular arithmetic, specific represen-
tations of integers such as the Residue Number
System (RNS [17], [3]) or the Polynomial Modular
Number System (PMNS [5], [6], [25], [26]) have
been studied. The security concerns the resistance
to side channel analysis, especially when the im-
plementation targets embedded devices.

Side channel attacks (SCA) use the leakage
of information during the execution of a cryp-

tographic protocol in order to fully or partially
recover the secret [22]. The leakage of information
can be the execution time, the power consumption
or the electromagnetic emission of the imple-
mented algorithm. SCA have proven to be e�cient
in ECC [1]. Countermeasures to those attacks
should be included in the implementation of the
scalar multiplication in ECC. This operation is
the main and most critical operation in ECC. It
consists in adding a point P on an elliptic curve
E , k times. Existing countermeasures rely on the
addition of randomness during the computation.
The randomness could be included in the scalar
k [13], [12], [29], [10], [9] or in the coordinates of
the point P [13]. It is also possible to randomize
the instructions flow of the field multiplications
computed during the points addition [11]. Another
strategy is to introduce randomization at the arith-
metical level, which is the purpose of this paper.

Our goal is to protect elliptic curve scalar
multiplication (ECSM) against SCA [22] using
the PMNS to represent the coordinates of any
curve points. All operations involved in PMNS
representation use regular algorithms so they are
intrinsically Simple Power Analysis (SPA) im-
mune. Thus, it should be su�cient to use regular
algorithm (like the Montgomery powering lad-
der [24]) to perform the ECSM in order to be
safe against SPA attacks. To protect the classical
scalar multiplication kP against Di�erential Power
Analysis (DPA) attacks, we first show how the
conversion process which maps an integer to a
representative in PMNS can be easily modified to
randomize the base point P. Next, we show how to
randomize all intermediate values involved in the
scalar multiplication by adding some randomness
in the PMNS modular multiplication primitive.



Randomization of the scalar k can be done using
classical countermeasures [15].

The remaining of the paper is organised as
follow. We recall the principal definition and prop-
erties of a PMNS representation in Section II.
In Section III we present both the randomiza-
tion of inputs (Sec. III-B) and the multiplication
(Sec. III-C). In Section IV, we give costs of
modular multiplications in PMNS and describe
some specific advantages of PMNS regarding
some attacks like Goubin’s [18]. We conclude in
Section V.

II. B��������� �� PMNS
Modular arithmetic is one of the key point for

e�cient and secure cryptographic applications. A
challenge is to obtain a number system which per-
mits fast modular computations over large integers.

Bajard and al. [6] introduced the Modular Num-
ber System (MNS) which is a generalization of
positional number systems. The main idea is that
any integer x =

Õn
i=0 xi�i , can be seen as a poly-

nomial evaluated in �. In MNS, the choice of � is
free under certain conditions. This number system
is defined by the tuple (p, n, �, ⇢) as follows.

Definition II.1. A modular number system (MNS)
B is defined by a tuple (p, n, �, ⇢), such that for
every integer 0 6 x < p, there exists a vector

V = (v0, . . . , vn�1) such that: x =
n�1Õ
i=0

vi�i mod p ,
with |vi | < ⇢ and 0 < ⇢, � < p. In that case, we
say that V (or equivalently the polynomial V(X) =
v0 + v1.X + · · · + vn�1.Xn�1) is a representation
of x in B and we notate V ⌘ xB, which means
that V(�) ⌘ x (mod p). In this system, arithmetic
operations are performed on polynomials.
An example of MNS can be found in [6].

The product T of two MNS numbers V ⌘ xB
and W ⌘ yB satisfies T(�) ⌘ xy (mod p). How-
ever, T might not be in B because its degree could
be greater or equal to n. The Polynomial Modular
Number System is an extension of MNS which
keep the degree of the product bound by n.

Definition II.2. A Polynomial Modular Number
System (PMNS) [6] is a MNS where � is a root
modulo p of an unitary polynomial E(X) 2 Z[X],
such that deg(E) = n and kE k1 is “small”.
The polynomial E is named external reduction

polynomial. The PMNS B is defined by the tuple
(p, n, �, ⇢, E). In this system, arithmetic operations
are performed on polynomials modulo E .

Several methods exists for computing the
PMNS parameters. Plantard [26] give a building
method for very e�cient PMNS. Its main
drawback is that the parameter p cannot be set. It
is computed through the process. In [7], [14] the
authors show that it is always possible to build
many PMNS for a given modulus p.

In PMNS, the multiplication T = VW (mod E),
with V ⌘ xB and W ⌘ yB, satisfies T(�) ⌘ xy
(mod p) because E(�) ⌘ 0 (mod p). However,
even if deg(T) < n, T might not be a representation
of xy (mod p) in B, because its coe�cients could
be greater or equal to ⇢. In order to get this
representation in B, a special primitive called the
internal reduction has to be applied. The operation
that reduces the size of the polynomial coe�cients
is described in Section II-A.

In [26], [6], the authors show how to use
PMNS to speed up modular arithmetic. The main
PMNS primitives are recalled in Section II-B, II-C
and II-D.

A. Internal reduction
The goal of the internal reduction is to main-

tain small enough coe�cients of polynomials in
PMNS. Let B = (p, n, �, ⇢, E) be a PMNS.
The internal reduction process maps a polynomial
V(X) 2 Z[X] to a polynomial Ṽ(X) 2 Z[X] such
that Ṽ(�) ⌘ V(�) (mod p), kṼ k1 6 kV k1 and
deg Ṽ = deg V . We describe two ways to perform
this operation.

1) Internal reduction via a Mongtomery-like
method: In [25], the authors give a reduction
procedure similar to the Mongtomery algorithm
(Alg. 1). It outputs a polynomial Ṽ such that
Ṽ ⌘ V(�)r�1 (mod p). Using this version of the
internal reduction requires to convert the elements
of Z/pZ in the Montgomery domain during the
conversion process into the PMNS. An element
a 2 Z/pZ is represented by a polynomial A 2 B
such that A(�) ⌘ a.r (mod p). This way, we
ensure the consistency of operations in the PMNS
while using this method for coe�cients reduction.

The choice of the polynomial M to ensure
the existence of M 0 is discussed in [14]. The



Algorithm 1 RedCoe� - Montgomery like[25]
Require: V 2 Z[X] such that deg(V) < n;

B = (p, n, �, ⇢, E); M 2 B, such that
M(�) ⌘ 0 (mod p); an integer r and M 0 =
�M�1 mod(E, r).

Ensure: R(�) ⌘ V(�)r�1 (mod p)
1: Q V ⇥ M 0 mod (E, r)
2: R0  V + (Q ⇥ M) mod E
3: R R0/r
4: return R

Proposition II.1, from [25], gives a bound on the
coe�cients of the polynomial computed with the
Algorithm 1. Here, E(X) = Xn��, with � 2 Z\{0}.
Proposition II.1. Let m = kM k1. If V , ⇢ and m
are such that: kV k1 6 n|� |⇢2, ⇢ > 2|� |nm and
r > 2|� |n⇢ then the Algorithm 1 computes R such
that kRk1 < ⇢ (i.e R 2 B).

We will generalise this bound in Section II-B
for E(X) = Xn � �(X).

2) Internal reduction via a Babaï-like method:
The Babaï-like algorithm (Alg. 2) does not require
to maintain the elements of Z/pZ in another
domain and does not attempt to compute the result
by using a polynomial M with specific properties.
In this approach, we consider the Euclidean lat-
tice LB associated with the PMNS B. Here, LB
is the set of all polynomials having � as root
modulo p and which degree is at most n � 1:
LB = {A(X) 2 Z[X], such that: deg(A) < n and
A(�) ⌘ 0 (mod p)}.

The lattice LB is defined from one of its bases,
whose elements are A1(X) = p and Ai+1(X) =
X i � �i , for 1  i < n, from which we compute
D, the LLL-reduced base of LB, and the Gram-
Schmidt base eD obtained from D, whose elements
are orthogonal but not necessarily in LB. [27].
We can deduce from [16] and [27] that:

Proposition II.2. If ⇢ is such that ⇢ >
1
2 2 3n�1

2 p1/n, then the Algorithm 2 computes R such
that kRk1 < ⇢ (i.e R 2 B).
B. Multiplication

The elements in PMNS are polynomials of
degree at most n � 1. Their multiplication is done
using classical polynomial multiplication. How-
ever, the result (of degree at most 2 n�2) must be

Algorithm 2 RedCoe� - Babaï like [16]
Require: V 2 Z[X] with deg(V) < n, B =

(p, n, �, ⇢, E)
Ensure: R(�) ⌘ V(�) mod p
Data: D = {Di, 1  i  n} the LLL-reduced base

of the lattice associated to BeD = {fDi, 1  i  n} the Gram-Schmidt
base obtained from D

1: R V
2: for i = 1 to n do
3: c b< R, eDn�i+1 > /keDn�i+1k2e
4: R R � c ⇥ Dn�i+1
5: end for
6: return R

reduced modulo the external reduction polynomial
E . Then, an internal reduction is performed to
obtain a result in B.

The polynomial E is such that: E(X) = Xn �
�(X) 2 Z[X]. In order to reduce a polynomial V
modulo E , we proceed step by step by replacing
the term Xn in V by �(X) until deg(V) < n. We
consider here PMNS with reduction polynomials
E of degree n � 2, with �(X) = �kXk+ · · ·+�1X+
�0 and k  n

2 .
From this technique, we compute polynomials

of degree lower than n to represent the powers
X i modulo E , for 0  i  2 n � 2, with
X i mod E =

Õk+i�n
l=i�n �l�i+nX l when n  i <

2 n � k and X i mod E =
Õn�1

l=i�n �l+n�iX
l +Õ2k�2n+i

l=0 (Õl
j=0 �j �l+2 n�2 j)X l for 2 n � k  i 

2 n � 2.
Then, any polynomial V can be reduced modulo

E by multiplying the vector of the coe�cients of
V by the (2 n�1)⇥n matrix S whose rows represent
the coe�cients of each power X i modulo E , for
0  i  2 n � 2.

We denote s the 1-norm kSk1 of the matrix S,
and deduce the following proposition.

Proposition II.3. Let A, B 2 Z[X] be two poly-
nomials, such that: deg(A) < n and deg(B) < n.
We have: kA ⇥ B mod E k1 < n s kAk1 kBk1.

From this proposition the bound given in Propo-
sition II.1 can be rewritten by substituting |� | by
s.



C. Addition

Addition procedure is done using classical poly-
nomial addition in Z[X] followed by an internal
reduction in order to obtain a result in B.

D. Conversion procedures

The conversion procedures maps an integer to a
representation in B and vice-versa. They depend
on internal reduction step that can be achieved
using any one of the two procedure previously
described. The corresponding algorithms are de-
scibed in section 4.3 of [6].

III. R������������ �� ��� ������
�������������� �� �������� ����� ������������

Our motivation is to present algorithms that will
ensure the resistance of the scalar multiplication
against existing SCA. The scalar multiplication in
ECC takes a point P over a public elliptic curve, a
private integer k and computes kP. This operation
can be implemented using the classical double
and add method, but is not resistant to SCA [22].
The Montgomery ladder [24] and its variant [8],
[23], [19], [20] are more resistant but are still
attackable [1]. The recent survey [1] presents
existing side channel attacks and countermeasures
for the scalar multiplication over ECC. Existing
countermeasures rely either on the randomization
of the scalar k [13], [12], [29], [10], [9], or on the
randomization of the point P. The randomization
of point P can be calculated using the randomiza-
tion of projective coordinates [13] or the addition
of a random point R [13]. Only one countermea-
sure is designed on the field multiplication using
a random permutation [11].

We provide here two possibilities to randomize
the scalar multiplication:
• randomization of each initial coordinate of P
each time this point is used during the scalar mul-
tiplication algorithm. This protects against SCA,
where the attacker tries to find out the secret
using the knowledge of the point P [22] and
ensures the resistance to specific point attacks
[18], [2]. We use either Algorithm 3 or Algo-
rithm 4 as a conversion procedure depending on
the RedCoeff method that will be used later for
internal reduction;
• randomization of each multiplication a⇥ b for a

and b in PMNS representation to be more resistant
to SCA, using either Algorithm 5 or Algorithm 6.

A. Random polynomial generation
In order to randomize data in the PMNS, we

generate a random polynomial Z 2 Z[X] such that:
kZ k1  z and deg Z < n with z 2 N. The value
z is chosen during the PMNS generation process.
This integer z defines the minimum number of
distinct representations of any element of Z/pZ in
B. Once z is fixed, there are exactly (2 z + 1)n
polynomials Z . We will show how to use Z in
order to guarantee that there are at least (2 z + 1)n
distinct representations of any element of Z/pZ.

Hereafter we use a function randPoly(z) for
generating random polynomials which coe�cients
are in the set {�z, . . . , z}. We consider this func-
tion to be safe (see [4] for example).

B. Randomization of the input data
Here, we show how to randomize the conversion

procedure from binary to the PMNS in order to ob-
tain randomized input data. Let B = (p, n, �, ⇢, E)
be a PMNS. Let a 2 Z/pZ be an integer. We want
to compute a randomized representation of a in
B.

1) Conversion randomization using the
Mongtomery-like method: This algorithm is
a slight modification of the initial conversion
algorithm described in [6]. The randomized
conversion method introduces a polynomial
multiplication (line 4) before the internal
reduction. Doing so, we ensure that with the
same input and di�erent random polynomials this
algorithm produces di�erent representations.

Theorem III.1. Let B = (p, n, �, ⇢, E) a PMNS.
Let a 2 Z/pZ be an integer and r = 2j , j � 1.
Let M 2 B be a polynomial such that: M(�) ⌘ 0
(mod p) and gcd(r , resultant(E , M)) = 1. Let z
be the input of the randPoly procedure. We
consider B, a, r , M and z as the inputs and
data of Algorithm 3. Let m = kM k1. If ⇢ and
r satisfy ⇢ � 2 n s m

�
1 + z + z

r

�
and r � 2 n s ⇢,,

then Algorithm 3 can generate (2 z + 1)n distinct
outputs, all representing a and belonging to the
PMNS B = (p, n, �, ⇢, E).

Proof: We give a sketch of the proof. First,
it can be easily checked that V(�) ⌘ U(�)



Algorithm 3 Randomized conversion to PMNS
via Montgomery
Require: a 2 Z/pZ and B = (p, n, �, ⇢, E)
Ensure: A(�) ⌘ a r (mod p)
Data: Pi ⌘ (⇢i)B, for i = 0, . . . , n � 1, z 2 N,

r = 2j , j � 1 and M 2 B with M(�) ⌘ 0
(mod p) and gcd(r , resultant(E , M)) = 1.

1: Z  randPoly(z)
2: a a r2 (mod p)
3: b (an�1, ..., a0)⇢ # radix-⇢ decomposition

4: U  
n�1Õ
i=0

bi Pi

5: V  U + ((r + 1)Z ⇥ M) mod E
6: A RedCoe�(V)
7: return A

(mod p). Next, in order to ensure kAk1 < ⇢
we choose r and ⇢ such that r � 2 n s ⇢ and
⇢ � 2 n s m

�
1 + z + z

r

�
. Thus, A is a represen-

tation of a r (mod p) in the PMNS. Finally, we
prove by contradiction that, for the same entry
a 2 Z/pZ and two distinct random polynomials,
this algorithm returns two distinct outputs A1 and
A2.

2) Randomization using the Babaï-like method:
This algorithm is a slight modification of Al-
gorithm 2 using the Babai-like method for co-
e�cients reduction. Here, the representations in
the PMNS system are seen as vectors, the i-th
coordinate corresponding to the i-th coe�cient
of the polynomial form of the representation. We
consider a PMNS B and its associated lattice
LB with a LLL-reduced base, denoted D. The
randomization of the Babaï-like method is based
on two random vectors:
• A mask vector V used to generate a linear
combination of the elements of D to randomize
computations without a�ecting the result.
• A shift vector Z used to randomize the output.

Theorem III.2. Let B = (p, n, �, ⇢, E) a PMNS.
Let a 2 Z/pZ be an integer. Let v and z be the in-
puts of the randPoly procedure respectively for
the mask and the shift polynomial. We consider B,
a, v and z as the inputs and data of Algorithm 4.
If ⇢ satisfies ⇢ �

⇣
1
2 + z

⌘ ⇣
2 3n�1

2 p1/n
⌘
, then Algo-

rithm 4 can generate (2 z + 1)n distinct outputs,
all representing a and belonging to the PMNS

Algorithm 4 Randomized conversion to PMNS
via Babaï
Require: a 2 Z/pZ and B = (p, n, �, ⇢, E)
Ensure: A(�) ⌘ a (mod p)
Data: Pi ⌘ (⇢i)B, for i = 0, . . . , n � 1, D =

{Di, 1  i  n} , eD = {fDi, 1  i  n} ,
v 2 N such that kV k1  v with V 2 Zn the
mask vector, z 2 N such that kZ k1  z with
Z 2 Zn the shift vector.

1: V  randPoly(v), Z  randPoly(z)
2: b (an�1, ..., a0)⇢ # radix-⇢ decomposition

3: T  
n�1Õ
i=0

bi Pi , A T +
n�1Õ
i=0

vi Di+1

4: for i = 1 to n do
5: c b< A, eDn�i+1 > /keDn�i+1k2e + zn�i
6: A A � c ⇥ Dn�i+1
7: end for
8: return A

B = (p, n, �, ⇢, E).
Proof: We only give a sketch of the proof.

First, it is obvious that the polynomial T , in
Algorithm 4, is such that: T(�) ⌘ a (mod p).
Moreover, as D is a LLL-reduced base of the
lattice associated to B, it is always true that
A(�) ⌘ T(�) (mod p). Thus, A(�) ⌘ a (mod p).
Next condition on ⇢ guarantees that A will be
in the PMNS after the internal reduction process.
Finally, for two distinct random polynomials Z1
and Z2 with the same entry a 2 Z/pZ, it can
be proved that the algorithm returns two distinct
outputs A1 and A2.

C. Randomization of the multiplication
In PMNS the randomization of the multipli-

cation provides an additional level of security
when used with the randomized conversion. How-
ever, combining these two randomizations leads
to stronger constraints on some parameters of the
PMNS.

In both versions, we randomize one input in
order to randomize all the intermediate results.
Moreover, for the same input and di�erent random
polynomials (shift vectors for Babaï), the results
computed by these algorithms are di�erent repre-
sentations of the same integer in Z/pZ.

1) Randomization via Montgomery: This algo-
rithm is a variation of the Montgomery modular



multiplication.

Algorithm 5 Randomized Montgomery PMNS
Multiplication
Require: B = (p, n, �, ⇢, E) and A, B 2 B
Ensure: R(�) = A(�)B(�)r�1 mod p
Data: r = 2j , j � 1, z 2 N, M 2 B, such that:

M(�) ⌘ 0 (mod p) and gcd(r , resultant(E ,
M)) = 1, M 0 = �M�1 mod(E, r).

1: Z  randPoly(z)
2: J  Z ⇥ M mod E , B0  B + J
3: C  (A ⇥ B0) mod E
4: Q (C ⇥ M 0) mod (E, r)
5: R0  C + (Q ⇥ M) mod E
6: R R0/r + 2 ⇥ J
7: return R

Theorem III.3. Let B = (p, n, �, ⇢, E) a PMNS.
Let z 2 N be the bound of the random poly-
nomials and r = 2j , j � 1. Let M 2 B be
a polynomial such that: M(�) ⌘ 0 (mod p) and
gcd(r , resultant(E , M)) = 1. Let A and B be
two elements of B. We consider B, A, B, M , z
and r as the inputs and data of Algorithm 5. Let
m = kM k1. If ⇢ and r satisfy ⇢ � 2 n s m (2z + 1)
and r � 2 n s ⇢⇥max

⇣
z, 5

4

⌘
, then Algorithm 5 can

generate (2 z+1)n distinct outputs, all representing
A(�)B(�)r�1 (mod p) and belonging to the PMNS
B = (p, n, �, ⇢, E).

Proof: We only give a sketch of the proof
which is similar to the proof of Th. III.1. First,
we have M(�) ⌘ 0 (mod p), so J(�) ⌘ 0 (mod p)
and Q(�)M(�) ⌘ 0 (mod p). Thus, R(�) ⌘
A(�)B(�)r�1 (mod p).
Next, kRk1 <

⇣
5
4 n s ⇢2

⌘
/r+n s m(2 z+1). Hence,

for r � 2 n s ⇢⇥max(z, 5
4 ), kRk1 <

⇢
2 +n s m(2 z+

1). This way, condition on ⇢ guarantees that
kRk1 < ⇢. Finally, it can be proven that for
two distinct random polynomials and the same
entries A and B, the algorithm returns two distinct
outputs.

Instead of using the bounds on ⇢ and r from
Theorem III.1 for conversion in the PMNS, the
bounds of Theorem III.3 have to be used for
conversion if multiplications are to be randomized
as described above.

2) Randomization via Babaï: This conversion
lies on the same principles than the randomized

conversion described in Section III-B2. The ran-
domness is introduced in the multiplication trough
the mask V and the translation Z .

Algorithm 6 Randomized Babaï PMNS Multipli-
cation
Require: B = (p, n, �, ⇢, E) and A, B 2 B
Ensure: R 2 B and R(�) = A(�)B(�) mod p
Data: Pi ⌘ (⇢i)B, for i = 0, . . . , n � 1, D =

{Di, 1  i  n} , eD = {fDi, 1  i  n} ,
v 2 N such that kV k1  v with V 2 Zn the
mask vector, z 2 N such that kZ k1  z with
Z 2 Zn the shift vector.

1: V  randPoly(v), Z  randPoly(z)
2: J  

n�1Õ
i=0

vi Di+1

3: B0  B + J, R A ⇥ B0 mod E
4: for i := 1 to n do
5: c b< R, eDn�i+1 > /keDn�i+1k2e + zn�i
6: R R � c ⇥ Dn�i+1
7: end for
8: return R

Theorem III.2 applies equally to Algorithm 6,
which can generate (2 z + 1)n distinct outputs
representing A(�)B(�) mod p in the PMNS B =
(p, n, �, ⇢, E) with ⇢ �

⇣
1
2 + z

⌘ ⇣
2 3n�1

2 p1/n
⌘

and no
collision.

IV. C��� ����������
We describe here the theoretical cost estimation

of the multiplication algorithms presented in the
previous section. They are expressed as a func-
tion of the number of w-bit size multiplications,
additions, divisions and shifts.

We assume that the inputs of these algorithms
belong to B = (p, n, �, ⇢, E), with ⇢ = 2w , E(X) =
Xn � � and � = ±2u with w, u 2 N. It has been
shown in [14] that it is always possible to build
such PMNS. As an example, with such notations
the addition of two c-bit integers requires dc/we
w-bit additions.

Let M and A respectively denote the multipli-
cation and the sum of two w-bits integers, I the
division by an integer of 2w blog2(n)c bits and R
the cost of one call to the randPoly function. We
also respectively denote Sil and Sir a left shift and
a right shift of i bits. In Table I, we compare the
cost of the randomized multiplication in PMNS



with their non-randomized counterparts. The non-
randomized version is a simple polynomial mul-
tiplication followed by a Babaï-like (Alg. 2) or
Montgomery-like (Alg. 1) internal reduction.

In order to protect the ECSM kP against DPA
attacks, classical countermeasures randomize be-
forehand the scalar k and the point P [15]. Then,
during the computation process, the intermediate
points that are computed are also randomized. The
expectation of these approaches is to prevent an
attacker to get information about k or to make
useful assumption about the intermediate values
of the ECSM.

In classical binary representation, these com-
mon countermeasures appear to be ine�cient
against Goubin’s attack [18]. This attack can be
done on curves that have at least one point with
one coordinate equals to zero. On such a curve,
using such a point, the attacker can find informa-
tion about the secret key. It is possible to thwart
this attack at the cost of an additional ECSM
which must be done in addition to the common
countermeasures [15].

A first advantage of our PMNS based random-
ized solutions is that regardless the type of curve,
this attack cannot be performed. Indeed, there are
at least (2z + 1)n distinct representatives of 0 2
Z/pZ and these representatives do not have special
shapes. Thus, for z big enough, the attacker should
not be able to exploit any information to perform
this attack. Consequently, the only randomization
of the conversion process using Algorithms 3 or 4
su�ces to counter the Goubin’s attack even if non-
randomized multiplications are used later.

Another advantage of our approach is that it
operates at arithmetic level. Hence it can be com-
bined with other classical countermeasures (point
blinding, scalar blinding) to randomize P and the
intermediate points.

V. C���������

In this paper, we show for the first time how
to use the redundancy of the PMNS to define
arithmetical protections against DPA attacks. We
described how to randomize the inputs during
the forward conversion to PMNS through two
methods. We also gave two randomized modular
multiplications in PMNS. These methods can be
used to apply classical countermeasures on the

elliptic curve scalar multiplication kP. Moreover,
we showed that randomizing only the conversion
process su�ces to protect against Goubin’s at-
tack. As a comparison, a safe countermeasure
using the classical binary representation, requires
an additional ECSM kR for some random point
R [15]. These results are a first step in using
randomization for arithmetic operations in PMNS.
This work opens up new perspectives in the area
of countermeasures for SCA attacks. A deeper
study on practical e�ciency and an exhaustive
comparison with existing countermeasures will
soon follow in order to establish the relevance of
these methods . . .
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